
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Perspectives	form	US	Department	of	Energy	
work	on	parallel	programming	models	 for	

performance	portability

Jeremiah	J.	Wilke
Sandia	National	Labs

Livermore,	CA
IMPACT	workshop	at	HiPEAC



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Art	of	the	deal:
How	to	sell	your	tools	to	DOE	app	developers

Jeremiah	J.	Wilke
Sandia	National	Labs

Livermore,	CA
IMPACT	workshop	at	HiPEAC



National Energy Research Scientific Computing Center 

Highlights	
from	

Very	diverse	set	of	applications	on	very	diverse	set	of	
parallel	architectures	poses	major	challenges



My	worldview:	 find	general	purpose	programming	
models	that	enable	performance	portability	

§ Funding	goal:	Solution	to	replace	MPI-only	that	gets	to	exascale
§ Single	piece	of	code	should	run	well,	not	just	correctly,	across	

many	different	platforms
§ Many	hardware	trends	pushing	new	programming	models

§ GPU,	CPU,	KNL	– loop	traversal	order,	optimal	data	layouts
§ Multi-level	memories	– tiling,	caching	optimizations	to	utilize	high-

bandwidth	memory,	unified	memory	models	with	hardware	support
§ Communication	avoiding	algorithms,	asynchronous	models	to	hide	

communication	latency

§ Growing	number	of	production	apps	use	OpenMP,	Kokkos,	Raja	
for	multithreading

§ Next-generation	 experimental	 codes	are	exploring	asynchronous	
many-task	models	including	Legion,	Charm++,	many	more

4



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ ``Regular’’	C++
§ Directives
§ New	languages

5



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia):	Carter	Edwards	and	Christian	Trott (array	views	and	

executors,	 loop	traversal	order,	data	layouts,	lambdas	and	functors)
§ Raja	(Livermore):	 Jeff	Keasler (executors,	 loop	traversal	order,	data	staging)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ Directives
§ New	languages

6



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia):	Carter	Edwards	and	Christian	Trott (array	views	and	

executors,	 loop	traversal	order,	data	layouts,	lambdas	and	functors)
§ Raja	(Livermore):	 Jeff	Keasler (executors,	 loop	traversal	order,	data	staging)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++	(not	so	much	metaprogramming)
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives
§ New	languages

7



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	
§ OpenMP
§ OmpSs (Barcelona)

§ New	languages

8



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	OpenMP,	OmpSs
§ New	languages:
§ Chapel	(Cray):	global	address	 space	language
§ Regent	(Stanford):	expressive	 interface	 to	Legion	based	on	Terra,	 Lua

9



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	OpenMP,	OmpSs
§ New	languages:
§ Chapel	(Cray):	global	address	 space	language
§ Regent	(Stanford):	expressive	 interface	 to	Legion	based	on	Terra,	 Lua

§ Some	polyhedral	work	R-stream/OCR,	OSU+	Lawrence,	Utah	
10



DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU,Indiana):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	OpenMP,	OmpSs
§ New	languages:
§ Chapel	(Cray):	global	address	 space	language
§ Regent	(Stanford):	expressive	 interface	 to	Legion	based	on	Terra,	 Lua

§ Some	polyhedral	work	R-stream	+	OCR,	Ohio	State	+	Lawrence	
11

These are all general purpose programming 
models! 



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?

12



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

13



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

§ Thought	experiment	#2:	If	single	parallel	architecture	existed,	
would	apps	teams	want	polyhedral	compilers?

14



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

§ Thought	experiment	#2:	If	single	parallel	architecture	existed,	
would	apps	teams	want	anything	but	MPI	+	OpenMP?

§ Parallel	app	developers	 are	experts	 in	problem	decomposition
§ MPI	not	really	that	burdensome	to	write	– only	annoying	if	different	

architecture	demands	different	problem	decompositions
§ Kokkos,Raja,OpenMP:	Not	perfect,	but	not	rate-limiting	step	in	development
§ Vectorization?	Need	broader	survey	of	what	developers	 find	difficult
§ Apps	developers	 like	controlling	details	of	execution

15



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

§ Thought	experiment	#2:	If	single	parallel	architecture	existed,	
would	apps	teams	want	anything	but	MPI	+	OpenMP?

§ Parallel	app	developers	 are	experts	 in	problem	decomposition
§ MPI	not	really	that	burdensome	to	write	– only	annoying	if	different	

architecture	demands	different	problem	decompositions
§ Kokkos,Raja,OpenMP:	Not	perfect,	but	not	rate-limiting	step	in	development
§ Vectorization?	Need	broader	survey	of	what	developers	 find	difficult
§ Apps	developers	 like	controlling	details	of	execution

§ Performance	portability	changes	calculus	– the	``buzz	word’’	that	
will	get	app	developer’s	 attention

16



Conclusions:	What	are	possible	outcomes?	And	what	
can	you	do	to	influence	outcomes?

§ Outcome	#1:	DOE	ports	all	of	its	codes	to	new	general	
purpose	runtime	(might	just	be	MPI	+	OpenMP)

§ Outcome	#2:	General	purpose	loses	– quicker	to	just	build	
domain-specific	runtimes	and	models

§ Outcome	#1	is	programmatically preferred,	DOE	doesn’t	want	
a	bunch	of	ad	hoc	technologies	 lumped	together

§ Path	forward:
§ Sell	the	product	– current	 solutions	not	breeding	mass	discontent
§ Don’t	oversell	 the	product
§ Compare	compiler	tools	to	general	purpose	programming	models	

(particularly	Legion,	Kokkos,	Raja)
§ Use	“performance	portability”	as	an	ice-breaker

17


