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ABSTRACT
Polyhedral transformation and code generation frameworks
are powerful tools for composing a complex sequence of
loop transformations and automatically generating correct,
highly-optimized code. Such frameworks are limited to ap-
plying transformations only to loop nest computations in
the affine domain. For the most part, the statements of the
original program remain unmodified, other than to update
the array indices based on modified loop bounds. In this
paper, we describe new transformations in the CHiLL com-
piler that modify or create new statements in the abstract
syntax tree (AST) associated with the program. We show
how these AST transformations can be composed with poly-
hedral transformations to increase the power of polyhedral
frameworks. Our examples include inspector/executor opti-
mizations for non-affine computations, stencil optimizations
and parallel code generation (CUDA and OpenMP).

Categories and Subject Descriptors
D.3 [Programming Languages]; D.3.4 [Processors]: Code
generation, Compiler, Optimization

General Terms
Compiler Optimization

Keywords
polyhedral transformation and code generation, abstract syn-
tax trees

1. INTRODUCTION
Polyhedral code generation and transformation frameworks

have become popular for their elegance and robustness in
composing a complex sequence of transformations to loop
nest computations and in generating high-performance, cor-
rect code. A polyhedral compiler typically reasons about
loop nest computations by manipulating abstractions that
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represent the iteration spaces of individual statements in
loop nests. Transformations are applied to the iteration
space abstractions, and during code generation the state-
ments from the original program are updated, with the in-
verse mapping applied to the array accesses. When used
in this way, polyhedral compilers are typically unable to ap-
ply transformations that significantly modify the statements
themselves. This paper argues that polyhedral frameworks
can be far more powerful if extended to apply transforma-
tions that require significant changes to the statements to
be generated, perhaps adding new data structures and re-
placing statements.

There has been some recent research interest in mixing ab-
stract syntax tree (AST) and polyhedral optimizations [10,
19]. Other research [5] may rely on this mixing, particularly
in the parallel code generation step [1], but quite often this
is done as a post-pass outside of the polyhedral framework.
The strength of a polyhedral framework lies in the ability to
compose its transformations. Therefore, if AST and polyhe-
dral transformations are to be combined, then it is critical
that the ability to compose transformations be preserved.

This paper looks at recent research in extending the CHiLL
compiler to incorporate optimization sequences that com-
pose together AST and polyhedral transformations. This
research was motivated by the need to support applications
and optimizations in CHiLL that might have previously been
considered beyond its reach. However, these extensions are
facilitated by the data structures that comprise the frame-
work, and in fact the first simple transformation incorpo-
rated into CHiLL that combines AST and polyhedral trans-
formations was unroll [6, 12]. In this paper, we first examine
optimizations for sparse matrix computations [21, 20]. Poly-
hedral compilers mostly operate on affine loop nests, where
subscript expressions and loop bounds are linear functions
of the loop indices. In contrast, sparse matrix codes ex-
hibit non-affine indirection through index arrays (e.g., B[i]
in the access expression A[B[i]] or as a loop lower or upper
bound). Our research incorporates analysis, transformation
and code generation in the presence of array indirection. Be-
cause some of the analysis must be deferred until run time
when array indices can be resolved, our compiler employs an
inspector/executor methodology [18, 13]. Next, we describe
an optimization for high-order stencils which we call par-
tial sums [2]. High-order stencils (e.g., the 27-point stencil
shown in this paper) perform more computation and exam-
ine more input data compared to standard memory-bound
stencils. Thus, they exhibit significant data reuse and are
compute bound; application scientists are increasingly inter-
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ested in high-order stencils as they are a better match for
current and future architectures, where costs of data move-
ment dominate. Partial sums optimize high-order stencils
by introducing buffers that store and reuse redundant data
and computation; the resulting code is more memory bound
and amenable to other stencil optimizations. The inspec-
tor/executor transformations and partial sum transforma-
tion are composable with existing polyhedral transforma-
tions in CHiLL. Finally, we consider parallel code genera-
tion in both CUDA [17, 12, 21, 20] and OpenMP [3, 2]. To
the best of our knowledge, this collection of AST transforma-
tions is the most extensive to be integrated into a polyhedral
framework.

We observe what we view as the strengths and weaknesses
of the work to date, and compare with other work [10, 19].
Our goal is to understand the requirements and challenges
posed by such optimizations and their impact on the ab-
stractions that are common to polyhedral frameworks.

The remainder of the paper presents background that de-
scribes the abstractions in CHiLL that are used in transfor-
mation and code generation, presents an overview of com-
posing AST and polyhedral transformations, and then looks
at these examples in detail. Finally, we compare to related
work.

2. BACKGROUND
CHiLL harnesses both polyhedral and AST abstractions

for its internal representation of a loop nest computation.
The Statement is a central data structure to CHiLL’s inter-
nal representation that achieves a clean separation between
polyhedral and AST abstractions. Each statement in the
code has three components:

• IS : The iteration space of a statement in a loop nest,
expressed in relation form.

• xform: The transformation applied to this IS in rela-
tion form.

• code: An actual pointer to the AST segment of the
code. Hence loop and conditional code constructs are
created in polyhedral relation form, while the AST is
encapsulated within code field within the statement.

In addition, a dependence graph is constructed with a map-
ping to the statements to aid in determining safety of trans-
formations to be applied. In the remainder of this section,
we demonstrate how these representations make it possible
to combine polyhedral and AST transformations. The key
point is that all the representations must remain consistent
throughout to maintain composability of transformations.
These points are illustrated by the simple example in Fig-
ure 1.

2.1 Dependence Graph
The construction of the dependence graph synergizes both

the polyhedral and AST representations. It first extracts the
array references in each statement’s code field, and creates
an affine relation corresponding to the array subscript. The
underlying polyhedral library is then queried with a system
of affine inequalities to check for the range of the loop in-
dex values for which the dependences exist. This process is
repeated for every pair of statements and the dependence
graph is constructed, with each statement represented by

a vertex in the graph and edges corresponding to depen-
dences. For instance the statement s0 in Figure 1 has a self
dependence with a positive distance of +1 due to the array
references a[i + 1] and a[i].

2.2 Iteration Spaces
Statements within the analyzed loop nest may be at dif-

ferent nesting levels and enclosed by differing sets of outer
loops. To present a polyhedral view of the loop nest, a
unified iteration space, with an iteration space vector cor-
responding to each individual statement is constructed, in-
cluding auxiliary dimensions in the iteration space to pre-
serve lexicographic ordering.

An iteration space is a set of iteration vectors, which are
represented as integer tuples. Given a loop nest with maxi-
mum loop depth of n, an iteration vector for each statement
is defined as i = {c0, l1, c1, l2, ..., cn, ln, cn+1}, where indices
l1..n are used to represent the actual loop levels and indices
c0..n+1 are auxiliary loops for ensuring lexicographic order.

2.3 Transformations and Code Generation
Standard polyhedral transformations in CHiLL are im-

plemented via linear mappings, which require affine loop
bounds, conditional expressions and array subscripts. Ex-
pressing the program transformation as an affine mapping on
the input code’s iteration space allows composing transfor-
mations by using a transformation’s output as the input of
the following one, with the advantage that individual trans-
formations need not rely too much on the input code’s syn-
tactic structure. Once all transformations are aggregated,
the subscript expressions are updated with the inverse map-
ping of the transformation to ensure correctness as shown in
Figure 1. Once all transformations have been applied, the
IS and xform for each statement are input to CodeGen+ [7]
which employs standard polyhedra scanning techniques and
generates code with minimized control overhead.

Stage 1 : 

Iteration Space & 
Dependence Graph 
Construction 

Stage 2 : 

Original Loop 
Iterators obtained as 
functions of new 
iterators  

Transformation (T) 
Application(Loop 
Shift by 4) 

xform_inv  = {[i]->[i-4]} 

Update	  statement	  
macro	  with	  xform_inv.	  
Apply	  Polyhedra	  
Scanning	  	  

Input	  Code:	  
for(i=0;	  i	  <	  n;	  i++)	  

s0:	  a[i+1]=a[i]	  +	  5;	  
	  
	  
	  
	  
	  
	  

Statement	  s0:	  
IS:{{i]	  :	  0	  <=i<	  n}	  
xform:{[i]-‐>[0,i,0]}	  

Code:	  a[i+1]=a[i]	  +	  5;	  
	  

	  
	  
	  
	  
	  

Dep: <+1> 

	  
	  
	  
	  
	  
	  

Statement	  s0:	  
IS:{{i]	  :	  0	  <=i<	  n}	  

xform:{[i]-‐>[0,i+4,0]}	  
Code:	  a[i+1]=a[i]	  +	  5;	  
	  

	  
	  
	  
	  
	  

Dep: <+1> 

Stage 3 : 

Output	  Code:	  
for(i=4;	  i	  <	  n+	  4;	  i++)	  
s0:	  a[i-‐3]=a[i-‐4]+5;	  

Figure 1: Polyhedral transformations and code gen-
eration.

3. OVERVIEW
Table 1 describes the combined AST and polyhedral trans-

formations described in this paper. The columns of the table
list the optimization techniques, the transformations that
must be applied to the AST, the accompanying changes in
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the iteration spaces, and subsequent polyhedral transforma-
tions that are applied. The top part of the table focuses
on transformations which are composable with subsequent
polyhedral transformations. A key requirement for compos-
ability is whether the abstractions from the previous sec-
tion are consistent with the current code. In particular, in
the process of applying the transformations the dependence
graph must be updated. The parallel code generation is not
treated as a transformation and is not composable; parallel
code is emitted during the polyhedra scanning. The remain-
der of this paper describes these combined transformations,
highlighting the interplay between AST and polyhedral op-
timization.

4. INSPECTOR/EXECUTOR GENERATION
FOR SPARSE CODES

Inspector/executor transformations are a class of run-time
transformations, where the inspector is the code that may
traverse the original code’s iteration space, or analyze cer-
tain index arrays and potentially reorder or restructure the
original code. Additionally it may reorganize the memory
referenced by the original code. The executor is the modi-
fied version of the original computation that references the
potentially reordered iteration space and/or memory refer-
ences by the inspector code.

Within our compiler framework, we direct the automatic
generation of inspector/executor code via transformation
recipes. Here we provide descriptions of two types of inspec-
tor/executor transformations we have developed in CHiLL
to optimize codes with indirect loop bounds and memory ac-
cesses, specifically the Sparse Matrix Vector (SpMV) kernel.
In general the transformations are applicable to the class of
input codes, which either do not have any loop-carried de-
pendences or have dependences that only arise due to an
associative computation such as reductions which are insen-
sitive to iteration reordering.

The first transformation, generalized loop coalescing, may
be viewed as an iteration space restructuring transforma-
tion, while the second series of transformations make-dense,
compact and compact-and-pad accomplish a data transfor-
mation additionally. We illustrate and highlight the inter-
play between polyhedral and AST code generation mecha-
nisms employed for these transformations in this section.

4.1 Non-affine Extensions
The polyhedral transformation model was primarily de-

signed to optimize codes with affine loop bounds and array
subscript expressions. As such few polyhedral frameworks
provide the capability to model non-affine code constructs
such as array indirection during code generation. Further-
more, there is limited support to augment code generation
with user-supplied code [10].

Within the Omega+/CodeGen+ [7] libraries used by CHiLL,
the uninterpreted function symbol abstraction is provided to
model functions or mappings whose exact semantics is unde-
termined at compile-time. This abstraction is utilized in [21]
for inspector/executor transformations within CHiLL. The
generalized loop coalescing transformation [21] converts a
loop nest of arbitrary depth to a singly nested loop with the
number of instances the body of the loop executes remain-
ing invariant in the transformation. The transformation is
modeled as an uninterpreted function that has argument ar-

ity equal to the dimension/depth of the input loop nest; it
takes as input the loop indices of all levels in the input code
and returns a single output loop iterator. For instance in
the relation Tcoalesce shown in Figure 2, loop indices i and
j are coalesced into a single output iterator k utilizing the
uninterpreted function c with arity 2. The inspector code
also determines the upper bound of the count of iterations
of the newly coalesced loop, denoted as NNZ.

4.2 Run-time Inspector Code Generation

Input	  Loop:	  
for(i=0;	  i	  <	  n;i++)	   	  	  
	  	  for(j=index[i];j<index[i+1];j++)	  	  	  	  	  	  	  	  	  	  	  

	  y[i]+=a[j]*x[col[j]]	  
	  

Inspector	  Code:	  
for(i=0;	  i	  <	  n;i++)	   	  	  
	  	  for(j=index[i];j<index[i+1];j++)	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  c.create_mapping(i,j);	  

Executor	  Code	  :	  
for	  (k	  =	  0;	  k	  <	  NNZ;	  k++)	  
	  	  	  	  y[c_inv[k][0]]	  +=	  A[c_inv[k]

	  [1]]*x[col[c_inv[k][1]]];	  	  

Input: 

Output: 

AST + 
Iteration 
Space 
Manipulation: 

	  
	  
	  
struct	  c{	  
int	  c_inv[][2];	  
Void	  create_mapping(i,j){	  

	  c_inv[k][0]	  =	  i;	  
	  c_inv[k][1]	  =	  j;	  
	  …}}	  

	  
	  

Tcoalesce ={[i,j]->[k]|k=c(i,j) ∧ 0 ≤ k < NNZ} 

Figure 2: Compiler-generated coalescing inspector.

In typical polyhedral code generation systems [7, 22], when
the iteration space of the code being transformed is con-
strained in the affine domain, the array subscripts in the
statement macro are updated with the inverse of the specific
transformation. This approach was extended for non-affine
transformations in [21] where an inspector sets up the corre-
spondence of the input iterators to the output iterator. The
executor code’s references to the input iterators are then
updated with the values recorded by the inspector.

The functionality of the inspector is cloaked within the
uninterpreted function abstraction, in other words, the in-
spector code generation is transparent to the CHiLL user.
However the code generation backend has to instrument the
functionality of the inspector code. To this end, the input
code’s AST is modified to set up the data structures that will
be needed to flesh out the uninterpreted function relation.

The ROSE compiler infrastructure [14] is used to modify
the AST, specifially to create a C++ struct to represent
the functionality of the inspector. The struct has a field for
each input iterator being coalesced as shown in Figure 2.
This struct is used to flesh out the mapping corresponding
to the uninterpreted function c, used in Tcoalesce, hence it
assumes the same name of the function.

More elaborate inspectors are constructed in [20], which
introduces the following new transformations:

• make-dense: takes as input any set of non-affine ar-
ray index expressions and introduces a guard condition
and as many dense loops as necessary to replace the
non-affine index expressions with an affine access.

• The compact and compact-and-pad transformations are
inspector/executor transformations; an automatically-
generated inspector gathers the iterations of a dense
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Compiler Transformations
Optimization techniques AST transformations Polyhedral transformations Composable with other optimizations

Unroll
• Replicate AST for new unrolled statements
• Adjust array index expressions by constants

• Introduce stride into iteration space
• Various
• Subsequent to datacopy to registers

Inspector/executor for sparse codes
• Create linked list struct in AST
• Parse if condition in AST and convert to rela-

tion

• Encode sparse iteration space of executor using
uninterpreted function symbols
• Derive closed form iterators for efficient inspec-

tor

• Datacopy, scalar expansion
• Tiling and unrolling of executor

Partial sums for high-order stencils
• Create partial sum buffers
• Create new statements
• Delete existing statements

• Create iteration spaces for new statements
• Ensure lexicographical ordering of statements
• Create new dependence graph

• Fusion, distribution
• Skewing
• Permutation

Parallel Code Generation

CUDA

• Eliminate block/thread loops
• Rewrite statement with updated indices
• Insert synchronizations
• Introduce CUDA kernel and auxiliary func-

tions

— —

OpenMP
• Add pragmas via OMP nodes into AST
• Add OMP clauses into AST
• Add explicit spinlocks

— —

Table 1: Taxonomy of CHiLL AST+Polyhedral Transformations.

loop that are actually executed and the optimized ex-
ecutor only visits those iterations. The executor rep-
resents the transformed code that uses the compacted
loop, which can then be further optimized.

• In the compact-and-pad transformation, the inspector
also performs a data transformation, inserting explicit
zeros when necessary to correspond with the optimized
executor.

These three transformations and automatic generation of
inspectors combine the polyhedral manipulation of loop it-
eration space and constraints on statement execution with
AST modifications to introduce new statements.

Importantly, linked list data structures are introduced into
the inspector code’s AST representation for a space-efficient
implementation where the number of non-zero entries be-
ing compacted are not known a priori. The IF-condition
that specifies which iterations to compact, was converted
into an iteration space constraint/(in)equality on the iter-
ation space, by using exp2constraint in CHiLL. The condi-
tion, once in a form amenable to polyhedral manipulation,
is analyzed to identify iterations for which closed form ex-
pressions[20] may be derived from the guard condition with-
out explicitly traversing the corresponding loop level, hence
increasing the efficiency of the inspector. The compact-and-
pad transformation derives the padding size from the maxi-
mum loop trip count of certain loops, by converting the ar-
ray subscript expression to a function of the loop iterators,
and then extracting the maximum footprint of the subscript
function given the loop bounds. Also both the inspector
and executor’s iteration spaces were constructed in relation
form using uninterpreted functions to represent index arrays
where required. As each new transformation is applied, the
dependence graph is incrementally updated to reflect the
changes to the code.

4.3 Example: BCSR
The transformations make-dense and compact-and-pad fa-

cilitate the derivation of SpMV computation based on the
Block Compressed Sparse Row (BCSR) representation from

Input	Loop:	
for(i=0;	i	<	n;i++)	 		
		for(j=index[i];j<index[i+1];j++)											

	y[i]+=a[j]*x[col[j]]	
	

Input: 

Output: 

make- 
dense: 

	
	
for(ii=0;	ii	<	n/r;ii++)	
	for(kk=0;kk	<	n/c;kk++)		
			for(i=0;	i	<	r;i++)	
					for(k=0;k	<	c;k++)		
							for(j=index[ii*r	+i];j<index[ii*r	+	i+1];j++)		
										if(kk*c	+	k	==	col[j])	
												y[ii*r	+	i]+=a[j]*x[kk*c	+	k]	
	

	
for(i=0;	i	<	n;i++)	
		for(k=0;k	<	n;k++)		
				for(j=index[i];j<index[i+1];j++)		
										if(k	==	col[j])	
																y[i]+=a[j]*x[k]	
	

tile 
(i,k): 

	
Executor	Code	:	
for(ii=0;	ii	<	n/r;ii++)	
	for(kk=offset_index[ii];kk	<	offset_index[ii+1];kk++)		
			for(i=0;	i	<	r;i++)	
					for(k=0;k	<	c;k++)		
							y[ii*r	+	i]+=a’[kk][i][k]*x[explicit_index[kk]*c	+	k]	
	

compact-and-pad(kk,a, a’) 

	
	
	
Inspector	Code:	
for(ii=0;	ii	<	n/r;ii++){	
//reset	marked	to	false	(code	not	shown)	
for(i=0;	i	<	r;i++)	
		for(j=index[ii*r	+i];j<index[ii*r	+	i+1];j++){		
				kk	=	col[j]/c;	k	=col[j]/c	–	kk*c;	
						if(marked[kk]	==	false){	
										marked[kk]	=	true;		
										explicit_index[kk]	=	count;			
										//iniMalize	a’[count][0-r][0-c]	to	0	
										count++;}	
						a’[count][i][k]	=	a[j];}	
	offset_index[ii+1]	=	count;	
} 	 	 		
	

Figure 3: BCSR inspector/executor code.

the initial SpMV computation based on the Compressed
Sparse Row (CSR) representation. The BCSR representa-
tion is ideal for exploiting temporal reuse of matrix column
values via registers on multi cores for performance. Concep-
tually it tiles the matrix into small rectangular tiles of length
r and width c, and stores non-zeros that fall into adjacent
locations in the same tile. Since the matrix is sparse, if some
locations in the tile do not have a corresponding non-zero,
they are padded with a zero value. Totally empty tiles are
not stored.

The BCSR example serves to highlight the composition of
these inspector/executor transformations with other regular
transformations, such as tiling, within CHiLL.

As shown in Figure 3, the make-dense is applied on the
expression col[j] in order to expose the column dimension of
the matrix as an explicit loop dimension. The transforma-
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tion identifies the upper and lower bounds on the expression
and introduces a loop level with the same bounds. Addi-
tionally it eliminates the indirect access due to col[j] with a
reference to the newly introduced loop. Also it introduces a
guard to check if non-zero exists at a particular value of the
newly introduced loop for correctness.

This allows regular transformations such as tiling to be ap-
plied on the newly introduced loop. The loop that traverses
the rows of the matrix, and the newly introduced loop that
corresponds to the column dimension, are then both tiled
by constant factors r and c to derive the small rectangular
tiles in the BCSR representation.

Finally compact-and-pad is called on the loop level that
iterates over the rectangular tiles. For a given iteration of
this loop, if the entire tile enclosed fails to satisfy the guard,
or equivalently if there is no non-zero in the region, that tile
is entirely discarded from the iteration space and associated
data representation. On other regions, where the guard is
satisfied for a subset of iterations, the original data is copied
to the corresponding new location, and on those that do not
satisfy the guard a zero is inserted.

The inspector for compact-and-pad also populates the off-
set index and explicit index arrays. offset index determines
the start and end of the rectangular tiles that belong to the
same set of adjacent rows of length r, while explicit index
records the actual values of the column offset of each block.
Additionally, the code generator uses the guard condition to
derive closed form expressions of certain loops, as alluded to
previously, to minimize the overhead of the inspector.

5. STENCIL OPTIMIZATIONS
For almost all stencils, there is data and operation reuse

between neighboring points. This reuse is more significant
for high-order stencils, which examine more neighboring in-
put points to compute each output point. We extend our
compiler framework with partial sum transformation [2] to
exploit this reuse to reduce loads, and remove operations
that are redundant across multiple output calculations. The
partial sum transformation is applicable to the class of in-
put codes where all subscript expressions are affine, or linear
combinations of loop indices and loop-invariant variables.
Also the partial sum transformation requires that the sub-
script expressions are separable, such that each dimension
references just a single loop index.

5.1 Stencil Reordering: Partial Sums
The partial sum transformation described in this paper

targets constant-coefficient, out-of-place stencils. That is,
in this paper, we assume a stencil value is a weighted sum
of a single array, and updates are loop nest computations
where the right-hand sides are read-only arrays per stencil
sweep (e.g. Jacobi).

For an illustration of computing stencils via partial sums,
consider the 9-point 2D stencil of Figure 4 (top). We observe
three types of reuse: (1) data reused across iterations, where
input points for the right edge of iteration 〈j, i〉, are reused
as the center for iteration 〈j, i + 1〉 and the left edge for it-
eration 〈j, i+ 2〉; (2) computation reuse based on symmetry
of the coefficients along the j−axis, where entries R[i] and
L[i+2] are equal; (3) data reuse based on symmetry of coef-
ficients along the i−axis, where the sum of points with same
coefficient are stored in r1 and r2. Therefore, the compiler
constructs an array of coefficients to be used in the partial

for (j=0; j<N; j++)
for (i=0; i<N; i++)

out[j][i] = w1*(
in[j-1][i] + in[j+1][i] +
in[j][i-1] + in[j][i+1]

) +
w2*(

in[j-1][i-1] + in[j+1][i-1] +
in[j-1][i+1] + in[j+1][i+1]

) +
w3*( in[j][i] );

R i

C i+1

L i+2

…

…

…

…

…

…

r1 = in[j][i+1];
r2 = in[j+1][i+1] + in[j-1][i+1];

out[j][i] = L[i] + C[i]+ R[i];

R[i]     = w1 * r1 + w2 * r2;

C[i+1] = w3 * r1 + w1 * r2;

L[i+2] = R[i];

(j,i)

(j,i+1)

(j,i+2)

1

2

3
2

1

3

Figure 4: Input code for 2D 9-point stencil (top).
Partial sum optimization (bottom).

1 #define N 64
2 void stencil (){
3 int k,j,i;
4 for (k=0; k<N; k++)
5 for (j=0; j<N; j++)
6 for (i=0; i<N; i++){
7 out[k][j][i] = w1*( in[k][j][i] ) +
8 w2*( in[k-1][j][i] + in[k][j-1][i]
9 + in[k][j+1][i] + in[k+1][j][i]

10 + in[k][j][i-1] + in[k][j][i+1] ) +
11 w3*( in[k-1][j][i-1] + in[k][j-1][i-1]
12 + in[k][j+1][i-1] + in[k+1][j][i-1]
13 + in[k-1][j-1][i] + in[k-1][j+1][i]
14 + in[k+1][j-1][i] + in[k+1][j+1][i]
15 + in[k-1][j][i+1] + in[k][j-1][i+1]
16 + in[k][j+1][i+1] + in[k+1][j][i+1] ) +
17 w4*( in[k-1][j-1][i-1] + in[k-1][j+1][i-1]
18 + in[k+1][j-1][i-1] + in[k+1][j+1][i-1]
19 + in[k-1][j-1][i+1] + in[k-1][j+1][i+1]
20 + in[k+1][j-1][i+1] + in[k+1][j+1][i+1] );
21 }}

Listing 1: 3D 27-point stencil.

1 original ()
2 skew ([0,1,2,3,4,5],2,[2,1])
3 permute ([2,1,3,4])
4 distribute ([0,1,2,3,4,5],2)
5 partial_sums (0)
6 partial_sums (5)
7 fuse([2,3,4,5,6,7,8,9],1)
8 fuse([2,3,4,5,6,7,8,9],2)
9 fuse([2,3,4,5,6,7,8,9],3)

10 fuse([2,3,4,5,6,7,8,9],4)

Listing 2: CHiLL script for 3D 27-point stencil.

sum transformation, and computes and stores partial results
in partial sums. Finally, partial sums are buffered across it-
erations to derive the output values.

In a similar manner, for 3D stencils we compute partial
sums of 2D planes instead of 1D lines. Consider 3D 27-point
stencil from Listing 1 as an example, with CHiLL transfor-
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1 // distance of farthest stencil point
2 // from origin per dimension
3 int radius = 1;
4 // allocate 2* radius +1 buffered partial sums ,
5 // N is grid (box) dimension
6 // create (radius +1) *( radius +2) /2 temporaries
7 double B0[N], B1[N], B2[N];
8 double r1, r2, r3;
9

10 for (k=0; k<N; k++){
11 for (j=0; j<N; j++){
12 // preamble code sets up the pipeline
13 ....
14 // steady state computation
15 for(i=0; i<(N-radius); i++){
16 r1 = in[k][j][i+1];
17 r2 = in[k+1][j ][i+1] + in[k-1][j ][i+1] +
18 in[k ][j-1][i+1] + in[k ][j+1][i+1];
19 r3 = in[k+1][j+1][i+1] + in[k+1][j-1][i+1] +
20 in[k-1][j+1][i+1] + in[k-1][j-1][i+1];
21 B2[i] = w2*r1 + w3*r2 + w4*r3;
22 B1[i+1] = w1*r1 + w2*r2 + w3*r3;
23 B0[i+2] = B2[i];
24 }
25 for(i=0; i<(N-radius); i++)
26 out[k][j][i] = B0[i] + B1[i] + B2[i];
27 ...
28 // cleanup code to avoid extra computation
29 ...
30 }}

Listing 3: Optimized code for 3D 27-point stencil.

mation script provided in Listing 2. The simplified gener-
ated code is shown in Listing 3. Computation reuse are
exploited though partial sum buffers, with three buffers al-
located, for the left, center and right planes. Data reuse are
exploited through scalars, three scalars are created for three
unique coefficients in each 2D plane.

5.2 Compiler Abstractions and Code
Generation

Abstractions of stencil points, bounding box, coefficients,
and buffer for partial sums are derived automatically by our
compiler and used by the code generator to produce code in
Listing 3. AST transformations are applied to the statement
code: (1) create buffer objects and scalars to hold sums for
each unique coefficient in a plane; (2) create a new com-
pound statement to compute buffers; (3) create new state-
ment to compute output from the sum of all buffers, and
replace the original statement with this statement. Subse-
quent polyhedral transformations are required: (1) decrease
the number of iterations of IS to avoid going off the end of
the buffers; (2) create a new iteration space for new state-
ment; and, (3) peel off remaining iterations and use original
statement. New nodes are created in the AST, with the AST
structure reparsed and the dependence graph updated. We
find that reparsing and rebuilding the dependence graph is
preferable to incremental updates due to the fundamental
changes to the original code.

5.3 Composing Transformations
After introducing partial sums, compute-bound kernels

become more memory bound, and communication-avoiding
optimizations are then used to further improve performance,
such as overlapped tiling (via larger ghost zones), loop fusion
and wavefronts. Overlapped tiling reduces inter-processor
communication. Loop fusion and wavefront computation

1 void MM(int c[N][N], int a[N][N], int b[N][N]) {
2 int i, j, k;
3 for (i = 0; i < N; i++)
4 for (j = 0; j < N; j++)
5 for (k = 0; k < N; k++)
6 c[j][i] = c[j][i] + a[k][i] * b[j][k]; }

Listing 4: Matrix multiply source code (BLAS).

1 N = 1024
2 Ti = 128, Tj = 64
3 Tk = 16
4 Tii = 16, Tjj = 16
5
6 tile_by_index (0,{"i","j"},{Ti,Tj},
7 {l1_control="ii",l2_control="jj"},
8 {"ii","jj","i","j","k"})CU=1
9 tile_by_index (0,{"k"},{Tk},{ l1_control="kk"},

10 {"ii","jj","kk","i","j","k"})CU=3
11 tile_by_index (0,{"i","j"},{Tii ,Tjj},
12 {l1_control="iii",l2_control="jjj"},
13 {"ii","jj","kk","i","iii","j","jjj",

"k"},1)CU=2
14 cudaize(0,"mm_GPU" ,{},
15 {block={"ii","jj"},thread ={"i","j"}},{})
16 copy_to_shared (0,"tx","a" ,-16)
17 copy_to_shared (0,"tx","b" ,-16)
18 copy_to_registers (0,"kk","c")
19 unroll_to_depth (2)

Listing 5: Matrix multiply CUDA-CHiLL script.

reduce communication to DRAM by fusing multiple grid
sweeps into one. Wavefronts are generated by loop skew-
ing followed by loop permutation. Skewing eliminates some
dependences making permutation legal. The loop skew fac-
tor must increase with stencil radius. Wavefront exploits
reuse but increases the working set, which may result in
spills from faster caches. CHiLL can generate code with
nested loops and OpenMP directives to reduce the working
set per thread. When used together, partial sums and com-
munication avoiding optimizations can achieve substantial
performance gains for high-order stencils.

6. PARALLEL CODE GENERATION
While parallel code generation modifies the AST repre-

sentation, it is done during code generation, and is there-
fore not composable with other polyhedral transformations.
Here we describe the interplay between polyhedra scanning
code generation and the AST modifications that result from
generating CUDA or OpenMP code.

6.1 CUDA
The CUDA-CHiLL compiler maps from a sequential pro-

gram view to the block/thread view of CUDA, as described
in [16, 12]. The AST modifications are as follows: (1) elim-
inate loops corresponding to block and thread dimensions;
(2) replace references to these indices with corresponding
CUDA block and thread indices; (3) introduce datacopy and
synchronization for GPU shared memory; and, (4) construct
function calls for kernel launch, device and host data move-
ment. We now consider matrix multiply as an example, from
Listing 4. With transformation script in Listing 5, generated
code in Listing 6.
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1 ...
2 cudaMalloc
3 cudaMemcpy
4 dim3 dimGrid0 = dim3 (8,16);
5 dim3 dimBlock0 = dim3 (16 ,16);
6 mm_GPU <<<dimGrid0 ,dimBlock0 >>>(...);
7 cudaMemcpy
8 cudaFree
9 ...

10 __global__ void mm_GPU (...)
11 {
12 bx = blockIdx.x; by = blockIdx.y;
13 tx = threadIdx.x; ty = threadIdx.y;
14 __device__ __shared__ int _P1 [128][17];
15 __device__ __shared__ int _P2 [16][65];
16 int _P3 [4][8];
17
18 _P3 [0][0] = c[64*by+ty ][128* bx+tx];
19 _P3 [1][0] = c[64*by+ty +16][128* bx+tx];
20 _P3 [2][0] = c[64*by+ty +32][128* bx+tx];
21 _P3 [3][0] = c[64*by+ty +48][128* bx+tx];
22 ...
23 for (kk = 0; kk <= 63; kk += 1) {
24 _P1[tx][ty] = a[ty+16*kk][tx+128*bx];
25 _P1[tx+16][ty] = a[ty+16*kk][tx+128*bx+16];
26 ...
27 _P1[tx +112][ ty] = a[16*kk+ty ][128* bx+tx +112];
28 __syncthreads ();
29 _P2[tx][ty] = b[64*by+ty][16*kk+tx];
30 _P2[tx][ty+16] = b[64*by+(ty+16)][tx+16*kk];
31 _P2[tx][ty+32] = b[64*by+(ty+32)][tx+16*kk];
32 _P2[tx][ty+48] = b[64*by+(ty+48) ][16*kk+tx];
33 __syncthreads ();
34 for (k = 0; k <= 15; k += 1) {
35 _P3 [0][0] = _P3 [0][0]+ _P1[tx][k]*_P2[k][ty

];
36 _P3 [1][0] = _P3 [1][0]+ _P1[tx][k]*_P2[k][ty

+16];
37 _P3 [2][0] = _P3 [2][0]+ _P1[tx][k]*_P2[k][ty

+32];
38 _P3 [3][0] = _P3 [3][0]+ _P1[tx][k]*_P2[k][ty

+48];
39 ...
40 __syncthreads ();
41 }
42 __syncthreads ();
43 }
44 c[64*by+ty ][128* bx+tx] = _P3 [0][0];
45 c[64*by+ty +16][128* bx+tx] = _P3 [1][0];
46 c[64*by+ty +32][128* bx+tx] = _P3 [2][0];
47 c[64*by+ty +48][128* bx+tx] = _P3 [3][0];
48 ...
49 }

Listing 6: Generated CUDA kernel code from script.

6.1.1 Computation Partitioning
Computation partitioning into CUDA blocks and threads

involves tiling and permutation through polyhedral loop trans-
formations. In CUDA-CHiLL, loops corresponding to paral-
lel block and thread dimensions are effectively removed from
the generated code; AST annotation of block and thread
loops result from using cudaize as in Listing 5. CUDA-
CHiLL passes the iteration space and mapping to Code-
Gen+ and receives the AST of the loop code from Code-
Gen+. CUDA-CHiLL then extracts the annotation inserted
by CodeGen+ to identify parallel loops and reduces the
loops.

Consider line 6 from Listing 5, where loop i is tiled by
size Ti, resulting tile controlling loop ii, and tile loop i.
Loop ii maps exactly to the block x dimension. All block
and thread loops are eliminated similarly. As a result, only
loops {kk,iii,jjj,k} remain in the generated CUDA ker-

1 // Laplacian(phi) = b div beta grad phi
2 for (k=0;j<N;k++)
3 for (j=0;j<N;j++)
4 for (i=0;i<N;i++)
5 /* statement S0 */
6 temp[k][j][i] = b*h2inv*(
7 beta_i[k][j][i+1]*( phi[k][j][i+1]-phi[k][j][i])
8 -beta_i[k][j][i]*(phi[k][j][i]-phi[k][j][i-1])
9 +beta_j[k][j+1][i]*(phi[k][j+1][i]-phi[k][j][i

])
10 -beta_j[k][j][i]*(phi[k][j][i]-phi[k][j-1][i])
11 +beta_k[k+1][j][i]*(phi[k+1][j][i]-phi[k][j][i

])
12 -beta_k[k][j][i]*(phi[k][j][i]-phi[k-1][j][i]))

;
13
14 // Helmholtz(phi) = (a alpha I - laplacian )*phi
15 for (k=0;j<N;k++)
16 for (j=0;j<N;j++)
17 for (i=0;i<N;i++)
18 /* statement S1 */
19 temp[k][j][i] = a*alpha[k][j][i]*phi[k][j][i]-
20 temp[k][j][i];
21
22 // GSRB relaxation : phi = phi - lambda(helmholtz -

rhs)
23 for (k=0;j<N;k++)
24 for (j=0;j<N;j++)
25 for (i=0;i<N;i++){
26 if ((i+j+k+color)%2==0)
27 /* color is 0 for Red pass , 1 for black */
28 /* statement S2 */
29 phi[k][j][i] = phi[k][j][i]-lambda[k][j][i]*
30 (temp[k][j][i]-rhs[k][j][i]);}

Listing 7: Smooth operator with GSRB.

nel, which is further optimized with GPU memory hierarchy
optimizations. Thus, the loops are marked for elimination,
but their polyhedral and AST abstractions remain until code
generation.

Similarly, CodeGen+ annotates loop levels with preferred
index names as comments to the AST of loop structures.
CUDA-CHiLL then extracts the annotation inserted by Code-
Gen+ to recursively replace block and thread indices in the
statement code. For example, loop iterators of block control
loop ii, jj are replaced with blockIdx.x and blockIdx.y.

6.1.2 Datacopy and Synchronization
Data destined for shared memory must be explicitly copied

to/from the device global memory, as shown in lines 16-
18 in the transformation script from Listing 5. Therefore,
we couple tiling with explicit copying of data and associ-
ated synchronization to perform the data staging into shared
memory. Synchronization (i.e., calls to syncthreads()) are
added in conjunction with datacopy. These calls are repre-
sented as annotations in the loop’s AST structure.

6.1.3 Outlining Kernel Function
After CUDA-CHiLL obtains the loop nest AST from Code-

Gen+, the transformed loop nest is outlined as a CUDA ker-
nel. The original function body is replaced with a function
call to this CUDA kernel. Auxiliary functions are added to
marshal inputs and outputs.

6.2 OpenMP
CHiLL supports OpenMP code generation using OpenMP

pragmas for parallel regions (#pragma omp parallel) and
parallel fors (#pragma omp for). In this discussion, we limit

7



1 for (k=-3; k<=66; k++)
2 for (t=0; t<=min(3,intFloor(t+3,2)); t++) {
3 for (j=t-3; j<=-t+66; j++)
4 for (i=t-3+ intMod(-k-color -j-(t-3) ,2); i<=-

t+66; i+=2) {
5 S0(t,k-t,j,i); /* Laplacian */
6 S1(t,k-t,j,i); /* Helhmoltz */
7 S2(t,k-t,j,i); /* GSRB */
8 }}

Listing 8: CHiLL generated wavefront for a GSRB
stencil computation.

1 #pragma omp parallel private (...) num_threads(y)
2 {
3 tid=omp_get_thread_num ();
4 for (k=-3; k<=66; k++) {
5 for (t=0; t<=min(3,intFloor(t+3,2)); t++) {
6 for (j=6*tid -3; j<=min(6*tid+2,66); j++) {
7 for (i=t-3+ intMod(-k-color -j-(t-3) ,2); i<=-t

+66; i+=2) {
8 S0(t,k-t,j,i); /* Laplacian */
9 S1(t,k-t,j,i); /* Helhmoltz */

10 S2(t,k-t,j,i); /* GSRB */
11 }}}
12 // Explicit Spin Lock
13 // Can also use OMP_Barrier
14 zplanes[tid] = t2;
15 if (left != tid)
16 {while(zplanes[left] < t2)
17 { _mm_pause ();}} else{}
18 if (right != tid)
19 {while(zplanes[right] < t2)
20 {_mm_pause ();}}
21 }// end k
22 }

Listing 9: CHiLL generated threaded wavefront
using OpenMP and explicit spin locks for point-to-
point synchronization.

Thread 0Thread 1Thread 2Thread 3

residual

j

k

i

Thread 0Thread 1 Thread 2Thread 3

j

i

Figure 5: Parallel threaded wavefront computation.
(left) Four OMP threads processing a grid and syn-
chronizing after four output planes are computed.
(right) Each 2D plane is portioned amongst four
threads.

ourselves to OMP parallel region, which is the more chal-
lenging of the two, and resembles the approach taken with
CUDA code generation.

OpenMP code generation is explained in the context of a
wavefront computation. 3D stencil computations involve a

triply-nested loop which sweeps through 3D grids (arrays).
If the stencil computation is applied multiple times to the
grids, there is an outer, fourth loop. This is often called
a time step loop, and it creates multiple stencil sweeps of
the grids. Generating wavefronts is a known technique that
fused the multiple grid sweeps caused by the time step loop
into a single sweep. Wavefronts are created by loop skewing
followed by loop permutation. Listing 8 illustrates the loop
structure of a wavefront for stencil computation involving
a 7-point stencil and Gauss-Seidel Red-Black (GSRB) up-
dates, with placeholders for the statements corresponding
to Listing 7. This stencil computation prior to wavefront
has a loop order {t,k,j,i}; i being the dimension of unit
stride, k has the largest stride, and t is the time-step loop.
The loop order after creating a wavefront is {k,t,j,i}. To
legally permute k and t, the compiler first has to skew k

against t. Unfortunately, creating wavefront computations
increase the working set.

To ensure the working set doesn’t spill from the fast L1/L2
caches, we use OpenMP to perform thread blocking. We
strip mine (tile) the j loop, and assign each strip to an
OpenMP thread. The j loop in the loop nest is tiled us-
ing CHiLL’s tiling capabilities. This decomposes it into
two, loop j and the loop controlling jj loop. The tile
controlling loop is then hoisted outside the time step loop
(this is legal for the Gauss-Seidel Red-Black updates, as it
doesn’t break data dependencies), and the final loop order is
{k,jj,t,j,i}. The j loop has updated loop bounds which
are functions of jj. CHiLL’s scripting language interface is
then used to mark the jj loop to be assigned to OpenMP
threads. This is very similar in spirit to CUDA code gen-
eration, where loops were tiled, and then certain loop levels
were marked as threads and thread blocks.

Once all loop transformations have been applied, CHiLL
scans the polyhedra to create the AST for the output code.
While creating the AST, if the OpenMP code generation
flag is set, CHiLL wraps the entire loop in an AST node as-
sociated with #pragma omp parallel. It then creates and
adds another AST node for the OMP private clause. The
loop level (jj), that was marked as OpenMP thread, is then
removed from the AST representation of the loop nest. Fur-
thermore, all reference to the loop index jj in the body of
the loop are replaced by the variable tid. This means that
bounds for loop j are now functions of tid. A declaration
for tid, and a statement to set it’s value via an OpenMP
call is added to the function body. When creating the AST,
as loops are being added from outer to the inner one, the
indices for loops nested inside the parallel loop jj are added
to the omp private clause.

To ensure correctness, thread synchronization is appended
to body of the loop that surrounds the loop level marked
to omp threads, analogous to adding syncthreads in CUDA
code generation. In this case, it is appended to the body of
loop k. To reduce the overhead of an OpenMP barrier, code
generation was extended to add nodes to AST to support
point-to-point synchronization between neighboring threads
via spinlocks. The threaded wavefront code for the GSRB
stencil computation is illustrated in Listing 9, and visual-
ized in Figure 5. The code shows a threaded wavefront
for a GSRB stencil computation on a (64 + 8)3 grid with
6 threads, and the code snippet after the stencil computa-
tion implements a spinlock using the shared volatile array
zplanes.
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7. RELATED WORK
Polyhedral frameworks are often restricted to affine com-

putations and employ only rewriting of the iteration space
and array subscripts. Other authors have pointed out that
the following transformations are difficult in polyhedral frame-
works: index set splitting [8], piecewise schedules [9], time-
tiling of periodic stencils [4], register tiling (unroll-and-jam
plus scalar promotion) [15]. For more complex optimiza-
tions, AST transformations are often introduced as post-
processing outside of polyhedral framework [11, 5]. In the
CHiLL compiler, since AST structure is encapsulated within
the polyhedral abstractions, the dependence graph is con-
structed from both the polyhedral and AST representations,
and shared among polyhedral and AST transformations.

Shirako et al. [19] proposed a decoupled framework, sep-
arating polyhedral transformations and AST optimizations
into different stages. However, dependences need to be ex-
tracted from the polyhedral framework, to perform legal-
ity analysis for AST transformations. The authors argued
that separate AST transformations are necessary to detect
proper parallelism, pipeline parallelism for example, which
is typically implemented as inefficient wavefront schedules
in polyhedral framework. However, we showed that pipeline
parallelism in OpenMP can be implemented in CHiLL be-
cause of the modifications to the AST, resulting in a coarse-
grain threaded wavefront, with global synchronizations op-
timized with point-to-point synchronizations via spinlocks,
and start-up/draining overhead reduced. Moreover, the poly-
hedral phase proposed by this paper requires loops to have
affine controls, leaving non-affine transformations to AST
phases. We showed that we can extend the polyhedral frame-
work with support of non-affine constraints, enabling a wider
range of applications.

Grosser et al. [10] presented an integrated AST generation
approach, that enables AST optimizations through arbitrary
user-provided AST expressions, within the process of scan-
ning polyhedra. User-supplied AST expressions enable opti-
mizations of modulo operations, piecewise schedules, mem-
ory layout transformations, and multiple AST generation
strategies for different AST subtrees. However, this AST
optimization approach is limited. Optimizing through AST
expressions may fail to see the subtle interactions between
a suite of transformations. Moreover, for more complex op-
timizations, such as generating inspector/executor for irreg-
ular applications, complicated data structures are hard to
express through user-defined AST expressions.

8. CONCLUSION
In this paper, we present case studies that demonstrate

that the composability of polyhedral framework is preserved
from our polyhedral and AST abstractions. Mixing such
AST transformations within the polyhedral model avoids
the effort of switching back to the AST and harnesses the
power of composability of polyhedral frameworks. The fu-
ture of such technology will demand that it can adapt to the
needs of a broad class of applications, and a contribution of
this paper is pointing to existing support for challenging ap-
plications.
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