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ABSTRACT
The efficiency of accelerators supporting complex instruc-
tions is often limited by their input/output bandwidth re-
quirements. To overcome this bottleneck, we herein intro-
duce a novel methodology that, following a static code anal-
ysis approach, harnesses data reuse in-between multiple it-
eration of loop bodies to reduce the amount of data trans-
fers. Our methodology, building upon the features offered
by the LLVM-Polly framework, enables the automated de-
sign of fully synthesisable and highly-efficient accelerators.
Our approach is targeted towards sliding window kernels,
which are employed in many applications in the signal and
image processing domain.

1. INTRODUCTION
Application-Specific Instruction Set Processors (ASIPs) are
digital architectures that support hybrid HW-SW execution.
They comprise a CPU and tightly or loosely coupled hard-
ware accelerators, where critical parts of computation can
be accelerated.

A large body of research exists in the identification of com-
putational kernels [2, 4, 6, 7], i.e. detecting automatically,
from source code, applications hotspots to be implemented
in HW. Hardware accelerated kernels are then exposed to
software as a single and complex Custom Instruction (CI).
These works traditionally target dataflow computation, and
mostly do not tackle control flow nor memory transfers — a
limitation that we attempt to overcome in this paper.

Alongside CI identification, an equally important dimension
is the automatic synthesis of such instructions from a high-
level (e.g.: C language) description, as the efficiency of the
resulting HW implementation makes a tangible difference
in performance. High Level Synthesis (HLS) [5, 10, 15,
17], aims exactly at performing this SW to HW transla-
tion efficiently. While existing high-level synthesis tools are
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generally effective in automatically applying optimisations
in data-flow in order to produce good designs, the optimi-
sation of control-flow and of memory transfers still poorly
translates automatically to hardware.

Complex CIs, spanning entire (possibly nested) loops, com-
monly exhibit a high degree of data reuse, i.e.: the intersec-
tion between the sets of input data values being processed
in subsequent iterations is quite large. Effective exploitation
of data reuse greatly lowers the required bandwidth to and
from accelerators, thus minimising data transfer overheads
and, ultimately, increasing their performance. The applica-
tion of data reuse analysis to guide CI synthesis is still in
its infancy. In fact, state of the art methods either rely on
manually rewriting the source code before high-level synthe-
sis [15] or on source-to-source translation [11] [12], and are
therefore poorly integrated in HLS toolchaines.

This work attempts to bridge this gap. It presents a compiler-
driven framework, based on the LLVM Polly [14] library,
able to identify data reuse opportunities in computational
kernels in order to guide the automatic synthesis of complex
hardware accelerators. Such accelerators aptly exploit un-
rolling and pipelining, by embedding a local storage holding
elements which are re-used across iterations.

We herein target sliding window applications, common in
the image processing field. In such domain, a transformation
is applied to each element of a large two-dimensional input
array (a frame) according to the values in a small neighbour-
hood (a window). We consider large, but constrained, in-
put/output links as the main architectural constraint in the
design of the CI accelerators. Such arrangement is usually
supported by commercial ASIP platforms, e.g.: the Tensilica
Xtensa processor [13] supports CIs interfaced with 512-bits
interconnects.

2. RELATED WORK
In the state of the art in automatic identification of custom
instructions, research has so far focused mostly on accelerat-
ing data-flow [4, 6], disregarding the opportunities offered by
the optimization of memory accesses. An exception is pro-
vided by papers [2, 7] where the authors acknowledge that
custom instructions that include storage can provide larger
speedup than those which attempt to accelerate dataflow
only. However, both these papers focus on the identification



of the custom instructions, and do not present a high-level
synthesis methodology to automatically and efficiently im-
plement them as hardware accelerators.

In the context of sliding window applications, this challenge
has been addressed both by research effort and commer-
cial tools. The smart buffers [5] generated by the ROCCC
compiler [17] allow to automatically detect data reuse op-
portunities, but, as opposed to our work, don’t have the
flexibility to interface with interconnects of varying width.
The methodology described in [10] employs reuse buffers
spanning multiple frame columns, which pose a significant
area overhead. Both [5] and [10] are not able to combine
hardware unrolling and pipelining, which are instead jointly
supported by our framework. An alternative approach, de-
scribed in [3], is also resource-intensive, as it requires the
storage of large parts of a frame being processed inside the
custom hardware. In [18], the authors propose an analytical
method to gather microarchitectural parameters for sliding-
window applications on FPGAs. Their design however ul-
timately needs to be manually implemented and hence the
work neglects high level synthesis aspects. The commer-
cial Vivado HLS High-Level Synthesis tool requires exten-
sive manual effort at the source code (C) level to instantiate
reuse buffer. Conversely, our approach relies on automated
code analysis to derive the characteristics of a target appli-
cation.

As opposed to [11], [12] and [10], which rely on source-to-
source transformations to expose optimisation opportunities
for HLS synthesis, we detect and exploit these benefits di-
rectly. In [11] and [10], only single-datapath designs are con-
sidered, neglecting the benefits offered by wide interconnects
and multiple datapaths. These opportunities are leveraged
in [12], which adopts a strategy based on super-pixels and
large internal buffers. In our methodology, instead, only the
data elements belonging to an overlapping set of windows
have to be locally stored, resulting in more area-efficient
accelerators. In [11] and [10] data reuse is exploited only
across two consecutive iterations of the innermost loops. We
increase the scope (and the performance benefits) of data
reuse analysis by also considering the opportunities present
across iterations of the external loop.

Our framework allows efficient processing of a two- dimen-
sional input data of pre-determined size. Our contribution
is therefore agnostic with respect to optimisations, such as
loop tiling and communication coalescing [1], that aim at
reshaping such boundaries.

3. METHODOLOGY
In order to generate our custom-storage accelerators we pro-
ceed with a two-steps methodology, where first we identify
and then we synthesise the part of computation to be imple-
mented in HW. The phases of identification and synthesis
are depicted in Figure 1, along with the evaluation procedure
we follow.

Here, we first briefly describe how the part of computation
to be accelerated can be identified (Section 3.1). The opti-
misation of data accesses is essential to derive efficient CI
implementation for window applications. In this light, in
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Figure 1: Block scheme of our framework. Code
analysis retrieves the parameters of SCoP kernels,
which are employed, along with input/output con-
straints, to guide the automated design of highly
efficient hardware accelerators.

Section 3.2 we discuss data reuse opportunities in our target
domain and, in Section 3.3, how they can be automatically
harnessed with static code analysis. Finally, we provide de-
tails on the resulting hardware implementations.

3.1 Custom Instructions Identification
Figure 2 shows the data flow graph (DFG) and the control
flow graph (CFG) for the Sobel Filter application kernel.
The Sobel Filter is a sliding-window application where a
window of 3x3 moves across an image, with a stride of 1
(horizontally and then vertically), and eight of the nine pix-
els in each window are then used to compute an output. The
corresponding DFG is depicted in the inner loop, with eight
loads and one store (red nodes), and dataflow computation
in between. State of the art identification algorithms tradi-
tionally focus on dataflow only. Given a number of inputs
and outputs that can be exchanged between processor and

Figure 2: State of the art identification algorithm
traditionally focus on dataflow computation only
(subgraph A). In this paper, instead, the control
flow graph (CFG) of the application is also anal-
ysed, in search for static control parts (SCoPs) —
subgraphs of the CFG where the flow of control is
known statically. The whole SCoP region (subgraph
B) is hence identified and selected as accelerator.
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Figure 3: At each iteration, sliding window appli-
cations process a subset of the input data (a). The
managed set of subsequent iterations present a high
degree of overlap, both in the horizontal (b) and ver-
tical (b) dimensions. Our framework automatically
leverages both, maximising data reuse (d).

accelerators, identification algorithms such as [4, 6] would
select the dataflow computation as a suitable custom in-
struction (subgraph A in the figure), leaving loads and store
nodes out, as forbidden.

Conversely, we propose in this work to identify the entire
loop (subgraph B) as a candidate CI, including loads and
stores. The rationale motivating our strategy is two-fold.
First, larger CI, possibly leading to higher speed-ups, can be
identified. Second, costly memory accesses can be minimised
by employing optimisations whose scope encompasses mul-
tiple loop iterations and that aggressively exploit data reuse
opportunities (discussed in Section 3.2). Hence, custom in-
struction identification is in this paper essentially moved be-
yond the basic block boundary, by selecting the whole CFG
subgraph as a custom instruction.

In order to identify code sections corresponding to sliding
window kernels, the control flow graph (CFG) of the appli-
cation is analysed, looking for loop nests. Then, the LLVM
Polly [14] library is used to verify whether the CFG structure
of nests is a SCoP (Static Control Part), which is a subgraph
of the CFG where the flow of control is known statically.
If so, its polyhedral model, derived by Polly, is derived to
provide the SCoP parameters required for its hardware im-
plementation, as detailed in Section 3.3.

3.2 Data Reuse Opportunities
Our framework leverages both hardware unrolling and pipelin-
ing to achieve a high degree of inter-iteration data reuse.
Figure 3 illustrates the reuse concept from a high-level per-
spective, assuming, without loss of generality, that the slid-
ing window moves first in the vertical direction and then, at
the end of each frame column, in the horizontal one.

Algorithm 1 LLVM Analysis Pass - Data Reuse Analysis

1: function RunOnRegion()
2: getAnalysis(ScopInfo)
3: scop = getScop()
4: RunOnScop(scop)

5:
6: function RunOnScop(scop)
7: LI = getLoopInfo()
8: SE = getSE()
9: if L == OutermostLoop then

10: getTripCountForOutermostLoop()
11: getStrideForOutermostLoop()
12: else if L == InnerMostLoop then
13: getTripCountForInnermostLoop()
14: getStrideForInnermostLoop()
15: getReadMemoryAccesses()
16: ComputeDistancesForReadAccesses()
17: ComputeWindowSize()

Window applications proceed by computing output values
from a subset of an entire frame, localized in a small two-
dimensional block. It is therefore possible to limit the inter-
nal storage of the local memory of the accelerator to the data
used in a single window, called the managed set, resulting in
a compact hardware implementation (Figure 3a).

Nonetheless, by adopting a larger local memory, the data re-
quired by multiple windows can be stored at the same time.
We observe (Figure 3b) that the managed sets of horizon-
tally adjacent windows are highly overlapping, only differing
by a number of columns of elements equal to the vertical
stride of the application. Multiple (overlapping) managed
sets can therefore be supported with little overhead in the
size of the local buffer. Each window enclosed in the buffer
can then be processed in parallel by a different datapath,
implementing unrolling with data reuse in hardware.

Data reuse is also present in the vertical dimension. In fact,
the managed set of subsequent iterations differ by a num-
ber of rows equal to the horizontal stride (Figure 3c). This
source data reuse can be efficiently harnessed by hardware
pipelining, implementing the local storage as a row-wise shift
register.

Our framework supports both types of data reuse concur-
rently (Figure 3d). In this setting, updating the managed
set entails the transfer from main memory of the data cor-
responding to a buffer row (as opposed to a window row in
Figure 3c). We use this added degree of freedom to tailor
both the local storage structure and the number of imple-
mented datapaths according to the input/output width of
the communication interface (i.e.: number of data elements
that can be concurrently read or written).

3.3 Data Reuse Analysis
To automate the analysis of data reuse in SCoPs, informa-
tion about the window size, the stride and the frame size
must be collected from the applications source code. The
window size defines the access pattern within the innermost
body of the loop. The innermost and outermost loop stride
is the value of the induction variable increase for the in-



nermost and the outermost loop respectively. Finally, the
frame size is defined as the iteration space in which the slid-
ing window is moving. To obtain these values, we developed
a compiler analysis pass, building on the capabilities offered
by the LLVM Polly framework [14]. Application-specific
parameters are then considered in conjunction with archi-
tecture constraints (input/output width) to automatically
synthesise efficient SCoP accelerators.

The Analysis Pass that we have developed iterates over re-
gions of the application functions identified as Static Con-
trol Parts (SCoPs) by Polly. As reported in Algorithm 1,
for each SCoP Loop and Scalar Evolution (SE) information
are extracted from the current body of the loop, by using
the analysis passes provided by LLVM. Loop information
provides the loop depth, and thus whether a loop is the in-
nermost or the outermost one in a SCoP. SE information
includes the loop trip count method, which computes the
iteration space for each loop. This information enables the
computation of the frame size.

The SCoP horizontal and vertical stride is calculated by the
getStrideForLoop function, which takes as argument the ba-
sic block corresponding to the loop body. We developed it
by leveraging the getStride method included in the LLVM
ScopInfo Analysis pass and functions included in the Integer
Set Library (isl) [16].

Finally, the read memory accesses residing in the innermost
body of the loop are identified by using isl functions within
our own ComputeDistancesForReadAccesses function. We
compute the distance (or delta) of each of these accesses
with respect to the first identified one. From the access pat-
tern, the window size is computed as its minimum enclosing
rectangle.

3.4 Hardware implementation
The parameters retrieved with SCoP analysis (horizontal
and vertical window size, stride, domain) and the charac-
teristics of the interconnect (input and output width) are
employed to derive efficient CI implementation with local
storage and data reuse.

As shown in the block scheme in Figure 4, accelerators im-
plementations embed multiple combinatorial datapaths1, each
executing one iteration of the loop body of the target appli-
cation. Their input interface embeds a local storage, whose
horizontal size corresponds to the available input data width
of INW data elements, while its vertical size is equal to the
vertical dimension of the application window v. It is imple-
mented as a INW ∗ v shift register, operating in the vertical
(top-down) direction. During execution, the first row of the
shift register is filled with input data in each clock cycle.
A subset of the elements stored in the shift register is con-
nected to each of the different datapaths according to their
managed sets, e.g.: the first one having inputs corresponding
to the buffer columns ranging from 0 to h−1 (the horizontal
size of the window). Figure 4 illustrates such scheme for the
simple case of INW = h + 1.

1While we consider only combinational datapaths in the ex-
periments presented in Section 5, our methodology can be
also applied to multi-cycle datapaths.
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Figure 4: The automatically generated accelerators
include multiple datapaths, executing the loop body
of two-dimensional SCoPs.

Pipelining Unrolling Parametric
data reuse data reuse I/O width

Our Yes Yes Yes
Vivado Manual No Yes

ROCCC Yes No No

Table 1: Summary of the features of the accelerators
generated by our framework, compared with state-
of-the-art tools.

At the start of operations, v rows are stored in the shift
register before activating the datapaths logic. Afterwards,
this activation is performed for each new row, discarding
the last (topmost) line and storing a new one in the first
(bottom) position of the shift register. At the completion
of a vertical slide of the window through the frame, a new
one is started, increasing the horizontal displacement of the
buffer by INW − h + 1 elements.

Finally, since no reuse opportunities are present for outputs,
the output interface simply concatenates the values gener-
ated by the datapaths, and transfers them as a single and
wide memory access.

4. EXPERIMENTAL SETUP
We evaluated the performance of accelerators generated by
our methodology with respect to equivalent ones generated
by the ROCCC [17] and Vivado HLS high level synthesis
tools. Table 1 provide a high-level summary of the main
features of each framework.

Vivado HLS directives allow to (manually) reshape input
and output vectors to interface with wide input and output
connections comprising multiple data elements, but has lim-
ited support for data reuse. In more detail, [15] describes
how source code must be (manually) restructured to obtain
a pipelined implementation, but does not mention how un-
rolling (with data reuse) can be performed on the modified
code. In our comparative evaluation, we consider both im-
plementations optimised only by means of directives (named
Vivado norew in the following experiments) as well as ones
deriving from an extensive rewrite of the source code (Vi-
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Figure 5: Comparison of required resources for our generated systems and for baseline approaches: LUTs
(a) and Flip-Flops (b). ROCCC implementations also employ 2 BRAM elements.

Window Input width, #DPs
Benchmark size Conf.1 Conf.2 Conf.3

SAD 4x4 4, 1 8, 5 16, 13
Max. Filter 8x8 8, 1 16, 9 24, 17

Sobel 3x3 3, 1 8, 6 16, 14

Table 2: Benchmarks characteristics and employed
configurations. Conf.1 presents a single datapath,
while Conf.2 and Conf.3 have a moderate to large
number of datapaths. Window sizes and input
widths are expressed in bytes.

vado rew). ROCCC, similarly to [11] and [10], automati-
cally detects opportunities for a pipelined data reuse, but
faces has limited support for unrolling, resulting in acceler-
ators which only embed a single datapath. Additionally, it
cannot generate systems with unaligned accesses to multi-
ple (contiguous) data elements, required in sliding window
applications to take advantage of large I/O widths. In our
framework, those three features are automatically leveraged,
without requiring any code rewriting.

For all experiments, the number of clock cycles employed to
process a frame was retrieved from HDL simulations. For
implementation, we targeted a Xilinx Virtex7 FPGA. We
employed low-level synthesis to measure the length of critical
paths and the amount of required resources (flip-flops and
look-up tables).

5. EXPERIMENTS
In this section, we comparatively evaluate the benefit of our
approach, from a performance and resource usage viewpoint.
We employed benchmarks with varying window sizes, as
summarised in Table 2. BlockSAD, a hot-spot from Block
Motion Search in H264, is used to find the similarity be-
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Figure 6: Execution time to process a 100x100
frame.

tween 4x4 blocks in neighbouring regions of different frames.
Our implementation is adapted from the JM H264 reference
[9]. Maximum Filter computes the brightest pixel among
neighbours in 8x8 blocks. Sobel is a popular method for
edge detection. In all cases, similarly to [10], we consid-
ered 100x100 frames, with each pixel encoded as a single
byte. Also described in Table 2 are the three considered
configurations for each benchmark, employing either a sin-
gle datapath (Conf.1) or multiple ones (Conf.2, Conf.3).

Execution Time. Execution times are reported in Figures
6 for the target FPGA. The first consideration that can be
derived from these results is on the effectiveness of data re-
use. ROCCC systems, which transfer a single pixel per data
access but implement pipelining, have similar performance
with respect to Vivado norew ones, which can read a win-
dow row of pixels per access but do not exploit data reuse.
Secondly, Conf.1 accelerators — even though they do not
require code modifications — are as efficient as Vivado rew
ones, as they both present wide input/output widths as well
as pipelining with data reuse. Finally, unrolling with reuse,
that is supported only by our framework, dramatically de-
creases run-times, with an order-of-magnitude speed up on
average between Conf.1 and Conf.3. The other state of the
art tools cannot provide a comparable solution with such low
execution time.

Required resources. Figure 5 reports the amount of re-
sources required by our generated accelerators, compared
with the considered baseline alternatives. Unsurprisingly,
accelerators featuring a high number of datapaths (Conf.3)
require more resources than single-datapaths alternatives
(Conf.1, Vivado). Nonetheless, the area increase is sub-
linear with respect to the amount of datapaths, as the size
of the input buffer only grows slightly to support a higher
degree of parallelism. In fact, results highlight that complex
accelerators employ a substantial amount of combinatorial
logic (implemented with LUTs in FPGAs), but are compet-
itive with other HLS frameworks regarding the amount of
required memory resources (Flip-Flops in FPGAs).

As illustrated in Figure 7, the speedup improvements due to
parallel datapaths compare favourably with the area over-
heads: in the case of the BlockSAD benchmark, for exam-
ple, Conf.3, which embeds 13 parallel datapaths, requires 6x
more LUTs with respect to the Vivado rew implementation,
but at the same time results in a 9.2x speedup. Again, it is
important to note that state of the art tools do not support
unrolling with data reuse, but stop at the level of speedup
that can be achieved by single-datapath solutions.
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Figure 7: Comparison of multi-datapath and opti-
mised Vivado implementations.

Discussion. Our framework brings High-Level Synthesis
one step closer to mimicking manual hardware-designer de-
cisions. The Conf.3 accelerator for BlockSAD, presented
above, is essentially the same as the one designed manually
by Hameed et. al [8], in a paper aimed at manually design-
ing accelerators for the H264 application. The authors have
indeed chosen to invest area for as many as 16 BlockSAD
datapaths in parallel, in order to 1) maximise speedup and
reuse, and 2) exploit the high bandwidth present between
processor and accelerator, in their Cadence Tensilica Xtensa
processor [13]. The present work mimics the rationale fol-
lowed there, but is able to do so automatically. HLS state of
the art tools can automate some of the decisions taken by our
framework, but not all — in particular, they cannot auto-
matically and jointly exploit unrolling and pipelining while
considering reuse, and hence deliver the levels of speedup
provided here.

6. CONCLUSIONS
This paper has presented a methodology, based on static
code analysis, to automatically optimise the high level syn-
thesis of accelerators dedicated to sliding window applica-
tions. Our framework leverages data locality, typical of the
target domain, by exploiting data reuse in conjunction with
aggressive hardware unrolling and pipelining. It results in an
order-of-magnitude performance improvement with respect
to state-of-the-art methodologies, without requiring manual
modifications of the source code of applications.
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