January 19, 2016 1/26

Live-Range Reordering

Sven Verdoolaege' Albert Cohen?

"Polly Labs and KU Leuven

2INRIA and Ecole Normale Supérieure

January 19, 2016

u]
o)
I
"
it
1

Outline

@ Introduction
@ Example
@ Schedule Constraints

e Live Range Reordering
@ Related Work
@ Scheduling
@ Relaxed Permutability Criterion
@ Conditional Validity Constraints

e Conclusion

Introduction

Outline

January 19, 2016

3/26
@ Introduction

@ Example

@ Schedule Constraints

Introduction Example January 19, 2016 4/26

Tiling Intuition

Assume reuse along rows and columns
—: execution order

Introduction

Tiling Intuition

Example

January 19, 2016

4/26

-

Assume reuse along rows and columns
—: execution order

Introduction

Tiling Intuition

Example

January 19, 2016

4/26

Assume reuse along rows and columns
—: execution order

DA

Introduction Example January 19, 2016 5/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[kI[j] * A[i]1[kI;
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)

Introduction Example January 19, 2016 5/26

Tiling Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;

for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];

}

C[il[j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)
After tiling:

for (int c® = 0; c® < m; c® += 32)
for (int cl1 = 0; cl < n; cl += 32)
for (int c2 = 0; c2 <= min(31, m - c® - 1); c2 += 1)
for (int c3 = 0; c3 <= min(31, n - cl - 1); c3 += 1) {

temp2 = 0;

for (int c4 = 0; c4 < cO® + c2; c4 += 1) {
C[c4][cl + c3] += (Calpha * B[c® + c2][cl + c3]) * A[c® + c2][c!
temp2 += (B[c4][cl + c3] * A[cO + c2][c4]);

}
C[c® + c2][cl + c3] = (((beta * C[c® + c2][cl + c3]) + ((alpha * I

Introduction Schedule Constraints January 19, 2016

Schedule Constraints

Tiling is a form of restructuring loop transformation
= changes execution order of statement instances
= needs to preserve semantics
= impose schedule constraints of the form

statement instance a needs to be executed before instance b

6/26

Introduction Schedule Constraints January 19, 2016

Schedule Constraints

Tiling is a form of restructuring loop transformation
= changes execution order of statement instances
= needs to preserve semantics
= impose schedule constraints of the form

statement instance a needs to be executed before instance b

In particular, any statement instance writing a value should be executed
before any statement instance reading that value

= flow dependences aka live ranges

6/26

Introduction Schedule Constraints January 19, 2016

Schedule Constraints

Tiling is a form of restructuring loop transformation
= changes execution order of statement instances
= needs to preserve semantics
= impose schedule constraints of the form

statement instance a needs to be executed before instance b

In particular, any statement instance writing a value should be executed
before any statement instance reading that value

= flow dependences aka live ranges

Moreover, no write from before or after the live-range should be moved
inside the live-range

= traditionally,

» output dependences between two writes to same location

> anti-dependences between reads and subsequent writes to same
location

6/26

Introduction Schedule Constraints January 19, 2016 7126

Schedule Constraints Example

avg = 0.f;

for (i=0; i<N; ++1i)
avg += A[i];

avg /= N;

for (i=0; i<N; ++i) {
tmp = A[i] - avg;
A[i] = tmp;

3

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

3

u]
o)
I
"
it
1

Introduction Schedule Constraints January 19, 2016 7126

Schedule Constraints Example
avg = 0.f; flow
for (i=0; i<N; ++1)
avg += A[i];
avg /= N;
for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;
}
for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;
}

Introduction Schedule Constraints January 19, 2016 7126

Schedule Constraints Example

avg = 0.f; flow anti

for (i=0; i<N; ++1) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

}

Introduction Schedule Constraints January 19, 2016 8/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[kI[j] * A[i]1[kI;
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)

Introduction Schedule Constraints January 19, 2016 8/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j+v) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j]1 += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
}

(symm. c from PolyBench/C 4.1)

January 19, 2016 8/26

Introduction Schedule Constraints

Tiling Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j]1 += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];

}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;

}
(symm. c from PolyBench/C 4.1)
= anti-dependence between every instance of statement reading temp2
and every later instance writing to temp2
= serialized execution order

Introduction Schedule Constraints January 19, 2016 8/26

Tiling Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[k][j] * A[i][k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
}
(symm. c from PolyBench/C 4.1)

= anti-dependence between every instance of statement reading temp2
and every later instance writing to temp2
= serialized execution order

Such serializing anti-dependences are very common in practice
= occur in nearly all experiments of Baghdadi, Beaugnon, et al. (2015)
= no optimization possible without alternative to anti-dependences

Live Range Reordering

Outline

January 19, 2016 9/26

e Live Range Reordering
@ Related Work
@ Scheduling
@ Relaxed Permutability Criterion
@ Conditional Validity Constraints

Live Range Reordering Related Work

Alternatives to Anti-Dependences

@ Conversion to single assignment through expansion
(possibly followed by contraction)
+ full scheduling freedom
(—) may increase memory requirements

Note: choice also has effect on scheduling time

January 19, 2016

10/26

Live Range Reordering Related Work January 19, 2016 11/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j]1 += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
}

(symm. c from PolyBench/C 4.1)

Live Range Reordering Related Work January 19, 2016 11/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[kI[j] * A[i]1[kI;
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)

After expansion:
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2[1i]1[j]1[0] = O;
for (k = 0; k < i; k++) {
C[kI[j] += alpha*B[i][j] * A[i][k];
temp2[i][j][k+1] = temp[i][jI[k] + B[kI[jl * A[il[k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][jI*A[i][i] + alpha*temp2[i][j][i];

Live Range Reordering Related Work

Alternatives to Anti-Dependences

@ Conversion to single assignment through expansion
(possibly followed by contraction)
+ full scheduling freedom
(—) may increase memory requirements

Note: choice also has effect on scheduling time

January 19, 2016

12/26

Live Range Reordering Related Work

Alternatives to Anti-Dependences

@ Conversion to single assignment through expansion
(possibly followed by contraction)
+ full scheduling freedom
(—) may increase memory requirements
@ Cluster live-range statements
Note:

» in general, clustering is partial scheduling
» simple clusterings lead to coarse statements

+ no increase in memory requirements
— significant loss of scheduling freedom

Note: choice also has effect on scheduling time

January 19, 2016

12/26

Live Range Reordering Related Work January 19, 2016 13/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j]1 += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
}

(symm. c from PolyBench/C 4.1)

Live Range Reordering Related Work January 19, 2016 13/26

Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j]1 += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];

}
C[il[j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;

3
(symm. c from PolyBench/C 4.1)

Live Range Reordering Related Work

Alternatives to Anti-Dependences

@ Conversion to single assignment through expansion
(possibly followed by contraction)
+ full scheduling freedom
(—) may increase memory requirements
@ Cluster live-range statements
Note:

» in general, clustering is partial scheduling
» simple clusterings lead to coarse statements

+ no increase in memory requirements
— significant loss of scheduling freedom

Note: choice also has effect on scheduling time

January 19, 2016

14/26

Live Range Reordering Related Work

Alternatives to Anti-Dependences

@ Conversion to single assignment through expansion
(possibly followed by contraction)
+ full scheduling freedom
(—) may increase memory requirements
@ Cluster live-range statements
Note:
» in general, clustering is partial scheduling
» simple clusterings lead to coarse statements
+ no increase in memory requirements
— significant loss of scheduling freedom
@ Live-range reordering
4+ no increase in memory requirements
(-) limited loss of scheduling freedom

Note: choice also has effect on scheduling time

January 19, 2016

14/26

Live Range Reordering Related Work January 19, 2016 15/26

Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap

Live Range Reordering Related Work January 19, 2016 16/26

Schedule Constraints Example

avg = 0.f; flow anti

for (i=0; i<N; ++1) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

}

Live Range Reordering Related Work January 19, 2016 16/26

Schedule Constraints Example

avg = 0.f; flow anti

for (i=0; i<N; ++1) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

}

Live Range Reordering Related Work January 19, 2016 17/26

Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap

Live Range Reordering Related Work January 19, 2016 17/26

Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap

@ encode disjunction in scheduling problem (Baghdadi 2011)

@ relaxed permutability criterion (Baghdadi, Cohen, et al. 2013)
application by Baghdadi, Cohen, et al. (2013):

» use standard scheduling algorithm
> reinterpret results

@ variable liberalization (Mehta 2014)

» removes specific patterns of anti-dependences

@ conditional validity constraints

Live Range Reordering Related Work January 19, 2016 17/26

Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap

@ encode disjunction in scheduling problem (Baghdadi 2011)

@ relaxed permutability criterion (Baghdadi, Cohen, et al. 2013)
application by Baghdadi, Cohen, et al. (2013):

» use standard scheduling algorithm
> reinterpret results

@ variable liberalization (Mehta 2014)

» removes specific patterns of anti-dependences

@ conditional validity constraints

18/26

Live Range Reordering Scheduling January 19, 2016

Scheduling

A schedule determines the execution order of statement instances and
is expressed using a (recursive) combination of
@ affine functions f
f(i) < f(j) = i executed before j

o finite sequence Sy, So, ..., S,
ie Sk Nje S, Ak <k: = iexecuted before j

18/26

Live Range Reordering Scheduling January 19, 2016

Scheduling

A schedule determines the execution order of statement instances and
is expressed using a (recursive) combination of

@ affine functions f
f(i) < f(j) = i executed before j

o finite sequence S+, S»,..., S,
ie Sk Nje S, Ak <k: = iexecuted before j

Scheduling determines schedule compatible with schedule constraints

statement instance a needs to be executed before instance b

= there is some node with
f(a) <f(b) or ae Sy Abe Sy, Aki <k

= for all outer nodes
f(a) =f(b) or 3Jk:{a,b}c Sk

18/26

Live Range Reordering Scheduling January 19, 2016

Scheduling

A schedule determines the execution order of statement instances and
is expressed using a (recursive) combination of

@ affine functions f a.k.a. band members
f(i) < f(j) = i executed before j

o finite sequence S+, S»,..., S,
ie Sk Nje S, Ak <ks = iexecuted before j

Scheduling determines schedule compatible with schedule constraints

statement instance a needs to be executed before instance b

= there is some node with
f(a) <f(b) or ae Sy Abe Sy, Aki <k

= for all outer nodes
f(a) =f(b) or 3Jk:{a,b}c Sk

Band: nested sequence of affine functions that can be freely reordered

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; i < n; ++1i)

A:M[i, 0] = £O; .
for (i = 1; i < n; ++1i)
B:M[0, i] = gQ); ¢

for (i = 1; i < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; 1 < n; ++1i)

A:M[i, 0] = £O; .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = g(O); ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

Schedule Schedule constraints

A[i] - C[i, 0]
B[i] — [0,]
Cli.j] = Cfi+1.]]
Cli.j] = Cli.j+1]

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; 1 < n; ++1i)

A:M[i, 0] = £O; .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = gQ); ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

Schedule Schedule constraints
Ali] = ;B[] = 0; C[i.j] — i A[i] = C[i, 0]
B[i] — [0,]
Cli,j] = Cli+1,j]
Cli,j] = C[i,j + 1]

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] = £O; .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = gQ); ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

Schedule Schedule constraints
B[i] — C[0, i] 0-0
Cli,jj=Cli+1,j] i—-i+1
Cli,j]=Cli,j+1] i—i

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] = £O; .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = g(O); ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

SCthUBa ' - Schedule constraints
Ali] — 7; B[i] = 0;C[i,j] — i Afi] - C[i, 0] =i
A[i] - 0;B[i] = i;C[i,j] =) B[i] = C[0,] 0-0

Cli,jj=Cli+1,j] i—-i+1
C[i,j] —>C[i,j+1] i— i

Scheduling

January 19, 2016

19/26

Live Range Reordering

Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] = £O;

for (i = 1; 1 < n; ++1i)

B:M[0, i] = gO;

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)

C: M[il[j] = h(M[i-1][3], M[i][j-11);

Schedule
Ali] = i;B[i] = 0;C[i,j] > i
Ali] = 0;B[i] = i;C[i,j] = j

A[i] - C[i, 0]
B[i] — [0,]
Cli,f] = C[i+ 1,]]
C[i,f] = C[i,j+ 1]

Schedule constraints

[] [] [] ®
=i 0—-0
0—-0 i— i
f—=i+1 j—j
= j—oj+1

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] O3 .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = gQ; ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

Schedule L Schedule constraints
A[i] = i; B[] = 0; C[i,j] — i A[i] - C[i,0] =y 00
Ali] = 0;B[i] = i;C[i,j] —] B[i] — C[0, i] 050 i—i

Live Range Reordering Scheduling January 19, 2016 19/26

Scheduling Example 1

for (i = 1; 1 < n; ++1)
A:M[i, 0] = £Q0); o
for (i = 1; 1 < n; ++1i)
B:M[0, i] = gO; ¢
for (i = 1; 1 < n; ++1i) _
for (j = 1; j < n; ++j) i
C: M[il[j]l = h(M[i-11[31, M[i1[j-11); e
Schedulg ,) Schedule constraints
Ali] = i; B[] = 0; C[i.j] - i A[i] - C[i,0] =y 00
Ali] = 0;B[i] = i;C[i,j] = j B[i] — C[0, i] 050 i—i

|
CURRE RN

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

0; i < n; ++1i)
for (j = 0; j < n; ++j)
(t, A[Li1[i1);

u]
o)
I
"
it
1
<
¢

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
Schedule constraints
S[i, j] — S[i,j + 1]
S[li,n—1] = S[i+1,0]

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule

S[i,j] =i Schedule constraints
S[isj] = S[i.j +1]
S[i,n—1] - S[i+ 1,0]

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

S[i,j] = S[i,j+ 1] =i
S[li,n—=1] - S[i+1,0] i—>i+1

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule

S[i,j] = i, S[i,j] = J Schedule constraints
S[i,j] = S[i,j+ 1] i—i
S[li,n—=1] - S[i+1,0] i—>i+1

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule

S[i,j] = i, S[i,j] = J Schedule constraints
S[i,j] = S[i,j+ 1] i—i joj+1
Sli,n—=1] = S[i+1,0] i—»i+1 n-1-0

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] = i,S[i,j] = j Schedule constraints

S[i.j] = S[i,j + 1] [y jo o+
S[i,n—=1—>S[i+1,0] i—i+1

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

S[i,j] = S[i,j+ 1] =i
S[li,n—=1] - S[i+1,0] i—>i+1

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

S[i,j] = Sl[i,j+ 1] =i

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

| S[i,j] = Sl[i,j+ 1] =i

S[i.j] = J

Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

| S[i.j] = S[i.j + 1] i—i j—=j+1

S[i.j] = J

Live Range Reordering Relaxed Permutability Criterion January 19, 2016 21/26

Relaxed Permutability Criterion

@ Adjacency
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other

Live Range Reordering Relaxed Permutability Criterion January 19, 2016 21/26

Relaxed Permutability Criterion

@ Adjacency o
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other ¢ *
[)

Live Range Reordering Relaxed Permutability Criterion January 19, 2016 21/26

Relaxed Permutability Criterion

@ Adjacency ®
An anti-dependence is adjacent to a live-range

if the source of one is the sink of the other ° ® ° ®
[]
[] [] []

Live Range Reordering Relaxed Permutability Criterion January 19, 2016 21/26

Relaxed Permutability Criterion

@ Adjacency ®
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other

@ Local live-ranges
A live-range is local to a band if its source and
sink are assigned the same value by all affine o ° °
functions in the band

Live Range Reordering Relaxed Permutability Criterion January 19, 2016 21/26

Relaxed Permutability Criterion

@ Adjacency ®
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other

@ Local live-ranges
A live-range is local to a band if its source and
sink are assigned the same value by all affine o ° °
functions in the band

@ Relaxed permutability criterion ° ° ° °
If an anti-dependence is only adjacent to
live-ranges that are local to a band,
then the anti-dependence can be ignored
within the band

Live Range Reordering Relaxed Permutability Criterion January 19, 2016 21/26

Relaxed Permutability Criterion

@ Adjacency ®
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other

@ Local live-ranges
A live-range is local to a band if its source and
sink are assigned the same value by all affine o ° °
functions in the band

@ Relaxed permutability criterion ° ° o e
If an anti-dependence is only adjacent to
live-ranges that are local to a band,
then the anti-dependence can be ignored
within the band

Baghdadi, Cohen, et al. (2013) use criterion to reinterpret schedule
= combine nested sequences of bands after schedule construction

Live Range Reordering Conditional Validity Constraints January 19, 2016

Conditional Validity Constraints

@ A conditional validity constraint is a pair of
— condition — live-ranges
— conditioned validity constraint — anti-dependences

Live Range Reordering Conditional Validity Constraints January 19, 2016

Conditional Validity Constraints

@ A conditional validity constraint is a pair of
— condition — live-ranges
— conditioned validity constraint — anti-dependences

@ A conditional validity constraint is satisfied if

— source and sink of condition — local live-ranges
are assigned the same value,
or
— adjacent conditional validity — adjacent anti-dependences

constraints are satisfied

Live Range Reordering Conditional Validity Constraints January 19, 2016 22/26

Conditional Validity Constraints

@ A conditional validity constraint is a pair of
— condition — live-ranges
— conditioned validity constraint ~— anti-dependences

@ A conditional validity constraint is satisfied if

— source and sink of condition — local live-ranges
are assigned the same value,
or
— adjacent conditional validity — adjacent anti-dependences

constraints are satisfied
@ Conditional validity constraints handled during schedule construction

> ignore conditioned validity constraints during band member
computation

» compute violated conditioned validity constraints

» compute adjacent conditions

» force adjacent conditions to be local in subsequent band members

» recompute band if not local in current or previous members

23/26

Live Range Reordering

Schedule Constraints Example

avg =

0.

f;

for (i=0; i<N; ++1)
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {

tmp
A[i]
3

A[i] - avg;
tmp;

for (i=0; i<N; ++i) {

tmp
B[i]
3

A[N - 1 - 1i];
tmp ;

Conditional Validity Constraints

flow

January 19, 2016

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++i) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++1i) {
tmp = A[N - 1 - i];
B[i] = tmp;

¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) °

avg += A[i];
avg /= N;

for (i=0; i<N; ++i) {
tmp = A[i] - avg;

A[i] = tmp;
} [N [2N] [N) [N L N [N] L N J L N J
for (i=0; i<N; ++i) {
tmp:A[N_l_i];.. [N (N J [BN J [N [2N [N) [N
B[i] = tmp;

¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

23/26

Live Range Reordering Conditional Validity Constraints

Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++i) °
avg += A[i];

avg /= N; °

for (i=0; i<N; ++i) {
tmp = A[i] - avg; ®
A[i] = tmp;

} e o [N o o e o [BN

for (i=0; i<N; ++i) {
tmp:A[N—l—i]-" e o0 o0 oo
B[i] = tmp;

¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

January 19, 2016

anti
[] []
[N) [BN}
[I) [BN]

23/26

Live Range Reordering Conditional Validity Constraints

Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++1i) R
avg += A[i];

avg /= N; o

for (i=0; i<N; ++i) {
tmp = A[i] - avg; °
A[i] = tmp;

} oo 00 00 00 oo

for (i=0; i<N; ++i) {
tmp:A[N_l_i];oo oo o0 oo [)
B[i] = tmp;

d (SO[; s1[i]; s2[]}, { 3[1]; s4[il; S5[1]; s6[i]}

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

January 19, 2016

anti

23/26

Live Range Reordering Conditional Validity Constraints

Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++1i) R
avg += A[i];

avg /= N; o

for (i=0; i<N; ++i) {
tmp = A[i] - avg; °
A[i] = tmp;

} oo 00 00 00 oo

for (i=0; i<N; ++i) {
tmp:A[N_l_i];oo oo o0 oo [)
B[i] = tmp;

d (SO[; s1[i]; s2[]}, { 3[1]; s4[il; S5[1]; s6[i]}

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

January 19, 2016

anti

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example
avg = 0.f; flow anti

for (i=0; i<N; ++1)

[]
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) {
tmp = A[i] - avg;
A[i] = tmp;
} [N [2N] [N) [N L N [N] L N J L N J
for (i=0; i<N; ++i) {
tmp:A[N_l_i];.. [N (N J L N J [N [2N [N) [N
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

23/26

Live Range Reordering Conditional Validity Constraints

Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++1i) R
avg += A[i];

avg /= N; o

for (i=0; i<N; ++i) {
tmp = A[i] - avg; °
A[i] = tmp;

} oo 00 00 00 oo

for (i=0; i<N; ++i) {
tmp:A[N_l_i];oo oo o0 oo [)
B[i] = tmp;

d (SO[; s1[i]; s2[]}, { 3[1]; s4[il; S5[1]; s6[i]}

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

January 19, 2016

anti

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1)
avg += A[i]; I I
avg /= N; ° ° ° °
for (i=0; i<N; ++1i) { / /
tmp = A[i] - avg;
A[i] = tmp;
} [N [2N] [N) [N L N [N] L N J L N J
for (i=0; i<N; ++i) {
tmp:A[N_l_i];.. [N (N J L N J [N [2N [N) [N
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1)
avg += A[i]; I I

avg /= N; ° ° ° °
for (i=0; i<N; ++1i) { / /
tmp = A[i] - avg;

A[i] = tmp;
} [N [2N] [N) [N L N [N] L N J L N J
for (i=0; i<N; ++i) {
tmpzA[N—l—i];" [N (N J L N J [N [2N [N) [N
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;
}
for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

/

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° o
A[i] = tmp;

} [BN} [N) [BN} [BN}
for (i=0; i<N; ++i) { é%
[B} [I) [BN] [BN]

tmp = A[N - 1 - 1i];
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

/

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;

} [BN} [N) [BN} [BN}
for (i=0; i<N; ++i) { é%
[B} [I) [BN] [BN]

tmp = A[N - 1 - il;
B[i] = tmp;
! {SO[]; s1[i]; S2[] 1. { S3[1]; S4[i]; S5[i]; s6[1]}
- ,_
SO[] = 0; S1[i] — i;S2[] = N -1 S3[i] = i;S5[i] > N—=1—1;
|

{SO[L {S1[i]), £s2]]}

S4li] = i;S6[i] > N—1—1i

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp; 0 0 0 0
} L N [N] L N J L N J
for (i=0; i<N; ++i) { %
tmp = A[N - 1 - i]; G 5 5 5 o0 o060 00 oo
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

~
/ S3[i] = i;S5[] > N—=1—1;

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

S4li] = i;S6[i] > N—1—1i

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° o
Ali] = tmp; 0O 0 0 O
} []
for (i=0; i<N; ++i) { %
tmp = A[N - 1 - il; *§ o 0 0 *
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

~
/ S3[i] = i;S5[] > N—=1—1;

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

S4li] = i;S6[i] > N—1—1i

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° o
Ali] = tmp; 0O 0 0 O
} []
for (i=0; i<N; ++i) { %
tmp = A[N - 1 - il; *§ o 0 0 *
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

~
/ S3[i] = i;S5[] > N—=1—1;

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

S4li] = i;S6[i] > N—1—1i

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp; 0 0 0 0
} L N [N] L N J L N J
for (i=0; i<N; ++i) { %
tmp = A[N - 1 - i]; G 5 5 5 o0 o060 00 oo
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

~
/ S3[i] = i;S5[] > N—=1—1;

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[L {S1[i]), £s2]]}

S4li] = i;S6[i] > N—1—1i

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;

} [] [} [] [)
for (i=0; i<N; ++i) { é% «><.
[[] [] [}

tmp = A[N - 1 - 1i];
B[i] = tmp;
J (SO[]; S1[i]; S2[]}, { s3[1]; s4[i]; S5[i]; S6[i])
~
QL / S3[i] = i;S5[i] > N—=1—1;
SO[] — 0; S1[i] — i;S2[] = N -1
|

{SO[L {S1[i]), £s2]]}

S4li] = i;S6[i] > N—1—1i

Live Range Reordering Conditional Validity Constraints January 19, 2016 23/26

Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;

} [] [} [] [)
for (i=0; i<N; ++i) { é% «><.
[[] [] [}

tmp = A[N - 1 - 1i];
B[i] = tmp;
J (SO[]; S1[i]; S2[]}, { s3[1]; s4[i]; S5[i]; S6[i])
~
QL / S3[i] = i;S5[i] > N—=1—1;
SO[] — 0; S1[i] — i;S2[] = N -1
|

|
{SO[L {s1fil . {s2]]} {S3[1]), { s4[i] 1, {S5[1] }.{ s6[i] }

S4li] = i;S6[i] > N—1—1i

Live Range Reordering

Conditional Validity Constraints

January 19, 2016
@ External live-ranges

External Live-Ranges and Output Dependences

> live-in reads

= order before all (later) writes
> live-out writes

= order after all (earlier) reads

Live Range Reordering Conditional Validity Constraints January 19, 2016

External Live-Ranges and Output Dependences

@ External live-ranges
> live-in reads
= order before all (later) writes
> live-out writes
= order after all (earlier) reads
@ Output dependences
> there is a read between the two writes
= covered by live-range and anti-dependence
» the two writes form live-ranges with the same read
= preserve order of the writes
» first write does not appear in a live-range

= add output dependence to conditioned validity constraints

Conclusion

Outline

January 19, 2016

25/ 26

© cConclusion

Conclusion January 19, 2016 26/26

Conclusion

@ Enforcing anti-dependences limits scheduling freedom
@ Live-range reordering

» allows anti-dependences to be partly ignored
» without increasing memory requirements
» with limited loss of scheduling freedom

@ Conditional validity constraints

> allow live-range reordering during construction of schedule bands
> available in PPCG since version 0.02 (April 2014)
» crucial for experiments of Baghdadi, Beaugnon, et al. (2015)

Thanks to
@ European FP7 project CARP id. 287767
@ COPCAMS ARTEMIS project
@ Baghdadi, Beaugnon, et al. (2015)

January 19, 2016 1/2

References |

| Baghdadi, Riyadh (Sept. 2011). “Using live range non-interference
constraints to enable polyhedral loop transformations”. MA thesis.
University of Pierre et Marie Curie - Paris 6.

| Baghdadi, Riyadh, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Javed Absar,
Sven van Haastregt, Alexey Kravets, Anton Lokhmotov, Adam Betts,
Alastair F. Donaldson, Jeroen Ketema, Rébert David, and Elnar Hajiyev
(Oct. 2015). “PENCIL: A Platform-Neutral Compute Intermediate
Language for Accelerator Programming”. In: Proc. Parallel
Architectures and Compilation Techniques (PACT’15).

| Baghdadi, Riyadh, Albert Cohen, Sven Verdoolaege, and
Konrad Trifunovic (2013). “Improved loop tiling based on the removal of
spurious false dependences”. In: TACO 9.4, p. 52. por:
10.1145/2400682.2400711.

http://dx.doi.org/10.1145/2400682.2400711

January 19, 2016 2/2

References Il

| Mehta, Sanyam (Sept. 2014). “Scalable Compiler Optimizations for
Improving the Memory System Performance in Multi-and Many-core
Processors”. PhD thesis. University of Minnesota.

	Introduction
	Example
	Schedule Constraints

	Live Range Reordering
	Related Work
	Scheduling
	Relaxed Permutability Criterion
	Conditional Validity Constraints

	Conclusion
	Appendix

