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ABSTRACT
False dependences are caused by the reuse of memory to
store different data. These false dependences severely con-
strain the schedule of statement instances, effectively se-
rializing successive accesses to the same memory location.
Several array expansion techniques have been proposed to
eliminate some or all of these false dependences, enabling
more reorderings of statement instances during loop nest
transformations. However, array expansion is only relevant
when complemented with a storage mapping optimization
step, typically taking advantage of the fixed schedule set in
earlier phases of the compilation, folding successive values
into a compact set of contracted arrays. Furthermore, ar-
ray expansion can result in memory footprint and locality
damages that may not be recoverable through storage map-
ping optimization when intermediate transformation steps
have abused the freedom offered by the removal of false de-
pendences. Array expansion and storage mapping optimiza-
tion are also complex procedures not found in most compil-
ers, and the latter is moreover performed using suboptimal
heuristics (particularly in the multi-array case). Finally, ar-
ray expansion may not remove all false dependences when
considering data-dependent control and access patterns. For
all these reasons, it is desirable to explore alternatives to ar-
ray expansion as a means to avoid the spurious serialization
effect of false dependences. This serialization is unnecessary
in general, as semantics preservation in presence of memory
reuse only requires the absence of interference among live-
ranges, an unordered constraint compatible with the their
commutation. We present a technique to deal with memory
reuse without serializing successive uses of memory, but also
without increasing memory requirements or preventing im-
portant loop transformations such as loop distribution. The
technique is generic, fine-grained (instancewise) and extends
two recently proposed, more restrictive approaches. It has
been systematically tested in PPCG and shown to be essential
to the parallelizing compilation of a variety of loop nests, in-
cluding large Pencil programs with many scalar variables.
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1. INTRODUCTION AND MOTIVATION
Polyhedral compilation is a framework for analyzing and

transforming program fragments that are “sufficiently reg-
ular” through a mathematical abstraction that models the
individual statement instances and array elements using a
compact representation. When using polyhedral compila-
tion to transform a sequential program, the accesses in the
program are first analyzed to compute dependences between
statement instances that restrict the possible reorderings of
these instances. In particular, a statement instance that de-
pends on another statement instance needs to be executed
after that other statement instance.

Roughly speaking, dependences come in two types: the
true or flow dependences, i.e., those that are strictly needed
because some data produced and stored in memory by one
statement instance is (or may be) used by another, and the
false dependences, i.e., those that are caused by the reuse
of memory to store different data and that only serve to
ensure that data is not overwritten between production and
use. The true dependences will also be called live-ranges
because they correspond to a pair of statement instances
between which some memory location may be live. While it
is more customary to only consider live-ranges that end in
the last use, the last use is only known after scheduling and
therefore all uses need to be considered during scheduling.

Consider for example the slightly contrived code in List-
ing 1. An element of the t array is used to communicate data
from instances of statement S1 to the immediately following
instances of statement S2, constituting live-ranges between
these pairs of instances. However, the same memory loca-
tion is overwritten by some subsequent instances of S1 as
well as by some instances of statement S3. One way of han-
dling such memory reuse is to introduce false dependences
between instances of S2 and all later instances of both S1

and S3 that access the same element. This ensures that the
live-ranges will not overlap in the transformed code, but it
does so by fixing a particular execution order of those live-
ranges, preventing the loop nests in Listing 1 from being
completely fused and tiled. The two nests can still be tiled
separately in this case by first applying a skewing transfor-
mation. If the t array is replaced by a single scalar, then
these false dependences even prevent any fusion or tiling. A
source-to-source polyhedral compiler such as Pluto+ (Bond-
hugula et al. 2008; Acharya and Bondhugula 2015) will then
also refuse to perform such fusion or tiling.

An alternative to the introduction of false dependences
is to convert the program to single assignment form by ap-
plying array expansion (Feautrier 1988). Transformations
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void f(int n, int A[restrict static n][n],

int B[restrict static n][n],

int C[restrict static n][n])

{

int t[2 * n - 1];

#pragma scop

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) {

S1: t[i + j] = A[i][j];

S2: C[i][j] = t[i + j];

}

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) {

S3: t[i + j] = B[i][j];

S4: C[j][i] += t[i + j];

}

#pragma endscop

}

Listing 1: Illustrative example

can then be performed only taking into account the true
dependences. The array expansion may incur a prohibitive
increase in the memory requirements, but some of this in-
crease can be removed again by applying array contraction
techniques (see, e.g., Wilde and Rajopadhye 1996; Darte et
al. 2005, and their references). The result of array contrac-
tion may even require less memory than the original. Still,
the increased freedom introduced by the array expansion
may cause some of the live ranges that were originally us-
ing the same memory to overlap. This overlap of live-ranges
prevents the expanded memory location from being mapped
to the same memory after transformation and the memory
requirements are still increased. As a simple example, ex-
pansion allows the compiler to fuse the loop nests in Listing 1
(after performing a loop interchange on one of the nests) and
to execute an instance of S2 between the corresponding in-
stances of S3 and S4 in order to bring the two accesses to
C as close as possible to each other. However, this execu-
tion order prevents the same memory location from being
used to store the values produced by S1 and S3, resulting
in an overall increase in memory requirements (compared to
the case where array contraction is applied to the original
program). Baghdadi, Cohen, et al. (2013, Section 8.2, case
(1)) illustrate that this failure to contract does happen in
practice and that it can have a significant impact on per-
formance. Note that basic array expansion requires exact
dataflow analysis. If the input program does not allow such
an analysis to be performed exactly, then more advanced
techniques need to be used that incur further increases in
memory requirements (Vanbroekhoven et al. 2005) or the
expansion needs to be limited to maximal static expansion
(Barthou et al. 2000) in which case some false dependences
may remain. It is also possible to postpone the expansion
until after a schedule has been computed that ignores the
false dependences (Trifunovic and Cohen 2010). In this case,
no contraction step is needed, but a limited form of expan-
sion is still required in general.

Polyhedral compilers such as GCC/Graphite (Trifunovic,

for (c0=0;c0<n;c0 +=32)

for (c1=0;c1<n;c1 +=32)

for (c2=0;c2 <=min(31,n-c0 -1);c2+=1)

for (c3=0;c3 <=min(31,n-c1 -1);c3+=1) {

t[c0+c1+c2+c3]=A[c1+c3][c0+c2];

C[c1+c3][c0+c2]=t[c0+c1+c2+c3];

t[c0+c1+c2+c3]=B[c0+c2][c1+c3];

C[c1+c3][c0+c2]+=t[c0+c1+c2+c3];

}

Listing 2: Code from Listing 1 after fusion and tiling

Cohen, et al. 2010) and LLVM/Polly (Grosser, Größlinger,
et al. 2012) that operate on the compiler internal represen-
tation typically do so after a conversion to static single as-
signment (of the scalars) and consider basic blocks as indi-
visible units. Scalars that are only used within a given basic
block are usually not modeled at the polyhedral level by
such compilers. These scalars then do not give rise to false
dependences. For example, S1 and S2 in Listing 1 belong to
the same basic block and so do S3 and S4. If the t array were
to be replaced by a scalar, then no false dependences would
therefore be generated based on the two single assignment
scalars originating from t. However, this mechanism only
applies to accesses to scalars, it easily breaks down when
the basic blocks get split for whatever reason and the indi-
visibility of basic blocks prevents optimizations such as loop
distribution that require different parts of a basic block to
be transformed differently. In theory, it would be possible to
extend this scheme and treat the entire compound statement
that accesses any given reused variable as an indivisible unit,
but then the loops inside the compound statement could no
longer be optimized.

Baghdadi (2011) describes a technique for allowing groups
of live-ranges to be reordered with respect to each other by
encoding the disjunction of the two possible orderings of the
groups in the scheduling problem. This encoding is based
on the assumption of a bound on the schedule coefficients
and on the introduction of additional decision variables in
a way that is similar to the approach of Pouchet (2010).
This technique is fairly coarse-grain and a preliminary imple-
mentation (not publicly available) reportedly suffered from
scalability issues. Baghdadi, Cohen, et al. (2013) present
a permutability criterion that allows live-ranges to be re-
ordered during tiling. However, the criterion is only used to
reinterpret the result of prior transformations that attempt
to enable tiling, but may have failed due to the presence of
false dependences. In those failing cases, the potential for
applying the criterion is therefore mostly accidental. Mehta
(2014, Chapter 5) describes a technique called “variable lib-
eralization” that removes specific patterns of false depen-
dences, allowing some loop nests to be fused at the outer
levels but not at the innermost level. No implementation of
this technique appears to be publicly available, but based
on its description, it would not have any effect on the code
in Listing 1 because this code does not fit the targeted pat-
tern. If the t array were to be replaced by a scalar, then the
technique would only allow the loop nests in Listing 1 to be
merged at the outer level and not at the inner level.

The technique described in this paper falls into the last
category of approaches that rely on neither array expansion
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nor basic block clustering. It therefore does not risk increas-
ing memory requirements and does allow loop distribution.
No claim is made that this category of approaches is always
the right choice. However, within this category, the pre-
sented technique is more fine-grained than that of Baghdadi
(2011) and more general than those of Baghdadi, Cohen,
et al. (2013) and Mehta (2014, Chapter 5). In particular, it
is not restricted to loop tiling or limited forms of loop fu-
sion. Although in practice the technique is mostly useful for
dealing with reuse of scalars, it can handle reuse of array el-
ements equally well. For example, it allows the code in List-
ing 1 to be fused and tiled to produce the code in Listing 2.
The main idea is to use the criterion of Baghdadi, Cohen, et
al. (2013) during the search for enabling affine transforma-
tions by introducing and handling conditional validity con-
straints that prevent live-ranges from overlapping. An ini-
tial implementation has been publicly available in PPCG since
version 0.02 (April 2014), but it has only been extensively
tested through the experiments of Baghdadi, Beaugnon, et
al. (2015). This testing uncovered some issues that have
been fixed in version 0.04 (June 2015).

2. BACKGROUND
This section presents some terminology and known results

that are useful for describing the live-range reordering tech-
nique.

2.1 PPCG

PPCG is a source-to-source polyhedral compiler that takes
sequential C or Pencil (Baghdadi, Beaugnon, et al. 2015)
code as input and that produces CUDA or OpenCL code as
output. It was originally described by Verdoolaege, Juega,
et al. (2013) and further extended by Verdoolaege (2015),
mainly to support extra features required by the Pencil lan-
guage. PPCG relies on pet (Verdoolaege and Grosser 2012) to
extract a polyhedral model and on isl (Verdoolaege 2010)
to perform dependence analysis, scheduling and AST gener-
ation (Grosser, Verdoolaege, et al. 2015). The terminology
described below is as used by isl and PPCG. The live-range
reordering technique has also been implemented partly in
isl and partly in PPCG.

2.2 Polyhedral Model
A polyhedral model (Feautrier and Lengauer 2011) is a

compact mathematical abstraction of a program fragment.
For the purpose of this paper, a polyhedral model consists of
an instance set, access relations, dependence relations and a
schedule. The instance set describes the dynamic execution
instances in the program fragment. Taking statements as
units of execution, the instance set of the program fragment
in Listing 1 can be described as

{ S1[i, j] : 0 ≤ i, j < n; S2[i, j] : 0 ≤ i, j < n;

S3[i, j] : 0 ≤ i, j < n; S4[i, j] : 0 ≤ i, j < n },
(1)

with n a constant symbol representing the value of n, which
remains fixed throughout the execution. The unit of execu-
tion in pet may also be larger than an individual statement,
in particular if some of these statements contain dynamic
control (Verdoolaege 2015).

The access relations describe which data elements are ac-
cessed by each statement instance. A distinction is made
between reads and writes. Since it may not be possible to de-
termine at compile-time exactly which data elements will be

accessed at run-time, or it may not be possible to represent
the accesses exactly, these reads and writes may be overap-
proximations and are called may-reads and may-writes. The
must-writes form a subset of the may-writes that are known
to be performed with certainty. This leads to three access
relations, the may-read access relation, the may-write access
relation and its subset, the must-write access relation. An
access relation is an instance of a binary relation, containing
pairs of elements. The set of all elements that appear in the
first position is called the domain of the relation. The set
of all elements that appear in the second position is called
the range of the relation. In the case of an access relation,
the domain is the set of statement instances that access one
or more data elements and the range is the set of data ele-
ments that are being accessed. For example, the may-read
access relation (modulo domain constraints) for the program
in Listing 1 is

{ S1[i, j]→ A[i, j]; S2[i, j]→ t[i + j];

S3[i, j]→ B[i, j]; S4[i, j]→ C[j, i]; S4[i, j]→ t[i + j] },
(2)

while the may-write access relation, here equal to the must-
write access relation, is

{ S1[i, j]→ t[i + j]; S2[i, j]→ C[i, j];

S3[i, j]→ t[i + j]; S4[i, j]→ C[j, i] }.
(3)

A special kind of access relation is formed by what are
known as the kills. The meaning of a kill is that no values
can possibly flow through the “accessed” data elements. The
domain of the kills is formed by instances of additional state-
ments called kill statements. Kill statements are introduced
automatically for locally defined scalars or arrays, one at the
point of the declaration and one at the point where the dec-
laration goes out of scope. The accessed data elements are
formed by the scalar or the entire array. Kills can also be
introduced explicitly through a call to __pencil_kill (Ver-
doolaege 2015). For example, if the entire body of the func-
tion in Listing 1 is considered (rather that just the marked
part), then two additional statements are introduced, one at
the start and one at the end, both killing the entire t array.

A dependence relation contains pairs of elements where
the second depends on the first for its execution. There
are several different dependence relations and they are all
derived from the access relations as explained in Section 2.3.

If a statement accesses the same array multiple times, i.e.,
through multiple references, then for some applications, it
may not be sufficient to know which statement instance per-
forms the access and instead the access needs to be related to
a particular reference inside the statement instance. For ex-
ample, when PPCG is determining which data to copy to/from
a device, it checks which of the write references produce data
that is only used inside a given kernel. This requires the
reference to be identifiable from the dependence relations,
which in turn requires them to be encoded in the access re-
lations. In pet, reference identifiers are added to the domain
of the access relations to form tagged access relations. For
example, assuming the individual array references are called
R0, R1, . . . R7, the tagged may-read access relation of the
program in Listing 1 would be

{ [S1[i, j]→ R1[]]→ A[i, j]; [S2[i, j]→ R3[]]→ t[i + j];

[S3[i, j]→ R5[]]→ B[i, j];

[S4[i, j]→ R6[]]→ C[j, i]; [S4[i, j]→ R7[]]→ t[i + j] },
(4)
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For consistency, tagged kills also have a reference identifier
in their domain elements.

The schedule describes the order in which the elements
of the instance set are executed and is represented in isl

in the form of a schedule tree (Verdoolaege, Guelton, et al.
2014). In PPCG, an initial schedule is extracted by pet that
represents the original execution order and that is used to
perform dependence analysis (see Section 2.3). A new sched-
ule is then constructed based on the resulting dependence
relations as explained in Section 2.4.

2.3 Dependence Analysis
Dependence analysis determines which statement instances

depend on which other statement instances. A distinction is
typically made between memory-based dependence analysis
and value-based dependence analysis (Pugh and Wonnacott
1994). The latter is also called dataflow analysis (Feautrier
1991). In (memory-based) dependence analysis, a statement
instance is considered to depend on any previous statement
instance that accesses the same data element if at least one
of those two accesses is a write. In dataflow analysis, a state-
ment instance performing a read is considered to depend on
the last preceding statement instance that performs a write
to the same data element. An additional result of dataflow
analysis is the set of reads for which there are no preceding
writes.

The dependence analysis procedure in isl generalizes over
these two extremes. In particular, it takes a sink access re-
lation, a may-source access relation, a must-source access
relation and a schedule as input and determines for each do-
main element i of the sink access relation, the last domain
element of the must-source access relation that is executed
before i (according to the schedule) and that access the same
data element, as well as all intermediate domain elements of
the may-source access relation that access this same data el-
ement. If there is no such domain element in the must-source
access relation, then the procedure collects all previous do-
main elements of the may-source access relation that access
this same data element. In other words, starting from the
point in the schedule where the source domain element is
executed, the procedure collects all previously executed do-
main elements of the may-source and must-source relations
that access the same data element until an element of the
must-source is reached. The sinks for which no such must-
source is encountered are collected as well.

The traditional memory-based dependences are obtained
by running the procedure twice, once with as may-source the
may-write access relation and as sink the may-read access
relation and once with as may-source the union of the may-
write and may-read access relation and as sink the may-write
access relation. The (exact) dataflow analysis is obtained
by calling the procedure with as must-source the must-write
access relation (which in the exact case is equal to the may-
write access relation) and as sink the may-read access rela-
tion. Input dependences, i.e., pairs of statement instances
that (may) read the same value from the same memory el-
ement, can be computed by first taking the may-reads as
sinks and may-sources and the may-writes (and kills) as the
must-sources and then removing the dependences that have
a may-write (or kill) as source.

In PPCG, when the live-range reordering described in this
paper is not enabled, the following dependences are com-
puted. The first application of dependence analysis takes

Figure 1: Dependences for the program in Listing 1.
The flow dependences are shown on the left; the
false dependences on the right (those induced by C

are dotted; those induced by t are dashed). The
statement instances are represented as S1: , S2: ,
S3: , S4: . The circled instances on the left per-
form a live-in access. The circled instances on the
right perform a live-out access.

the tagged may-reads as sinks, the tagged may-writes as
may-sources and the union of the tagged must-writes and
the tagged kills as must-sources. The domain of the tagged
kills is subsequently removed from the result. The difference
forms what are called the tagged flow dependences. That is,
there is a flow dependence from a may-write to a later may-
read as long as there is no intermediate must-write or kill.
The sinks for which no corresponding must-source is found
during the dependence analysis are considered to be the live-
in accesses. That is, the live-in accesses are the may-reads
that may read a value that was written before the start of
the program fragment under analysis. For example, the code
in Listing 1 has the following flow dependences (modulo do-
main constraints):

{ S1[i, j]→ S2[i, j]; S3[i, j]→ S4[i, j]; S2[i, j]→ S4[j, i] }.
(5)

These are shown on the left of Figure 1. The live-in accesses
(modulo domain constraints) are as follows:

{ S1[i, j]→ A[i, j]; S3[i, j]→ B[i, j] }. (6)

The statement instances performing these accesses are cir-
cled on the left of Figure 1.

The second application takes the may-writes as sinks, the
must-writes as must-sources and the union of the may-reads
and the may-writes as may-sources. The resulting depen-
dences are called the false dependences. Those with a may-
read as source are also known as anti-dependences, while
those with a may-write as source are also known as output
dependences. Setting must-sources is not strictly necessary,
but it allows for the removal of some transitively covered
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false dependences that would otherwise be redundant. The
code in Listing 1 has the following anti-dependences (mod-
ulo domain constraints):

{ S2[i, 0]→ S3[0, i]; S2[n− 1, j]→ S3[j, n− 1];

S2[i, j]→ S1[i + 1, j − 1]; S4[i, j]→ S3[i + 1, j − 1] }.
(7)

and the following output dependences (modulo domain con-
straints):

{ S2[i, j]→ S4[j, i];

S1[i, 0]→ S3[0, i]; S1[n− 1, j]→ S3[j, n− 1];

S1[i, j]→ S1[i + 1, j − 1]; S3[i, j]→ S3[i + 1, j − 1] }.
(8)

Their union is shown on the right of Figure 1.
The third application takes as may-sources the tagged

may-writes and as sinks the union of the tagged must-writes
and the kills. The domain of the resulting dependences con-
sists of the pairs of statement instances and reference iden-
tifiers that access elements that are definitely overwritten or
killed. Specializing to the shared array elements results in
may-writes that write a value that is definitely overwritten
or killed. Removing these from the set of all may-writes re-
sults in the may-writes that write a value that may survive
the program fragment under analysis. These are called the
live-out accesses. They are useful for dead code elimination
(Verdoolaege 2015) and for determining which values should
be copied back from the device to the host in the code gen-
erated by PPCG. If only the marked fragment of Listing 1 is
analyzed, then the live-out accesses (modulo domain con-
straints) are

{ S4[i, j]→ C[j, i]; S3[i, 0]→ t[i + j]; S3[n− 1, j]→ t[i + j] }.
(9)

The statement instances performing these accesses are cir-
cled on the right of Figure 1. If the entire function body is
analyzed, then there is an additional kill of t and only the
accesses to C are live-out.

2.4 Scheduling
This section describes the scheduler implemented in isl.

This scheduler is based on the Pluto scheduler (Bondhugula
et al. 2008) and all the major concepts are the same. Some
details and some terminology may be isl specific, however.
The main purpose of the scheduler is to expose tilability
and parallelization opportunities, taking into account some
form of locality optimization. In particular, sequences of in-
dependent affine scheduling functions are constructed that
determine the execution order lexicographically. That is, the
first function in the sequence that assigns a different value
to two statement instances determines their order. The se-
quences are called bands and the affine scheduling functions
in a band are called its members. Moreover, the bands are
constructed in such a way that the members can be inter-
changed, meaning in particular that the entire band can be
tiled. Since it may not always be possible to construct a sin-
gle band that covers the entire instance set, the instance set
may need to be broken up into groups that can be scheduled
in sequence and some bands may need to be nested inside
other bands, taking into account only those dependences
that are not already covered by the outer bands.

In order not to enforce any policy by the isl scheduler,
its input is not formulated in terms of what the depen-
dences represent (e.g., flow, false or input), but rather in
terms of how the scheduler should treat them. For example,

some users may want to optimize locality over false depen-
dences, while others may not. The inputs are called sched-
ule constraints and they come in three groups: the validity
constraints, the proximity constraints and the coincidence
constraints. The validity constraints determine which state-
ment instances need to be scheduled after which other state-
ment instances. The proximity constraints determine which
statement instances should be scheduled as close as possible
to which other statement instances. The coincidence con-
straints determine which pairs of statement instances should
be scheduled together by as many of the outer members in
a band as possible. The coincidence constraints also de-
termine whether a band member is marked coincident, i.e.,
parallelizable. The main difference between proximity con-
straints and coincidence constraints is that the former care
about the distances between pairs of statement instances,
while the later only care about whether these distances are
zero or not. Since a user may only care about some pairs
of instances being scheduled together and not about them
being scheduled close to each other when they cannot be
scheduled together, it can be useful in some cases to add
some dependences to the coincidence constraints, but not to
the proximity constraints. Similarly, because of the effect
on the coincident property, it may be equally useful to add
some dependences to the proximity constraints, but not to
the coincidence constraints. These two cases will be illus-
trated in Section 3.3.

A band is constructed one member at a time. In partic-
ular, in each iteration, an affine function is constructed for
each statement that is linearly independent of all previously
computed members in the band as well as all members of
outer bands. Furthermore, the affine function is constructed
such that it respects all the validity constraints, meaning
that the second element in a pair of elements is assigned
a value that is greater than or equal to the value assigned
to the first element, and such that the largest differences
between these values over all the proximity dependences is
minimized. If there are any coincidence constraints, then
this difference is initially set to zero over all the coincidence
constraints. If this fails to produce a solution, then the
coincidence constraints are dropped for the purpose of con-
structing the current band and another attempt is made
at constructing the next affine function. Once a band is
completed, i.e., when no more such affine functions can be
found, all dependences that are scheduled apart by the band
are removed. That is, only those pairs of elements are kept
that are assigned the same value by the entire band. If
the construction of a band fails for whatever reason, then a
single-member band is constructed that covers as many de-
pendences as possible by applying one step of a Feautrier-like
scheduler (Feautrier 1992). When a sufficient total number
of band members have been computed (greater than or equal
to the dimension of the instance set restricted to each state-
ment), any remaining validity dependences are handled by
topologically sorting the statements according to those de-
pendences.

When live-range reordering is disabled, PPCG uses the union
of the flow and the false dependences as validity, proximity
and coincidence constraints.

2.5 Permutability
Since the members in a band are computed with respect

to the same set of (validity) dependences, they are fully per-
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mutable. The band can therefore also be tiled. As explained
above, the false dependences (which are included in the va-
lidity dependences) ensure that live-ranges will not overlap.
However, in case of memory reuse in the input program,
these false dependences essentially enforce a serialization of
the corresponding live-ranges such that no (non-trivial) per-
mutable bands can be constructed. While sufficient for con-
structing a valid schedule, this serialization is by no means
necessary.

Baghdadi, Cohen, et al. (2013) propose a permutability
criterion that essentially allows live-ranges to be arbitrarily
reordered within a band as long as those live-ranges are local
to the band, where a live-range is considered to be local to a
band if both elements in the live-range are assigned the same
values by the members of the band. In particular, an anti-
dependence can be ignored if it only serves to keep pairs
of live-ranges apart that are both local to the band. The
live-ranges that an anti-dependence is meant to keep apart
are called adjacent to the anti-dependence. That is, a live-
range and an anti-dependence are considered to be adjacent
to each other if the source of one is the sink of the other.
Consider, for example, a band with an identity schedule for
the statements in the first loop of the code in Listing 1,
i.e., { S1[i, j] → [i, j]; S2[i, j] → [i, j] }. All the live-ranges
in (5) of the form S1[i, j] → S2[i, j] are local to this band
because both sides are assigned the same values. The anti-
dependence S2[0, 1]→ S1[1, 0] is adjacent to the live-ranges
S1[0, 1] → S2[0, 1] and S1[1, 0] → S2[1, 0]. Since both these
live-ranges are local to the band, the anti-dependence can
be ignored. Note that in order to account for both changes
in the schedule and the permutations themselves, all anti-
dependences need to be considered and not only those that
are not transitively covered. That is the anti-dependences
of (7) need to be replaced by

{ S2[i, j]→ S1[i′, j′] : i + j = i′ + j′ ∧ i′ > i;

S2[i, j]→ S3[i′, j′] : i + j = i′ + j′;

S4[i, j]→ S3[i′, j′] : i + j = i′ + j′ ∧ i′ > i }.
(10)

Output dependences are usually covered by a pair of a
live-range and an anti-dependence and these can therefore
also be ignored. The only exceptions are those for which the
first write in the pair of writes has no corresponding reads
and those for which the value of the second write is still
live after the program fragment under consideration. In the
example, there are no output dependences of the first kind,
but all those output dependences where the second write is
live-out (9) are of the second kind, i.e.,

{ S2[i, j]→ S4[j, i];

S1[i, j]→ S3[i + j, 0]; S1[i, j]→ S3[n− 1, i + j − n + 1];

S3[i, j]→ S3[i + j, 0]; S3[i, j]→ S3[n− 1, i + j − n + 1] }.
(11)

Note that here as well transitively covered output depen-
dences should not be removed.

Baghdadi, Cohen, et al. (2013) apply their relaxed per-
mutability criterion after the construction of a schedule has
been computed that does take into account the false de-
pendences, by checking if the criterion allows nested bands
to be considered as a single combined band. The following
section explains how the criterion can be used during the
construction of the schedule.

3. LIVE-RANGE REORDERING
This section describes the contribution of this paper. The

concept of adjacency is first refined to tagged dependence
relations. Then a new type of schedule constraints is intro-
duced with corresponding changes to the scheduler that is
then finally used to perform live-range reordering in PPCG.

3.1 Adjacency
In Section 2.5, adjacency is defined in terms of (untagged)

live-ranges and (untagged) anti-dependences. However, an
anti-dependence induced by a read and a write in the pro-
gram is only meant to prevent an overwrite of the data ele-
ment that is accessed by both the read and the write. Ad-
jacency may therefore be refined to being defined in terms
of tagged live-ranges and tagged anti-dependences. For ex-
ample, an anti-dependence originating from the read of t

in statement S4 of Listing 1, e.g., S4[0, 1] → S3[1, 0], only
serves to protect the live-range S3[0, 1]→ S4[0, 1] on t from
overlapping with the live-range S3[1, 0] → S4[1, 0] on t and
not the live-range S2[1, 0]→ S4[0, 1] on C ending in the same
statement instance. Now, after fusion, the live-range on C

happens to be local to the band as well, but even if it had
not been local, it would not prevent the band from being
tilable. A refinement to pairs of statement instances and
reference identifiers is especially important when there may
be a large amount of accesses in a “statement”, in partic-
ular when this unit of execution contains several program
statements. If several array elements are accessed through
a reference, e.g., through a function call, then it may even
make sense to further refine adjacency to the actual array
elements that are being accessed. Note that Trifunovic and
Cohen (2010) take this accessed array element into account
when evaluating conflicts between live-ranges.

3.2 Conditional Validity Constraints
In order to support live-range reordering, the scheduler

is extended to support an additional type of schedule con-
straints called conditional validity constraints. Unlike the
other schedule constraints, a conditional validity constraint
does not consist of a single binary relation, but of two bi-
nary relations, the condition and the conditioned validity
constraint. These two relations may be either both tagged
or both untagged. The tags, if present, are completely arbi-
trary. That is, they may be reference identifiers as in Sec-
tion 2.2, but they may also represent accessed array elements
as suggested in Section 3.1 or even something else entirely.

The meaning of a conditional validity constraint is as fol-
lows. If a given band does not assign the same values to
domain i and range j of an element of the condition rela-
tion, then any element of the conditioned validity constraint
relation that has j as domain or i as range (i.e., that is ad-
jacent to the element i→ j) needs to be treated as a regular
validity constraint. That is, the band needs to either make
the conditions local or it needs to satisfy the correspond-
ing conditioned validity constraints. The tags, if present,
are only used to determine which elements of the condition
relation are adjacent to which elements of the conditioned
validity constraint relation. That is, they are ignored for the
purpose of evaluating the band members.

Clearly, the intended use of conditional validity constraints
in case of live-range reordering is for the conditions to be set
to the live-ranges and the conditioned validity constraints to
be set to the anti-dependences. In the running example, the
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1 Coincidence ← true
2 while band not full-dimensional do
3 ConstructAffineScheduleFunction(Coincidence)
4 if no solution then
5 if Coincidence then
6 Coincidence ← false
7 continue

8 else
9 break

10 add schedule function to band
11 V ← violated conditioned validity constraints
12 C ← condition constraints adjacent to V
13 L ← domain and range of C elements co-scheduled
14 mark C as local
15 if not L then
16 clear current band
17 Coincidence ← true

18 if band is empty then
19 return Feautrier()

20 return current band

Algorithm 1: Schedule band construction

live-ranges of (5) would be used as the conditions while the
anti-dependences of (10) would be used as the conditioned
validity constraints. This ensures that a live-range is ei-
ther local to the band being constructed or that all adjacent
anti-dependences are satisfied. In PPCG, the tagged versions
of these dependences are used. The details are explained in
Section 3.3 below.

The changes required to the scheduling procedure of Sec-
tion 2.4 are relatively minor. During the construction of
a band, the conditional validity constraints are initially ig-
nored. Each time a band member has been computed, the
conditioned validity constraints are checked for violations.
If there are any, then the adjacent elements of the condition
relation are forced to be local. That is, domain and range
of these elements are required to be assigned the same value
by any subsequent members in the band. If, furthermore,
these pairs of elements are not assigned the same values by
the current member or any previously computed member
of the band, then the computation of the band is restarted
from scratch. The only difference with the previous attempt
to compute a band is that all the elements of the condition
relation that were forced to be local, remain in this state. In
particular, if the coincidence constraints had been dropped
during the current attempt to compute a band, then they are
reconsidered in the next attempt. In practice, it is not indi-
vidual elements of the condition constraint that are marked
local, but entire groups satisfying the same conjunction of
constraints. Since there are only a finite number of such
groups and since each reset marks at least one additional
group as local, the process is guaranteed to terminate. Al-
gorithm 1 shows a schematic overview of the schedule band
construction algorithm. The code from Line 11 until Line 17
deals with conditional validity constraints.

If the scheduler needs to resort to a step of the Feautrier-
like scheduler, then the conditioned validity constraints are
treated in the same way as regular validity constraints dur-
ing this step.

3.3 Live-range Reordering
Essentially, in order to enable live-range reordering, the

false dependences need to be removed from the validity con-
straints and replaced by conditioned validity constraints with
the live-ranges as conditions. However, by its very nature,
live-range reordering may change the order in which live-
ranges are executed. As explained in Section 2.5, this means
that the user can no longer assume that transitively cov-
ered dependences remain covered if any link in the chain of
covering dependences is a live-range. In other words, the
conditioned validity constraints need to include the full set
of anti-dependences. Care also needs to taken with respect
to the output dependences and the coincidence constraints.
This section describes in some detail how these issues are
handled in PPCG.

When live-range reordering is enabled, PPCG computes
tagged flow dependences (i.e., tagged live-ranges), false de-
pendences and live-out accesses as before. In addition, it
also computes order dependences and forced dependences,
as explained below. (There is a minor difference in how
“independences” (Verdoolaege 2015) are taken into account
during the computation of the flow dependences, but this is
beyond the scope of the present paper.)

The (tagged) order dependences will be used to prevent
live-ranges from overlapping. They are computed by tak-
ing as sinks the tagged may-writes and as sources the union
of the tagged may-read and the (tagged) unmatched writes.
The latter are the writes that do not appear in the domain
of the tagged flow dependences. That is, the order depen-
dences contain all anti-dependences as well as all output
dependences that are not covered by a combination of a
live-range and an anti-dependence.

The forced dependences consist of all the validity depen-
dences (other than the live-ranges themselves) that should
be enforced even with live-range reordering enabled. These
consist of two parts, “external” false dependences and or-
der dependences between flow dependence sources with the
same sink. The external false dependences are those that
ensure that the live-in accesses remain live-in and similarly
for the live-out accesses. They are computed using two ap-
plications of the dependence analysis procedure, one with
as may-sources the live-in accesses and as sinks the may-
writes and one with as sinks the live-out accesses and as
may-sources the may-writes. The resulting dependences en-
sure that no may-write gets moved before a live-in access or
after a live-out access to the same memory element.

The order dependences between flow dependence sources
with the same sink are needed to ensure that all potential
sources of a given sink are executed in the same order as in
the input program. This is needed because it is not clear at
compile-time which of these potential sources will write the
value that is read by the sink and this value should not be
overwritten by a value that was written beforehand in the
input program. These order dependence are computed us-
ing a final application of the dependence analysis procedure.
In this application, the may-sources and the sinks are set to
the same relation and it is one that has the flow dependence
sources as domain and that “accesses” a pair that consists of
one of the corresponding flow dependence sinks and an array
element accessed by the flow dependence source. The result-
ing dependences are then pairs of flow dependence sources
that share a combination of sink and accessed array element.

All the dependences computed above are used in the sched-
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ule constraints as follows. The validity constraints are set
to the union of the flow and the forced dependences. The
proximity constraints are set to the union of the flow and the
false dependences. The coincidence constraints are set to the
union of the flow dependences, the forced dependences and
the order dependences that are derived from array accesses.
The conditions of the conditional validity constraints are set
to the tagged flow dependences, while its conditioned valid-
ity constraints are set to the entire set of tagged order de-
pendences. In principle, the entire set of order dependences
would have to be added to the coincidence constraints as
well, but PPCG has special support for privatizing scalars.
There is no such support at this point for privatizing arrays,
which is why their order dependences are still added to the
coincidence constraints.

Summarizing the validity of the approach, the live-ranges
are preserved by ensuring that no other write gets sched-
uled between the write w and the read r of a live-range. If
only the write or the read is part of the program fragment,
then the external false dependences take care of this. Oth-
erwise, a second write w′ that is executed before the write
in the original program is prevented from moving between
the write and the read as follows. If there are other reads in
between the two writes, then w′ forms a live-range with one
of these reads, which in turn has an anti-dependence with
w. The conditional validity constraints ensure that either
the two live-ranges are local or that the anti-dependence is
satisfied. If there are no reads in between, then w′ is either
unmatched or it also forms a live-range with r. The first case
is taken care of by the order dependences, the second by the
order dependences between flow dependence sources. A sec-
ond write w′ that is executed after the read in the original
program is prevented from moving between the write and
the read because if forms an anti-dependence with the read.

4. EXAMPLES

4.1 Running Example
Let us first consider the example code in Listing 1. Run-

ning PPCG (version ppcg-0.04-26-gf956ffe) with the op-
tions --target=c --autodetect --tile produces the code
in Listing 2 (with some white-space editing). The corre-
sponding schedule (prior to tiling) is

{ S1[i, j]→ [j, i]; S2[i, j]→ [j, i];

S3[i, j]→ [i, j]; S4[i, j]→ [i, j] },
(12)

with a topological sort of the statements inside this band
as follows: S1, S2, S3, S4. The corresponding dependence
distances of the flow dependences in (5) are { (0, 0) }. The
--autodetect option is needed to make pet consider the en-
tire function body, allowing it to add kills to t. This in turn
allows PPCG to remove the accesses to t from the live-out
accesses as explained near the end of Section 2.3. Without
this option, the scheduler needs to ensure that the circled
S3 instances on the right of Figure 1 remain the last to ac-
cess the corresponding element of t, requiring an additional
skewing and resulting in a schedule of the form

{ S1[i, j]→ [j, i + j]; S2[i, j]→ [j, i + j];

S3[i, j]→ [i, i + j]; S4[i, j]→ [i, i + j] }.
(13)

Note that this schedule still allows the two loop nests to be
fused completely. That is, the dependence distances over

the flow dependences are still { (0, 0) }. However, some of
the initial tiles are no longer full tiles.

Using polycc from Pluto+ (version 0.11.3-238-gf4d02e5)
with options --pet --maxfuse --tile results in the sched-
ule

{ S1[i, j]→ [i + j, i]; S2[i, j]→ [i + j, i];

S3[i, j]→ [i + j, i + n]; S4[i, j]→ [i + j, i + n] }
(14)

prior to tiling. Note that this schedule shifts the second loop
nest beyond the first loop nest in the inner dimension, such
that the executions of the two loop nests merely alternate,
but do not overlap. In particular, the dependence distances
over the flow dependences are now { (0, x) : 0 ≤ x < 2n }.
Reevaluating this schedule using the criterion of Baghdadi,
Cohen, et al. (2013) does not have any effect because the
schedule is already tilable. As already mentioned in Sec-
tion 1, the technique of Mehta (2014, Chapter 5) would
also not have any effect since the dependence pattern does
not fit the special case it handles. Running PPCG with the
--no-live-range-reordering option results in the schedule

{ S1[i, j]→ [i + j,−j]; S2[i, j]→ [i + j,−j];
S3[i, j]→ [i + j, i]; S4[i, j]→ [i + j, i] }

(15)

prior to tiling, with dependence distances { (0, x) : 0 ≤ x ≤
2n− 2 ∧ x mod 2 = 0 }.

Consider now an input program that is identical to the
code in Listing 1, except that the t array has been replaced
by a scalar. In this case, PPCG produces the schedule in (12)
(with or without --autodetect). polycc produces

{ S1[i, j]→ [i, j]; S2[i, j]→ [i, j];

S3[i, j]→ [i + n, j]; S4[i, j]→ [i + n, j] },
(16)

with dependence distances { (0, 0); (x, n− x) : 0 < x < 2n }.
That is, it essentially produces the original schedule and
refuses to tile the two loop nests (due to the false depen-
dences). Reevaluating this schedule using the criterion of
Baghdadi, Cohen, et al. (2013) would turn the schedule
above into a permutable band, which would allow tiling the
band, but the two loop nests would still not be effectively
fused. The technique of Mehta (2014, Chapter 5) would al-
low effective fusion, but only at the outer level and not at
the inner level.

4.2 Example from Mehta (2014)
Consider now the example program of Mehta (2014, Fig-

ure 5.4 (a)), reproduced in Listing 3, except that the lower
bound on the k1-loop has been changed from 0 to 1 to avoid
an out-of-bounds access in statement S2. Mehta (2014, Fig-
ure 5.4 (c)) shows that his technique is only able to fuse the
outer two loops of these two loop nests. PPCG (with the same
options as before), on the other hand, is capable of fusing
all three loops with schedule

{ S1[i, j, k]→ [i, j, k]; S2[i, j, k]→ [i, j, k];

S3[i, j, k]→ [i, j, k];

S4[i, j, k]→ [i, j, k + 1]; S5[i, j, k]→ [i, j, k + 1] }
(17)

and internal topological sort of the statements: S1, S2, S3,
S4, S5. Note that if the resulting fused loop is taken as input,
then the same technique is also capable of distributing this
loop (depending on the optimization criteria) to produce the
code in Listing 3. When using basic block clustering, such
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void foo(int Nx, int Ny , int Nz,

int a[restrict static Nx][Ny][Nz],

int x[restrict static Nx][Ny][Nz],

int rho[restrict static Nx][Ny][Nz])

{

int a0, am1;

for (int i1 = 0; i1 < Nx; i1++) {

for (int j1 = 0; j1 < Ny; j1++) {

for (int k1 = 1; k1 < Nz; k1++) {

S1: a0 = a[i1][j1][k1];

S2: am1 = a[i1][j1][k1 -1];

S3: x[i1][j1][k1] = a0 + am1;

}

}

}

for (int i2 = 0; i2 < Nx; i2++) {

for (int j2 = 0; j2 < Ny; j2++) {

for (int k2 = 0; k2 < Nz - 1; k2++) {

S4: a0 = a[i2][j2][k2];

S5: rho[i2][j2][k2] = a0 +

(x[i2][j2][k2+1] - x[i2][j2][k2]);

}

}

}

}

Listing 3: Example program from Mehta (2014, Fig-
ure 5.4 (a))

distribution would not be possible. On the original input,
polycc produces

{ S1[i, j, k]→ [i, j, k]; S2[i, j, k]→ [i, j, k];

S3[i, j, k]→ [i, j, k]; S4[i, j, k]→ [Nx + i, j, k + 1];

S5[i, j, k]→ [Nx + i, j, k + 1] },
(18)

i.e., no fusion, and also refuses to tile the loop nests. (Note
that Pluto+ does not appear to expose pet’s autodetect fea-
ture, such that the region of interest needs to be marked
with #pragmas first.)

4.3 Pencil programs
Live-range reordering has been very instrumental in the

experiments of Baghdadi, Beaugnon, et al. (2015). Almost
all of these inputs have assignments to scalars inside the loop
bodies. This means that without live-range reordering (or
some other means of dealing with the scalar induced false
dependences), the execution order would be completely seri-
alized, leaving PPCG no option but to generate (unoptimized)
CPU code for almost all the inputs, making an evaluation of
the generated OpenCL code impossible. Note that these in-
puts were either written by hand or converted automatically
from a DSL. In both cases, the use of temporary scalars was
the most natural way of writing or generating these inputs.
No attempt has been made to rewrite these inputs without
the use of temporary scalars.

Take, for example, the image processing benchmark suite
used by Baghdadi, Beaugnon, et al. (2015, Section IV.A).
Only one of these benchmarks does not have any assign-
ments to scalar values in the loop bodies. This means that
without live-range reordering support, PPCG would only be

Input member localized non-local reset
Listing 1 2 2 0 0
Listing 3 3 3 0 0
image 29 78 0 0
STAP 191 122 4 1

Table 1: Total number of band members computed,
number of groups of condition constraints marked
local, number of these groups that were not local
already and the number of band resets performed

able to translate this single benchmark to OpenCL. Note
that the benchmarks in this particular suite are fairly sim-
ple, consisting of a single perfectly nested loop nest each.
This means that the tiling criterion of Baghdadi, Cohen, et
al. (2013) could be applied directly to the input schedule. It
also means that the scheduler could simply ignore the false
dependences and still derive a valid schedule. This is illus-
trated to some extent in Table 1, where this benchmark suite
is called“image”. The table shows that although some condi-
tioned schedule constraints (i.e., order dependences) were vi-
olated, causing the corresponding condition constraints (i.e.,
live-ranges) to be forced to be local, all of these condition
constraints were local already up to that point. The same
holds for the examples from Listing 1 and Listing 3. Note
that the table does not show that those live-ranges would
also be local with respect to subsequently computed band
members had they not been forced to be local.

Some other inputs are considerably more complicated.
Consider, for example, the SpearDE (Lenormand and Edelin
2003) STAP benchmark used by Baghdadi, Beaugnon, et al.
(2015, Section IV.D). This benchmark consists of several re-
gions that need to be optimized. Some of these are very sim-
ple, not even requiring any groups of condition constraints
to be marked local, but some others are more complicated,
including one that requires a band that has already been
partially computed to be reset. In this latter case, simply
ignoring the false dependences would therefore clearly result
in an incorrect schedule. It should also be noted that the
performance improvements obtained on this benchmark are
partly due to loop fusion. That is, simply taking the original
schedule and detecting tilable (and parallelizable) loop nests
would not achieve the same results.

5. CONCLUSIONS
An approach has been presented for dealing with memory

reuse without serializing the successive uses of memory, but
also without increasing memory requirements and without
preventing loop distribution. The approach is generic and
relatively simple. It is based on a relaxed permutability cri-
terion, allowing live-ranges to be reordered by a schedule
band as long as they are local to that band, and it works
by forcing live-ranges to be local in a band whenever they
may end up getting reordered by that band. The processing
is entirely local to a band. In rare cases, a band may need
to be recomputed, possibly even several times, but no other
part of the schedule is affected. The approach has been pub-
licly available for more than a year and has been thoroughly
tested, but had not been described in detail before.
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