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Very	diverse	set	of	applications	on	very	diverse	set	of	
parallel	architectures	poses	major	challenges



My	worldview:	 find	general	purpose	programming	
models	that	enable	performance	portability	

§ Funding	goal:	Solution	to	replace	MPI-only	that	gets	to	exascale
§ Single	piece	of	code	should	run	well,	not	just	correctly,	across	

many	different	platforms
§ Many	hardware	trends	pushing	new	programming	models

§ GPU,	CPU,	KNL	– loop	traversal	order,	optimal	data	layouts
§ Multi-level	memories	– tiling,	caching	optimizations	to	utilize	high-

bandwidth	memory,	unified	memory	models	with	hardware	support
§ Communication	avoiding	algorithms,	asynchronous	models	to	hide	

communication	latency

§ Growing	number	of	production	apps	use	OpenMP,	Kokkos,	Raja	
for	multithreading

§ Next-generation	 experimental	 codes	are	exploring	asynchronous	
many-task	models	including	Legion,	Charm++,	many	more
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ ``Regular’’	C++
§ Directives
§ New	languages
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia):	Carter	Edwards	and	Christian	Trott (array	views	and	

executors,	 loop	traversal	order,	data	layouts,	lambdas	and	functors)
§ Raja	(Livermore):	 Jeff	Keasler (executors,	 loop	traversal	order,	data	staging)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ Directives
§ New	languages
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia):	Carter	Edwards	and	Christian	Trott (array	views	and	

executors,	 loop	traversal	order,	data	layouts,	lambdas	and	functors)
§ Raja	(Livermore):	 Jeff	Keasler (executors,	 loop	traversal	order,	data	staging)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++	(not	so	much	metaprogramming)
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives
§ New	languages
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	
§ OpenMP
§ OmpSs (Barcelona)

§ New	languages
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	OpenMP,	OmpSs
§ New	languages:
§ Chapel	(Cray):	global	address	 space	language
§ Regent	(Stanford):	expressive	 interface	 to	Legion	based	on	Terra,	 Lua
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	OpenMP,	OmpSs
§ New	languages:
§ Chapel	(Cray):	global	address	 space	language
§ Regent	(Stanford):	expressive	 interface	 to	Legion	based	on	Terra,	 Lua

§ Some	polyhedral	work	R-stream/OCR,	OSU+	Lawrence,	Utah	
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DOE	and	collaborator	efforts	on	performance	portability
§ Modern	C++	(metaprogramming)
§ Kokkos (Sandia,	Edwards),	Raja	(Livermore,	 Keasler):	executors,	 loop	traversal	

order,	data	layouts,	lambdas	and	functors)
§ DARMA	(Sandia):	Janine	Bennett	(coarse-grain	 tasks,	runtime	dep analysis)
§ HPX	(LSU,Indiana):	Hartmut Kaiser	(futures,	 tasks,	templated sync	primitives)

§ ``Regular’’	C++
§ UPC++	 (Berkeley):	Kathy	Yelick (global	address	 space)
§ Legion	(Standord,	Los	Alamos,	NVidia):	McCormick,	Aiken,	Bauer	(coarse-

grain	tasks,	runtime	dep analysis,	strong	data	model)
§ Charm++	 (UIUC):	Kale	(actor	model)

§ Directives:	OpenMP,	OmpSs
§ New	languages:
§ Chapel	(Cray):	global	address	 space	language
§ Regent	(Stanford):	expressive	 interface	 to	Legion	based	on	Terra,	 Lua

§ Some	polyhedral	work	R-stream	+	OCR,	Ohio	State	+	Lawrence	
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These are all general purpose programming 
models! 



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
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Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

§ Thought	experiment	#2:	If	single	parallel	architecture	existed,	
would	apps	teams	want	polyhedral	compilers?

14



Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

§ Thought	experiment	#2:	If	single	parallel	architecture	existed,	
would	apps	teams	want	anything	but	MPI	+	OpenMP?

§ Parallel	app	developers	 are	experts	 in	problem	decomposition
§ MPI	not	really	that	burdensome	to	write	– only	annoying	if	different	

architecture	demands	different	problem	decompositions
§ Kokkos,Raja,OpenMP:	Not	perfect,	but	not	rate-limiting	step	in	development
§ Vectorization?	Need	broader	survey	of	what	developers	 find	difficult
§ Apps	developers	 like	controlling	details	of	execution
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Programming	models	are	economics	and	sociology:
Maximize	programming	 productivity and happiness

§ Thought	experiment	#1:	If	a	single	computer	architecture	existed,	
would	apps	teams	learn	and	write	assembly?
§ No,	compilers	are	necessary	 for	productivity	even	without	any	concerns	for	

portability	of	code

§ Thought	experiment	#2:	If	single	parallel	architecture	existed,	
would	apps	teams	want	anything	but	MPI	+	OpenMP?

§ Parallel	app	developers	 are	experts	 in	problem	decomposition
§ MPI	not	really	that	burdensome	to	write	– only	annoying	if	different	

architecture	demands	different	problem	decompositions
§ Kokkos,Raja,OpenMP:	Not	perfect,	but	not	rate-limiting	step	in	development
§ Vectorization?	Need	broader	survey	of	what	developers	 find	difficult
§ Apps	developers	 like	controlling	details	of	execution

§ Performance	portability	changes	calculus	– the	``buzz	word’’	that	
will	get	app	developer’s	 attention
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Conclusions:	What	are	possible	outcomes?	And	what	
can	you	do	to	influence	outcomes?

§ Outcome	#1:	DOE	ports	all	of	its	codes	to	new	general	
purpose	runtime	(might	just	be	MPI	+	OpenMP)

§ Outcome	#2:	General	purpose	loses	– quicker	to	just	build	
domain-specific	runtimes	and	models

§ Outcome	#1	is	programmatically preferred,	DOE	doesn’t	want	
a	bunch	of	ad	hoc	technologies	 lumped	together

§ Path	forward:
§ Sell	the	product	– current	 solutions	not	breeding	mass	discontent
§ Don’t	oversell	 the	product
§ Compare	compiler	tools	to	general	purpose	programming	models	

(particularly	Legion,	Kokkos,	Raja)
§ Use	“performance	portability”	as	an	ice-breaker
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