
A general compilation algorithm to parallelize and optimize
counted loops with dynamic data-dependent bounds

Jie Zhao Albert Cohen
INRIA & DI, École Normale Supérieure

45 rue d’Ulm, 75005 Paris
firstname.lastname@inria.fr

ABSTRACT
We study the parallelizing compilation and loop nest opti-
mization of an important class of programs where counted
loops have a dynamically computed, data-dependent upper
bound. Such loops are amenable to a wider set of trans-
formations than general while loops with inductively de-
fined termination conditions: for example, the substitution
of closed forms for induction variables remains applicable,
removing the data dependences induced by termination con-
ditions. We propose an automatic compilation approach to
parallelize and optimize dynamic counted loops. Our ap-
proach relies on affine relations only, as implemented in
state-of-the-art polyhedral libraries. Revisiting a state-of-
the-art framework to parallelize arbitrary while loops, we
introduce additional control dependences on data-dependent
predicates. Our method goes beyond the state of the art in
fully automating the process, specializing the code gener-
ation algorithm to the case of dynamic counted loops and
avoiding the introduction of spurious loop-carried depen-
dences. We conduct experiments on representative irregu-
lar computations, from computer vision and finite element
methods to sparse matrix linear algebra. We validate that
the method is applicable to general affine transformations
for locality optimization, vectorization and parallelization.

Keywords
parallelizing compiler; loop nest optimization; polyhedral
model; dynamic counted loop

1. INTRODUCTION
While a large number of computationally intensive ap-

plications spend most of their time in static control loop
nests—with affine conditional expressions and array sub-
scripts, several important algorithms do not meet such stati-
cally predictable requirements. We are interested in the class
of loop nest kernels involving dynamic counted loops. These
are regular counted loops with numerical constant strides,

IMPACT 2017
Seventh International Workshop on Polyhedral Compilation Techniques
Jan 23, 2017, Stockholm, Sweden
In conjunction with HiPEAC 2017.
http://impact.gforge.inria.fr/impact2017

iterating until a dynamically computed, data-dependent up-
per bound. Such bounds are loop invariants, but often re-
computed in the immediate vicinity of the loop they con-
trol; for example, their definition may take place in the im-
mediately enclosing loop. Dynamic counted loops play an
increasing important role in numerical solvers, media pro-
cessing applications, and data analytics, as we will see in
the experimental evaluation. They can be seen as a spe-
cial case of while loop that does not involve an arbitrary,
inductively defined termination condition. The ability to
substitute their counter with a closed form—an affine in-
duction variable—makes them amenable to a wider set of
transformations than while loops. Dynamic counted loops
are commonly found in sparse matrix computations, but not
restricted to this class of algorithms. They are also com-
monly found in conjunction with statically unpredictable,
non-affine array subscripts. It is important to address the
performance challenge of such loops on modern architec-
tures.
A significant amount of work aims at the parallelization

of while loops, including [10, 9, 5, 14, 15, 16, 17] to cite
polyhedral methods only. These techniques face a painful
problem, solved in the better behaved case of static con-
trol loops for more than a decade: the lack of a robust,
general-purpose algorithm and tool to generate imperative
code after the application of an affine transformation. The
state of the art approach to model while loops in a polyhe-
dral framework, and in the code generator in particular, is
the work of Benabderrahmane et al. [5].
This work [5] uses over-approximations to translate a while

loop into a static control loop iterating from 0 to infinity that
can be represented and optimized in the polyhedral model,
and introduces exit predicates and the associated data de-
pendences to preserve the computation of the original ter-
mination condition, and to enforce the proper termination
of the generated loops the first time this condition is true.
These data dependences severely restrict the application of
loop transformations involving a while loop, since reorder-
ing of the iterations of the latter is not permitted, and loop
interchange involves the removal of memory-based depen-
dences on the exit predicates. The framework was also not
fully automated at the time of its publication, leaving much
room for the interpretation of its applicable cases and the
space of legal transformations it effectively models. A sig-
nificant effort remains to be invested in the completion of
a fully operational while loop polyhedral framework, even
a strictly conservative one (i.e., non-speculative). In this
paper, we take a more pragmatic, short term direction: we

1

focus on the special case of dynamically counted loops where
the most difficult of these problems do not occur.
There has also been a significant body of research special-

izing for high-performance implementations of spare matrix
computations. Manually-tuned libraries [2, 4, 7, 20, 21, 27]
are a commonly used approach, but it is obviously impossi-
ble to port them to each representation and various architec-
tures. So a polyhedral framework that can handle non-affine
subscripts [25] has a greater potential to to achieve transfor-
mations and optimizations on sparse matrix computations.
In this paper, we propose an automatic polyhedral compi-

lation approach to parallelize and optimize dynamic counted
loops that can express arbitrary affine transformations and
achieve architecture portability. Our approach is based on
the systems of affine inequalities, as implemented in state-of-
the-art polyhedral libraries. Just like [23, 24], it does not re-
sort to more expressive first-order logic with non-interpreted
functions/predicates such as the advanced analyses and code
generation techniques of Wonnacott et al. [28], and it does
not involve speculative execution either.
Revisiting a state-of-the-art framework [5] originally de-

signed for the polyhedral compilation of arbitrary while
loops, we introduce exit predicates for dynamic counted
loops and model the control dependence of the original loop
through additional data dependences from the definition of
these exit predicates to the statements in the loop body. To
model fixed-size data parallelism of vector instructions and
hardware accelerators such as GPUs, one needs to extend
this baseline framework with an additional static analysis
to compute an affine upper bound of all dynamic bounds of
a given loop. And finally, to enable the generation of imper-
ative code after the application of affine transformations, we
propose code generation templates capturing the definition
of the non-affine exit predicates and implementing the asso-
ciated imperative control flow, with applications to shared
memory multiprocessors as well as GPU accelerators.
Our method goes beyond the state of the art [5, 25] in

fully automating the process, specializing the code gener-
ation algorithm to the case of dynamic counted loops and
avoiding the introduction of spurious loop-carried depen-
dences. We conduct experiments on representative irregu-
lar computations, including computer vision, finite element
methods, and sparse matrix linear algebra. We validate that
the method is applicable to general affine transformations
for locality optimization, vectorization and parallelization.
The paper is organized as follows. We describe the back-

ground of the polyhedral model and state our motivation
to parallelize dynamic counted loops in the next section.
Section 3 discusses how we introduce control dependences
on data-dependent predicates, and Section 4 introduces the
code generation templates for different architectures. Ex-
perimental results are shown in Section 5, followed by a dis-
cussion of related work in Section 6 and concluding remarks.

2. BACKGROUND AND MOTIVATION
The polyhedral compilation framework is a powerful for-

malism to express parallelizing loop transformations and
loop nest optimizations [12, 13, 6, 3]. Its application domain
was traditionally constrained to static-control, regular loop
nests, but the polyhedral community has been working and
made progress on extending its application to more complex
loops with dynamic, data-dependent behavior. The polyhe-
dral framework abstracts computational regions of the con-

trol flow as sets and relations over statement instances. It
represents a program and its semantical properties using it-
eration domains, access relations, dependences and schedule
components. The statement instances are included in itera-
tion domains and are mapped to the accessed array elements
by access relations. Dependences relate statement instances
depending on each other, while a schedule defines a partial
execution order on these statement instances.
S0: n = f(1);

for (i=0; i<100; i++) {
S1: m = g(i);

for (j=0; j<m; j++)
for (k=0; k<n; k++)

S2: S(i, j, k);
S3: n = f(i+1);

}

Figure 1: An example extracted from HOG

Consider the code in Figure 1 extracted from the His-
togram of Oriented Gradients (HOG) descriptor algorithm.
A typical application of HOG is to detect human figures by
counting occurrences of a specific gradient orientation in lo-
calized portions of an image. The upper bounds, m and n,
of the j-loop and k-loop are computed in their common en-
closing loop and updated as the i-loop iterates. As m and n
are updated dynamically in the i-loop, it is not possible to
classify the whole loop nest as a static control part (SCoP),
and traditional polyhedral techniques do not directly apply.
And tools aiming at a greater coverage of benchmarks—
such as PPCG or LLVM/Polly—will abstract the offending
inner loops into a black box, greatly limiting the potential
for locality-enhancing and parallelizing optimizations. Note
that the lower bound of a dynamic counted loop may not be
statically known either, a typical scenario of sparse matrix
computations; but as a counted loop, it may be normalized
to count from 0, subtracting the lower bound from its upper
bound.
Statement S2 does not have a data dependence on other

statements. However, there are output dependences among
definition statements of dynamic parameters m and n. To
faithfully capture the scheduling constraints on this exam-
ple, one should also model the control dependences of S2
over both headers of the enclosing dynamically counted loops.
Such control dependences can be represented as data depen-
dences between the definition statements of dynamic upper
bounds and S2. To establish such a dependence relation, an
exit predicate may be introduced before the loop body, like
in the framework of Benabderrahmane et al. [5]. The result-
ing dependence graph is shown in Figure 2. The solid arrows
are the original dependences between definition statements
of dynamic parameters, and the dashed arrows represent the
introduced control-flow dependences.

S2

S0

S1 S3

es1→s1 es3→s3
es0→s3es0→s2

es1→s2 es3→s2

Figure 2: The dependence graph of the example

By capturing control dependences as affine relations from
exit predicates to dominated statements in loop bodies, one
may build a sound abstraction of the scheduling constraints
for the loop nest. This technique is applicable to arbitrary

2

while loops, in conjunction with a suitable code generation
strategy to recover the exact control flow protected by the
exit predicate, and by over-approximating the loop upper
bound as +∞. This is the approach explored by Benabder-
rahmane et al., but the resulting polyhedral representation
is plagued by additional spurious loop-carried dependences
to update the exit predicate, removing many useful loop
nest transformations from the affine scheduling space. In
the more restricted context of dynamic counted loops, it is
possible to eliminate those loop-carried dependences as the
exit predicate only depends on loop-invariant data.
We base our formalism and experiments on the schedule

tree representation [18]. A schedule tree typically comprises
a domain node describing the overall extent of the statement
instances, context nodes introducing symbolic parameters
and constraints on those, sequence and set nodes expressing
ordered or unordered branches, respectively, filter nodes se-
lecting a subset of the statement instances as the children
of a sequence or set node, and band nodes defining a partial
schedule as well as permutability and/or parallelism proper-
ties on a group of statements. Band nodes are derived from
tilable bands in the Pluto framework [6].

domain

context: [m, n]

sequence

S0() S1(i); S2(i, j, k); S3(i)

S1(i)→ (i); S2(i, j, k)→ (i); S3(i)→ (i + 1)

sequence

S1(i) S2(i, j, k) : j < m ∧ k < n

S2(i, j, k)→ (j)

S2(i, j, k)→ (k)

S2(i, j, k)

S3(i)

Figure 3: The schedule tree of the example

Figure 3 is the schedule tree of the example in Figure 1.
A schedule tree has the same expressiveness as any affine
schedule representation, but it facilitates local schedule ma-
nipulations and offers a systematic way to associate non-
polyhedral semantical extensions. The domain node in Fig-
ure 3 is

Domain = {S0(); S1(i) | 0 ≤ i < 100; S2(i, j, k) |
0 ≤ i < 100 ∧ 0 ≤ j ∧ 0 ≤ k; S3(i) | 0 ≤ i < 100}

(1)

We will leverage this extensibility to represent non-affine
loop bounds. Since m and n are defined in the i-loop, the
loops they control cannot be appropriately represented in
the iteration domain. Interestingly, a schedule tree allows
to introduce constraints on symbolic parameters deeper than
the context node introducing those parameters. These con-
straints, captured through filter nodes, will only apply in
the branch controlled by the filter node, even if the con-
text node introducing the parameter itself is located higher
up in the tree. We may thus insert a context node right
underneath the domain node, as it is recommended in the
existing schedule tree implementation, but capturing con-
straints induced by m and n in the filter node of statement
S2. This filter node effectively splits the three-dimensional
schedule into two nested bands. The resulting schedule tree
may indeed be seen as a one-dimensional external domain

and schedule enclosing a two-dimensional inner domain and
schedule controlled by two additional parameters. In such
a schedule tree, the domain and access relations of state-
ment S2 can be represented exactly and parametrically in
m and n. This representation can be used to compute the
dependence relation of the whole schedule tree.
Based on this dependence information, one may derive a

new schedule using the Pluto algorithm or one of its vari-
ants [6, 26], to optimize locality and extract parallelism.
The final step is to generate code from the schedule tree
to a high level program. The generation of the abstract
syntax tree (AST) follows the approach implemented in isl
[18], traversing the schedule tree and specializing the code
generation algorithm to integrate the specific control flow
template corresponding to the converted dynamic counted
loops. Before encountering a filter node associated with a
dynamic counted loop, the exit predicate and its controlled
loop body is seen as a single black-box statement by the
AST generation algorithm. When passing the filter node
constraining the dynamic upper bound, it is necessary to
complement the standard code generation procedure with
a dedicated “dynamic counted loop template”. This tem-
plate involves the reconstruction of the exit predicate and
the introduction of an early exit (break) instruction guarded
by the predicate. Our algorithm generates code in one sin-
gle traversal of the schedule tree, avoiding the need to call
the AST generator multiple times for dynamically counted
loops. This is another difference compared with Benabder-
rahmane’s framework.

3. PROGRAM ANALYSIS
Dynamic counted loops arise frequently in irregular appli-

cations, but they sometimes are not written in a form that
can be handled with our technique. We need a preprocessing
step to make them amenable to our approach.

3.1 Preparation
The first category of dynamic counted loops is as shown in

the example of Figure 1. It is referred to as the normalized
format.
Sparse matrix computations constitute a second category

of dynamic counted loops. They are a class of computations
using compressed data layout to store nonzero elements of
a matrix. Loops iterating on the compressed layout usually
have a dynamic upper bound as well as a dynamic lower
bound. However, these loops can be easily transformed into
the normalized format a non-affine subtraction of the lower
bound from the upper bound. Note that this transformation
may introduce non-affine array subscripts; we assume the de-
pendence analysis will conservatively handle such subscripts,
or symbolically eliminate identical non-affine expressions on
the left and right-hand side, or benefit from PENCIL anno-
tations to refine its precision [8, 1].
Some forms of while loops may also be modeled, as long

as an affine induction variable can be identified and assum-
ing the variant part of the exit condition reduces to this
induction variable.

3.2 Modeling Control Dependences
To make dynamic counted loops amenable to a polyhedral

representation, we introduce additional dependences associ-
ated with exit predicates and their definition statements.
An exit predicate definition and check is inserted at the

3

beginning of each iteration of a dynamically counted loop.
At code generation time, all statements in the body of the
counted loop will have to be dominated by break instruction
conditioned by the exit predicate. This follows the state of
the art method for while loops [5], but without the induc-
tive computation and loop-carried dependence on the exit
predicate. Of course, we delay the introduction of break in-
structions until code generation, to keep the control flow in
a statically manageable form for a polyhedral compiler. As
a very simple illustrative example, the code in Figure 4(a) is
preprocessed as the version in Figure 4(b) before construct-
ing the affine representation.

for (j=0; j<m; j++)
for (k=0; k<n; k++)

S(j, k);

(a) Dynamic counted loops

for (j=0; 1; j++)
for (k=0; 1; k++)

if (j<m && k<n)
S(j, k);

(b) if conditional
Figure 4: Conditional abstraction of dynamic counted loops

Each statement in a dynamically counted loop is associ-
ated with a list of exit predicates, the total number of which
is equal to that of dynamic upper bounds. These predicates
should be attached to the iteration domain of their predi-
cated statements. As only one domain node (the root node)
is allowed in the schedule tree implementation but the up-
per bounds are defined deeper in the nest, the constraints
on the dynamic parameters and the expression of the dy-
namic upper bounds pose a real challenge. Still, although
the upper bounds of inner counted loops vary dynamically in
the outer loops, they can be viewed as static unknown loop
bounds for inner loops. We may thus introduce these con-
straints and dynamic loop bounds by collecting all dynamic
upper bounds as pseudo parameters in the context node—
right underneath the domain node in a schedule tree—and
also attaching the constraints introduced by the dynamic
loop bounds (predicates) to the filters corresponding to the
enclosed statements. This parameterization follows a sim-
ilar approach to the one of fuzzy array dataflow analysis
(FADA) [8], effectively decoupling the expression of param-
eter properties from the expression of the iteration domains.

3.3 Schedule Generation
To make our method applicable to general affine loop

transformations, we apply a variant of the Pluto algorithm
adapted to schedule trees. Let us consider again the example
in Figure 1 and its schedule tree in Figure 3 for illustration
purpose. We only discuss the modeling of additional depen-
dences resulting from exit predicates.
The dynamic parameters are assigned at their definition

statements, and then virtually read by statement S2 implic-
itly guarded by the negation of the exit predicates. This can
be modeled as read and write (affine) access relations:

R = [m, n]→ {S2(i, j, k)→ m[] : 0 ≤ i < 100
∧0 ≤ j < m ∧ 0 ≤ k < n; S2(i, j, k)→ n[] :

0 ≤ i < 100 ∧ 0 ≤ j < m ∧ 0 ≤ k < n}
(2)

and its write access relation is
W = [m, n]→ {S0()→ n[]; S1(i)→ m[] :

0 ≤ i < 100; S3(i)→ n[] : 0 ≤ i < 100}
(3)

According to the variant of the Pluto algorithm imple-
mented in isl, one may set the validity dependences, associ-

ated with semantics preservation, to

Validity = (R−1 ◦W ′ + W−1 ◦R′ + W−1 ◦W ′)
∩(Schedule ≺ Schedule′)

(4)

and the proximity dependences, associated with locality en-
hancement, to

Proximity = (R−1 ◦W ′ + W−1 ◦R′ + W−1 ◦W ′

+R−1 ◦R′) ∩ (Schedule ≺ Schedule′)
(5)

where Schedule represents the original schedule constructed
from the original code according to the procedure above, and
the ′ (primed) maps distinguish iterations in dependence.
We can then compute a new schedule that applies the

Pluto algorithm using
New_Schedule = schedule Domain under Schedule

respecting Validity and minimizing Proximity
(6)

In other words, the Pluto algorithm may safely compute a
new schedule, starting from the original one, preserving all
dependences and attempting to minimize the reuse distance.
It may operate on the locally constrained parameters m and
n as if they were global loop invariants, with the additional
constraint that no affine set or relation operation ever com-
bines statement instances across different instances of the
filter node introducing the constraints on these parameters.
Such instances would indeed belong to different iterations of
the outer loop, where m and n take different values. By con-
struction, such affine operations across filter nodes do not
occur on schedule trees (e.g., when computing dependences
or affine schedules). Besides, the ability to reconstruct the
dynamically varying value of m and n will be recovered in
the later code generation phase.

4. CODE GENERATION
Once a new schedule is produced, additional transforma-

tions can be applied on band nodes, to implement loop tiling
or additional permutations, strip-mining for vectorization,
etc. And eventually, one needs to return to imperative code
through an AST generation algorithm.
As the final program effectiveness highly depends on the

target code quality, AST generation is a critical step in
the polyhedral framework. We thus construct a specialized
code generation scheme on top of Grosser et al.’s algorithm
[18], which extends the Quilleré et al. algorithm [22] and its
CLooG improvement and implementation [3]. While CLooG
recursively scans and generates the AST by maintaining a
list of polyhedra from the outermost to the innermost loops,
it does not offer much opportunity to specialize the gener-
ated control flow according to specific properties of local
branches of the schedule. This complicated Benabderrah-
mane’s approach for general while loops.
On the other hand, Grosser et al.’s method, implemented

in isl, takes advantage of the schedule tree structure to im-
plement such specialization along the filters nodes introduc-
ing constraints on the parameters associated with dynam-
ically evaluated exit predicates. It performs a depth-first
traversal of the schedule tree, applying a customizable form
of Quilleré’s algorithm on each band node. Since special
care is needed to handle exit predicates and their impact on
the dynamic upper bounds, the Grosser et al. algorithm is
not able in its original form to generate semantically cor-
rect code for our extended schedule tree. However, it is

4

easy to modify it to handle the special case of exit predi-
cates being homogeneous over all statements in a sequence
or set node of the schedule tree (e.g., all statements in a
band of permutable loops). Indeed, it is possible to hook
the generation of custom templates for the computation of
exit predicates and the insertion of early exit statements
directly into the processing of filter nodes associated with
dynamically updated parameters. This is facilitated by the
ability to attach syntactic annotations about exit predicates
using a so-called mark node of the schedule tree. A mark
node is designed to attach any kind of information to a sub-
tree. While the symbolic parameters are introduced by a
context node immediately below the domain node, a mark
node further down the tree can track the nesting level where
the symbolic constant should be treated in a specific way,
streamlining the code generation of loop nests with multiple
dynamic counted loops. In particular, the AST generator
can read information from a mark node to handle the gen-
eration of exit predicates.
In the following, we thus restrict ourselves to the case of

homogeneous exit predicates over statements belonging to a
sequence or set nodes in the schedule tree. This practically
limits the applicability of the code generator to implement
loop fusion across static and dynamically counted loops, but
still enables tiling and unimodular transformations (inter-
change, skewing, reversal). The extension to loop fusion
requires additional work in the separation step of the AST
generation algorithm, similar to Benabderrahmane’s tech-
nique, and its complete automation on schedule trees is left
for future work.

4.1 A Static Upper Bound
A general while loop may be converted to an unbounded

for loop. Yet dynamic counted loops do have an upper
bound that varies dynamically. The approach to parallelize
arbitrary while loops would waste this valuable information,
introducing additional constraints on the ability to permute
or distribute loops, or to move statement instances after a
dynamically counted loop. To facilitate the implementation
of such transformations, following Benabderrahmane’s work
[5], one may optionally derive a static upper bound u that
is greater than or equal to all bounds reached by a given
dynamically counted loop.
The u parameter can also be approximated statically, as

the dynamic upper bounds are functions of outer enclosing
loop variables: a typical solution relies on Fourier-Motzkin
elimination, projecting out enclosing dimensions and elimi-
nating non-affine constraints. The u parameter can also be
determined in other ways, from data structure properties
or additional user-defined predicates in Pencil [1]. For ex-
ample, in sparse matrix computations, it may be computed
by inspecting the maximum number of non-zero entries in
a row in compressed-sparse-row (CSR) format. In many
cases, a symbolic expression for the u parameter can also be
computed automatically, but we did not yet automate this
analysis.

4.2 Template for Nested Bands
As there is a definition statement of the dynamic up-

per bound between the outer loops and a nested dynamic
counted loop, and since we introduce additional dependences
between this definition statement and the statements nested
into dynamic counted loops, the canonically constructed

schedule tree isolates two nested band nodes to represent
different levels of the loop nest. Let us show a code gener-
ation template that can be applied to the customization of
the control flow for each one of these bands.
Generating arbitrary conditionals for a single dynamic

counted loop is straightforward, since the predicate attached
in a mark node can be extracted easily. As a result, the
AST generator only need to generate a conditional around
the loop statements, as well as an early exit statement in
the else branch.
For cases with multiple dynamic counted loops, we pro-

pose to systematically generate one conditional at the in-
nermost level. Figure 4(b) shows an example illustrating
this scenario. The predicates of both loops are included
in a single conditional, and generated under the inner loop.
This scheme can bring opportunities for affine loop transfor-
mations, such as loop interchange, not expressible in Ben-
abderrahmane’s framework due to the presence of spurious
loop-carried dependences.
When the Grosser et al. algorithm traverses the band

nodes in a schedule tree, it projects out the local sched-
ule constraints from the domain node. As the symbol con-
stants and their constraints would not appear in the domain
node, the generated loops will iterate from 0 to u. It is thus
necessary to emit an early exit statement, or many empty
iterations will be wasted. This is straightforward in the case
of a single dynamic counted loop, but in nested cases, as
there will be only one conditional capturing multiple predi-
cates, we need extract the parameters one by one from the
predicate list and to generate the corresponding exit state-
ments from the innermost outwards. The exit predicates are
generated in the form of multiple conditionals rather than
else branches. Figure 5 shows the result on the example of
Figure 4(b).

for (j=0; j<u1; j++) {
for (k=0; k<u2; k++) {

if (j<m && k<n)
S(j, k);

if (k>=n)
break;

}
if (j>=m)

break;
}

Figure 5: Generation of exit predicates

The templates serve as a post-processing step, after code
generation. A break statement with the appropriate guard is
always inserted in a dynamically counted loop of the gener-
ated code. As an illustrative example, Figure 6(b) shows the
result of applying loop interchange on the example of Fig-
ure 6(a). Unlike Jimborean et al.’s work [19] that handles
general while loops and needs to speculate on the number of
iterations, our technique always executes the same number
of iterations as the original dynamic counted loops.
Loop tiling is a special case that should be taken into ac-

count. Before the generation of exit predicates, one may
apply additional affine loop transformations on the schedule
tree if it is possible. The typical candidate is loop tiling,
which involve the insertion of an additional schedule dimen-
sion through strip-mining. When strip-mining a dynamic
counted loop, there should be an exit statement at both lev-
els. For the point loop (iterating within a tile), the common
case above applies. For the tile loop (iterating among tiles),

5

for (i=0; i<N; i++) {
m = f(i);
for (j=0; j<m; j++)

S(i,j);
}

(a) Dynamic counted loops

for (j=0; j<u; j++) {
for (i=0; i<N; i++) {

m = f(i);
if (j<m)

S(i,j);
}
if (j>=m)

break;
}

(b) if conditional
Figure 6: Conditional abstraction of dynamic counted loops

we align its bounds and strides to follow the structure of the
inner loop, so that its counter can also be compared system-
atically with the same bound. Figure 7 shows an example
after the application of loop tiling on the code in Figure 5.

for (jj=0; jj<u1; jj++) {
for (kk=0; kk<u2; kk++) {

for (j=jj*BB; j<min(u1, jj*BB+BB); j++) {
for (k=kk*CC; k<min(u2, kk*CC+CC); k++) {

if (j<m && k<n)
S(j, k);

if (k>=n)
break;

}
if (j>=m)

break;
}
if (kk*CC>=n)

break;
}
if (jj*BB>=m)

break;
}

Figure 7: Generation of exit predicates in the tiling case

4.3 Template for Combined Parallel Bands
When the target architectures are shared memory multi-

processors, the code generation template for separate bands
described above is fully applicable. However, when target
GPU accelerators or producing fix-length vector code, we
usually expect to combine nested bands to express paral-
lelism at multiple levels. This motivates the exploitation of
data parallelism within dynamic counted loops, in combina-
tion with other nested loops. Since dynamic counted loops
result in nested bands in the schedule trees, the combined
exploitation of multiple levels of parallelism including one
or more dynamic counted loops requires special treatment
that is not directly modeled by affine sets and relations in
the tree or by band-local parallelism annotations. On GPU
targets, the constraints on the grid/ND-range of multi-level
data parallelism require the collection of bound information
across nested bands: when launching a kernel, the param-
eters of the grid/ND-range must be known and may not
evolve during the whole run of the kernel.
Unfortunately, the statements between nested bands that

occur in dynamic counted loops are used to initialize dy-
namic upper bounds. Statements in the body of these dy-
namic counted loops depend on those definition statements,
through the added dependences modeling the original de-
pendence of the dynamic loop. Still, one may can sink these
definition statements inside, within these dynamic counted
loops, as a preprocessing step. As a result, the nested bounds
can be easily combined together, with no intervening com-
putation or control flow.

The inward movement of these definition statements is
safe with the introduction of the upper bound u-parameter.
Yet as a side-effect of this movement, each definition will
be redundantly evaluated as many times as the number of
iterations of the dynamic counted loop itself. This is the
price to pay for a fixed upper bound on the number of iter-
ations. It may be mitigated with additional strip-mining of
the outer loops, to better control the value of u, effectively
partitioning the loop nest into coarse-grain sub computa-
tions amenable to execution on a heterogeneous target.

5. EXPERIMENTAL EVALUATION
Our framework takes a C program with Pencil functions

as input [1]; Pencil is intended as a target language for
DSL compilers and as a high level portable implementation
language to program accelerators. It allows a domain ex-
pert to express useful information for optimizing compilers
like aliasing, independence, logical predicates, high level in-
terprocedural data flow, etc., enabling more accurate static
analysis and effective target-specific code generation.
We use PPCG [26], a polyhedral compiler for Pencil that

performs loop nest transformations, parallelization, data lo-
cality optimization, and generates OpenCL or CUDA code.
PPCG exploits the information provided by Pencil exten-
sions, performs transformations and generate CUDA code
automatically. In a follow-up auto-tuning step, we look for
optimal parameter values for tile sizes, block sizes, grid sizes,
etc. for a given application and target architecture. PPCG
allows to export and import schedule trees, enabling us to
prototype some of the transformation steps of our method
in iscc.
We compare the performance of the code generated with

our technique with that generated from the Pencil source
without our algorithm.
The experiments are conducted on a NVIDIA Quadro

K4000 GPU. The CPU on the experimental platform is In-
tel Xeon E5-2630. The sequential code is compiled with the
icc compiler from Intel Parallel Studio XE 2016, with the
-Ofast -fstrict-aliasing optimization flags. The CUDA code
is compiled with the NVIDIA CUDA 7.5 toolkit with the
-O3 optimization flag. We run each benchmark 9 times and
retain the median value.

5.1 HOG Benchmark
The HOG benchmark is extracted from the Pencil bench-

mark, a collection of applications and kernels for evaluating
Pencil compilers.
The distribution of intensity gradients or edge directions

describe the local object appearance and shape within an
image. When processing an image, the HOG descriptor di-
vides it into small connected regions called cells. A his-
togram of gradient directions is then compiled for the pixels
within each cell. The descriptor finally concatenates these
histograms together. The descriptor also contrast-normalize
local histograms by calculating an intensity measure across
a block, a larger region of the image, and then using this
value to normalize all cells within the block to improve ac-
curacy. This normalization results in better invariance to
changes in illumination and shadowing.
The kernel of the HOG descriptor contains two nested,

dynamic counted loops. The upper bounds of these inner
loops are defined and vary as the outermost loop iterates.
The dynamic parameter is an expression of max and min

6

functions of the outer loop iterator and an array of constants.
We derive the static upper bound parameter u from the
BLOCK_SIZE constant, a globally defined parameter of the
program to declare the size of an image block.
Since we target a GPU architecture, we ought to extract

large degrees of parallelism from multiple nested loops. As
explained in the previous section, we thus sink the defi-
nition statements of dynamic parameters within inner dy-
namic counted loops and apply our template for a com-
bined band. We may then generate the CUDA code with
parameter values for tile sizes, block sizes, grid sizes, etc.
We show performance results with and without host-device
data transfer time, in Figure 8 and 9 respectively, consider-
ing multiple block sizes. The detection accuracy improves
with the increase of the block size. Our algorithm achieves
a promising performance improvement for each block size,
and our technique can obtain a speedup ranging from 4.4×
to 23.3× while the Pencil code suffers from a degradation
by about 75%.

16 32 64 128 256 512 1024
0

10

20

BLOCK_SIZE

Sp
ee

du
p

[×
]

PPCG Our work

Figure 8: Performance of the HOG descriptor with data
transfer time

16 32 64 128 256 512 1024
0

10

20

BLOCK_SIZE

Sp
ee

du
p

[×
]

PPCG Our work

Figure 9: Performance of the HOG descriptor without data
transfer time

5.2 SpMV Computations
Sparse matrix operations are an important class of algo-

rithms frequently in graph applications, physical simulations
to data analytics. They attracted a lot of parallelization
and optimization efforts. Programmers may use different
formats to store a sparse matrix, among which we consider
four representations: the Compressed Sparse Row (CSR),
Block CSR (BCSR), Diagonal (DIA) and ELLPACK (ELL)
[27]. In their original form, loop bounds do not match our
canonical structure: we apply a non-affine shift by the dy-
namic lower bound as discussed earlier. Our experiment
in this subsection target the benchmarks presented in [25],
with our own modifications to suit the syntactic constraints
of our framework.
We first consider the Pencil function for the CSR repre-

sentation. All arrays are declared through the C99 variable-
length array syntax with the static const restrict C99 type

qualifiers/keywords, allowing PPCG to derive the size of the
arrays offloaded on the accelerator despite the presence of
indirect accesses (subscripts of subscripts), and that these
arrays do not alias. The three other representations can
modeled with a make-dense transformation, as proposed by
[25], followed by a series of loop transformations. BCSR
is obtained by applying a make-dense and tiling transfor-
mations, DIA can be obtained after make-dense, shift and
permutation transformations, and a non-affine shift together
with tiling can result in the ELL format. See Venkat et al.
[25] for details.
The maximum number of non-zero entries in a row is the

static upper bound and may be set as the u parameter.
It can be derived through an inspection. As a result, the
references of indirect array subscripts can be sunk under
the inner dynamic counted loop, exposing a combined band
in the schedule tree. We show the performance without
data transfer time in Figure 10. The input sparse matrices
are obtained from the University of Florida sparse matrix
collection [11]. Our technique accelerates the SpMV by 1.1×
to 4.7×, which is consistent with the numbers reported by
Venkat et al. [25].
BCSR is the blocked version of CSR, its parallel version

is the same as that of CSR, after tiling with PPCG. We
will therefore not show its performance. Similarly, we get
the CUDA code with auto-tuned parameter values for the
DIA and ELL formats, as shown in Figure 11 and 12. The
original DIA code runs into a segmentation fault for the
mc2depi and pwtk matrices, hence we will remove these two
matrices from the experiments. Speedups range from 1.2×
to 5.0× for DIA and from 1.9× to 7.4× for ELL.

5.3 Inspector/Executor Codes
We also compare the performance of the generated code

when using an inspector/executor strategy to optimize the
data layout of sparse matrix computations. The inspector is
used to analyze memory reference patterns and to generate
communication schedules, so we mainly focus on the appli-
cation of our technique to the executor. Since BCSR can
be obtained by applying a tiling transformation on a CSR
kernel, we only take into account the executor of CSR. The
executor of DIA format is not a dynamic counted loop and
will not be studied.
Following the approach of Venkat et al. [25], inspector/ex-

ecutor schemes may cooperate with a polyhedral transfor-
mation and optimization framework. The framework uses
three dedicated transformations to achieve this cooperation:
make-dense, compact and compact-and-pad.
Both the compact and compact-and-pad transformations

can be applied to CSR and ELL formats. The executor of
the CSR format is roughly equivalent to the original CSR
SpMV code, so the performance comparison is similar to
that of the original CSR SpMV code, as shown in Figure 13.
The ELL executor uses a transposed matrix to achieve global
memory coalescing, whose efficiency depends heavily on the
number of rows that have a similar number of non-zero en-
tries. The performance result of the ELL executor is shown
in Figure 14, for which we obtain a speedups from 2.9× to
10.2×.

6. RELATED WORK
The polyhedral framework is a powerful compilation tech-

nique to parallelize and optimize loops. It has become one of

7

ca
nt

co
nsp

h

co
p20

_A

mac
_ec

on
_fw

d50
0

mc2
dep

i

pdb1H
YS

Pres
s_

Pois
so

n

pwtk
rm

a1
0

to
mog

ra
phic1

0

2

4

6
E

xe
cu

ti
on

ti
m

e/
m

s
Sequential CUDA

Figure 10: Execution Time comparison between sequential and CUDA CSR SpMV code

ca
nt

co
nsp

h

co
p20

_A

mac
_ec

on
_fw

d50
0

mc2
dep

i

pdb1H
YS

Pres
s_

Pois
so

n

pwtk

0

200

400

E
xe

cu
ti

on
ti

m
e/

s Sequential CUDA

Figure 11: Execution time of the sequential and CUDA DIA SpMV code

ca
nt

co
nsp

h

co
p20

_A

mac
_ec

on
_fw

d50
0

mc2
dep

i

pdb1H
YS

Pres
s_

Pois
so

n

pwtk
rm

a1
0

to
mog

ra
phic1

0

2

4

6

8

E
xe

cu
ti

on
ti

m
e/

m
s

Sequential CUDA

Figure 12: Execution time of the sequential and CUDA ELL SpMV code

ca
nt

co
nsp

h

co
p20

_A

mac
_ec

on
_fw

d50
0

mc2
dep

i

pdb1H
YS

Pres
s_

Pois
so

n

pwtk
rm

a1
0

to
mog

ra
phic1

0

2

4

6

E
xe

cu
ti

on
ti

m
e/

m
s

Sequential CUDA

Figure 13: Execution time of the sequential executor and the CUDA CSR SpMV code

the main approach for the construction of modern paralleliz-
ing compilers. Its application domain used to be constrained
to static-control, regular loop nests. But the extension of
the polyhedral framework to handle irregular applications

is increasingly important given the growing adoption of the
technique. The polyhedral community invested significant
efforts to make progress in this direction.
A representative application of irregular polyhedral tech-

8

ca
nt

co
nsp

h

co
p20

_A

mac
_ec

on
_fw

d50
0

mc2
dep

i

pdb1H
YS

Pres
s_

Pois
so

n

pwtk
rm

a1
0

to
mog

ra
phic1

0

5

10

15
E

xe
cu

ti
on

ti
m

e/
m

s
Sequential CUDA

Figure 14: Execution time of the sequential executor and the CUDA ELL SpMV code

niques is the parallelization of while loops. The polyhedral
model is expected to handle loop structures with arbitrary
bounds that are typically regarded as while loops. Collard
[10, 9] proposed a speculative approach based on the polyhe-
dral model that extends the iteration domain of the original
program and performs speculative execution on the new it-
eration domain. Parallelism is exposed at the expense of an
invalid space-time mapping that needs to be corrected at
run time. An alternative, conservative technique, consists
in enumerating a super-set of the target execution space
[14, 15, 16, 17], and then eliminating invalid iterations by
determining termination detection on the fly. The authors
present solutions for both distributed and shared memory
architectures. Benabderrahmane et al. [5] introduce a gen-
eral framework to parallelize and optimize arbitrary while
loops by modeling control-flow predicates. They transform
a while loop as a for loop iterating from 0 to +∞. Com-
pared to these approaches to parallelizing while loops in the
polyhedral model, our technique relies on systems of affine
inequalities only, as implemented in state-of-the-art polyhe-
dral libraries. It does not need to resort to the first-order
logic such as non-interpreted functions/predicates, it does
not involve speculative execution features, and it makes dy-
namic counted loops amenable to a wider set of transforma-
tions than general while loops.
A significant body of work addressed the transformation

and optimization of sparse matrix computations. The im-
plementation of manually tuned libraries [2, 4, 7, 20, 21,
27] is the common approach to achieve high-performance,
but it is difficult to port to each new representation and to
different architectures. Sparse matrix compilers based on
polyhedral techniques have been proposed [25], abstracting
the indirect array subscripts and complex loop-bounds in a
domain-specific fashion, and leveraging conventional Pluto-
based optimizers on an abstracted form of the sparse matrix
computation kernel. We ought to extend the applicability of
polyhedra techniques one step further, considering general
Pencil code as input, and leveraging the semantical anno-
tations expressible in Pencil to improve the generated code
efficiency and to abstract non-affine expressions.

7. CONCLUSION
In this paper, we studied the parallelizing compilation

and optimization of an important class of loop nests where
counted loops have a dynamically computed, data-dependent
upper bound. Such loops are amenable to a wider set of
transformations than general while loops with inductively

defined termination conditions. To achieve this, we model
control dependences on data-dependent predicates by re-
visiting a state-of-the-art framework to parallelize arbitrary
while loops. We specialize this framework to facilitate its
integration in schedule-tree-based affine scheduling and code
generation algorithms; and we provide code generation tem-
plates for multiple scenarios, from single dynamic counted
loops to nested bands case and a combined band case for
fixed size multi-level data-parallel grids on GPUs. Our method
relies on the systems of affine inequalities, as implemented
in state-of-the-art polyhedral libraries. It takes a C pro-
gram with Pencil functions as input, covering a wide range
of non-static control application encompassing a well stud-
ied class of sparse matrix computations. The experimen-
tal evaluation using the PPCG source-to-source compiler on
representative irregular computations, from computer vision
and finite element methods to sparse matrix linear algebra,
validated the general applicability of the method and its
performance benefits compared to shallower, black box ap-
proximation approaches of the control flow. Our next steps
will be to fully automate and implement the algorithm in
PPCG, and to conduct further experiments on CPU and
GPU platforms, comparing the performance with manually-
tuned libraries like OSKI and CUSP as well as reference
implementations of computer vision and data analytics ker-
nels. Full automation will also involve the static analysis
of symbolic upper bounds, possibly building on additional
Pencil constructs.

Acknowledgments
This work was partly supported by the European Commis-
sion and French Ministry of Industry through the ECSEL
project COPCAMS id. 332913, and by the French ANR
through the European CHIST-ERA project DIVIDEND. Our
experiments with Pencil benchmarks and PPCG benefited
from the direct support of Michael Kruse, Riyadh Baghdadi
and Chandan Reddy. And finally, none of this work would
have been possible without the contributions of Sven Ver-
doolaege and Tobias Grosser on isl and PPCG.

8. REFERENCES
[1] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen,

Tobias Grosser, Michael Kruse, Chandan Reddy, Sven
Verdoolaege, Adam Betts, Alastair F Donaldson,
Jeroen Ketema, et al. PENCIL: a platform-neutral
compute intermediate language for accelerator
programming. In Proceedings of the International

9

Conference on Parallel Architecture and Compilation
(PACT), pages 138–149. IEEE Computer Society,
2015.

[2] S Balay, S Abhyankar, M Adams, J Brown, P Brune,
K Buschelman, V Eijkhout, W Gropp, D Kaushik,
M Knepley, et al. Petsc users manual revision 3.5.
Argonne National Laboratory (ANL), 2014.

[3] Cedric Bastoul. Code generation in the polyhedral
model is easier than you think. In Proceedings of the
13th International Conference on Parallel
Architectures and Compilation Techniques (PACT),
pages 7–16. IEEE Computer Society, 2004.

[4] Nathan Bell and Michael Garland. Implementing
sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis (SC), pages
18:1–18:11. ACM, 2009.

[5] Mohamed-Walid Benabderrahmane, Louis-Noël
Pouchet, Albert Cohen, and Cédric Bastoul. The
polyhedral model is more widely applicable than you
think. In Proceedings of 19th International Conference
on Compiler Construction (CC), pages 283–303.
Springer, 2010.

[6] Uday Bondhugula, Albert Hartono, J. Ramanujam,
and P. Sadayappan. A practical automatic polyhedral
program optimization system. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 2008.

[7] Aydın Buluç and John R Gilbert. The combinatorial
blas: Design, implementation, and applications.
International Journal of High Performance Computing
Applications, pages 496–509, 2011.

[8] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy
array dataflow analysis. In ACM Symposium on
Principles and Practice of Parallel Programming,
pages 92–102, Santa Barbara, CA, July 1995.

[9] Jean-François Collard. Space-time transformation of
while-loops using speculative execution. In Proceedings
of the Scalable High-Performance Computing
Conference 1994, pages 429–436. IEEE Computer
Society, 1994.

[10] Jean-François Collard. Automatic parallelization of
while-loops using speculative execution. International
Journal of Parallel Programming, 23(2):191–219, 1995.

[11] Timothy A Davis and Yifan Hu. The university of
florida sparse matrix collection. ACM Transactions on
Mathematical Software (TOMS), 38(1):1:1–1:25, 2011.

[12] P. Feautrier. Dataflow analysis of scalar and array
references. International Journal of Parallel
Programming, 20(1):23–53, February 1991.

[13] P. Feautrier. Some efficient solutions to the affine
scheduling problem, part II, multidimensional time.
International Journal of Parallel Programming,
21(6):389–420, December 1992. See also Part I, one
dimensional time, 21(5):315–348.

[14] Max Geigl, Martin Griebl, and Christian Lengauer. A
scheme for detecting the termination of a parallel loop
nest. Proc. GI/ITG FG PARS, 98, 1998.

[15] Max Geigl, Martin Griebl, and Christian Lengauer.
Termination detection in parallel loop nests with while
loops. Parallel Computing, 25(12):1489–1510, 1999.

[16] Martin Griebl and Jean-Francois Collard. Generation
of synchronous code for automatic parallelization of
while loops. In Proceedings of the 1st International
Euro-Par Conference on Parallel Processing, pages
313–326. Springer, 1995.

[17] Martin Griebl and Christian Lengauer. On scanning
space-time mapped while loops. In In Proceedings of
3rd Joint International Conference on Vector and
Parallel Processing (CONPAR 94-VAPP VI), pages
677–688. Springer, 1994.

[18] Tobias Grosser, Sven Verdoolaege, and Albert Cohen.
Polyhedral ast generation is more than scanning
polyhedra. ACM Transactions on Programming
Languages and Systems (TOPLAS), 37(4):12, 2015.

[19] Alexandra Jimborean, Philippe Clauss, Jean-François
Dollinger, Vincent Loechner, and Juan
Manuel Martinez Caamaño. Dynamic and speculative
polyhedral parallelization using compiler-generated
skeletons. International Journal of Parallel
Programming, 42(4):529–545, 2014.

[20] Yucheng Low, Danny Bickson, Joseph Gonzalez,
Carlos Guestrin, Aapo Kyrola, and Joseph M
Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8):716–727,
2012.

[21] John Mellor-Crummey and John Garvin. Optimizing
sparse matrix–vector product computations using
unroll and jam. International Journal of High
Performance Computing Applications, 18(2):225–236,
2004.

[22] Fabien Quilleré, Sanjay Rajopadhye, and Doran
Wilde. Generation of efficient nested loops from
polyhedra. International Journal of Parallel
Programming, 28(5):469–498, 2000.

[23] Michelle Mills Strout, Larry Carter, and Jeanne
Ferrante. Compile-time composition of run-time data
and iteration reorderings. ACM SIGPLAN Notices,
38(5):91–102, 2003.

[24] Michelle Mills Strout, Alan LaMielle, Larry Carter,
Jeanne Ferrante, Barbara Kreaseck, and Catherine
Olschanowsky. An approach for code generation in the
sparse polyhedral framework. Parallel Computing,
53:32–57, 2016.

[25] Anand Venkat, Mary Hall, and Michelle Strout. Loop
and data transformations for sparse matrix code. In
Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), pages 521–532, 2015.

[26] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen,
José Ignacio Gómez, Christian Tenllado, and Francky
Catthoor. Polyhedral parallel code generation for
cuda. ACM Transactions on Architecture and Code
Optimization (TACO), 9(4):54, 2013.

[27] Richard Vuduc, James W Demmel, and Katherine A
Yelick. Oski: A library of automatically tuned sparse
matrix kernels. Journal of Physics: Conference Series,
16(1):521, 2005.

[28] David Wonnacott and William Pugh. Nonlinear array
dependence analysis. In Proc. Third Workshop on
Languages, Compilers and Run-Time Systems for
Scalable Computers, 1995. Troy, New York.

10

	Introduction
	Background and Motivation
	Program Analysis
	Preparation
	Modeling Control Dependences
	Schedule Generation

	Code Generation
	A Static Upper Bound
	Template for Nested Bands
	Template for Combined Parallel Bands

	Experimental Evaluation
	HOG Benchmark
	SpMV Computations
	Inspector/Executor Codes

	Related Work
	Conclusion
	References

