January 19, 2016 1/26

Live-Range Reordering

Sven Verdoolaege' Albert Cohen?

"Polly Labs and KU Leuven

2INRIA and Ecole Normale Supérieure

January 19, 2016

u]
o)
I
"
it
1



Outline

@ Introduction
@ Example
@ Schedule Constraints

e Live Range Reordering
@ Related Work
@ Scheduling
@ Relaxed Permutability Criterion
@ Conditional Validity Constraints

e Conclusion



Introduction

Outline

January 19, 2016

3/26
@ Introduction

@ Example

@ Schedule Constraints




Introduction Example January 19, 2016 4/26

Tiling Intuition

Assume reuse along rows and columns
—: execution order
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Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[kI[j] * A[i]1[kI;
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)
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Tiling Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;

for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[k];
temp2 += B[k][j] * A[i][k];

}

C[il[j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)
After tiling:

for (int c® = 0; c® < m; c® += 32)
for (int cl1 = 0; cl < n; cl += 32)
for (int c2 = 0; c2 <= min(31, m - c® - 1); c2 += 1)
for (int c3 = 0; c3 <= min(31, n - cl - 1); c3 += 1) {

temp2 = 0;

for (int c4 = 0; c4 < cO® + c2; c4 += 1) {
C[c4][cl + c3] += (Calpha * B[c® + c2][cl + c3]) * A[c® + c2][c!
temp2 += (B[c4][cl + c3] * A[cO + c2][c4]);

}
C[c® + c2][cl + c3] = (((beta * C[c® + c2][cl + c3]) + ((alpha * I
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In particular, any statement instance writing a value should be executed
before any statement instance reading that value
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Schedule Constraints

Tiling is a form of restructuring loop transformation
= changes execution order of statement instances
= needs to preserve semantics
= impose schedule constraints of the form

statement instance a needs to be executed before instance b

In particular, any statement instance writing a value should be executed
before any statement instance reading that value

= flow dependences aka live ranges

Moreover, no write from before or after the live-range should be moved
inside the live-range

= traditionally,

» output dependences between two writes to same location

> anti-dependences between reads and subsequent writes to same
location

6/26
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Schedule Constraints Example

avg = 0.f;

for (i=0; i<N; ++1i)
avg += A[i];

avg /= N;

for (i=0; i<N; ++i) {
tmp = A[i] - avg;
A[i] = tmp;

3

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

3
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Schedule Constraints Example
avg = 0.f; flow
for (i=0; i<N; ++1)
avg += A[i];
avg /= N;
for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;
}
for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;
}
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Schedule Constraints Example

avg = 0.f; flow anti

for (i=0; i<N; ++1) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

}
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= anti-dependence between every instance of statement reading temp2
and every later instance writing to temp2
= serialized execution order
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Tiling Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[k][j] * A[i][k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
}
(symm. c from PolyBench/C 4.1)

= anti-dependence between every instance of statement reading temp2
and every later instance writing to temp2
= serialized execution order

Such serializing anti-dependences are very common in practice
= occur in nearly all experiments of Baghdadi, Beaugnon, et al. (2015)
= no optimization possible without alternative to anti-dependences
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e Live Range Reordering
@ Related Work
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@ Relaxed Permutability Criterion
@ Conditional Validity Constraints
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Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j]1 += alpha*B[i][j] * A[il[k];
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}
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Tiling Example

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2 = 0;
for (k = 0; k < i; k++) {
C[k1[j] += alpha*B[i][j] * A[il[kI;
temp2 += B[kI[j] * A[i]1[kI;
}
C[il[j] = beta*C[i][j] + alpha*B[i][j]1*A[i][i] + alpha*temp2;
3
(symm. c from PolyBench/C 4.1)

After expansion:
for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {
temp2[1i]1[j]1[0] = O;
for (k = 0; k < i; k++) {
C[kI[j] += alpha*B[i][j] * A[i][k];
temp2[i][j][k+1] = temp[i][jI[k] + B[kI[jl * A[il[k];
}
C[il[j] = beta*C[i][j] + alpha*B[i][jI*A[i][i] + alpha*temp2[i][j][i];
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Alternatives to Anti-Dependences

@ Conversion to single assignment through expansion
(possibly followed by contraction)
+ full scheduling freedom
(—) may increase memory requirements
@ Cluster live-range statements
Note:
» in general, clustering is partial scheduling
» simple clusterings lead to coarse statements
+ no increase in memory requirements
— significant loss of scheduling freedom
@ Live-range reordering
4+ no increase in memory requirements
(-) limited loss of scheduling freedom

Note: choice also has effect on scheduling time

January 19, 2016
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Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap
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Schedule Constraints Example

avg = 0.f; flow anti

for (i=0; i<N; ++1) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++i) {
tmp = A[N - 1 - i];
B[i] = tmp;

}
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Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap
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Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other
as long as they do not overlap

@ encode disjunction in scheduling problem (Baghdadi 2011)

@ relaxed permutability criterion (Baghdadi, Cohen, et al. 2013)
application by Baghdadi, Cohen, et al. (2013):

» use standard scheduling algorithm
> reinterpret results

@ variable liberalization (Mehta 2014)

» removes specific patterns of anti-dependences

@ conditional validity constraints
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Live-Range Reordering

Basic idea:
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as long as they do not overlap

@ encode disjunction in scheduling problem (Baghdadi 2011)

@ relaxed permutability criterion (Baghdadi, Cohen, et al. 2013)
application by Baghdadi, Cohen, et al. (2013):

» use standard scheduling algorithm
> reinterpret results

@ variable liberalization (Mehta 2014)

» removes specific patterns of anti-dependences

@ conditional validity constraints
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Scheduling

A schedule determines the execution order of statement instances and
is expressed using a (recursive) combination of
@ affine functions f
f(i) < f(j) = i executed before j

o finite sequence Sy, So, ..., S,
ie Sk Nje S, Ak <k: = iexecuted before j
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@ affine functions f
f(i) < f(j) = i executed before j

o finite sequence S+, S»,..., S,
ie Sk Nje S, Ak <k: = iexecuted before j

Scheduling determines schedule compatible with schedule constraints

statement instance a needs to be executed before instance b

= there is some node with
f(a) <f(b) or ae Sy Abe Sy, Aki <k

= for all outer nodes
f(a) =f(b) or 3Jk:{a,b}c Sk
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Scheduling

A schedule determines the execution order of statement instances and
is expressed using a (recursive) combination of

@ affine functions f a.k.a. band members
f(i) < f(j) = i executed before j

o finite sequence S+, S»,..., S,
ie Sk Nje S, Ak <ks = iexecuted before j

Scheduling determines schedule compatible with schedule constraints

statement instance a needs to be executed before instance b

= there is some node with
f(a) <f(b) or ae Sy Abe Sy, Aki <k

= for all outer nodes
f(a) =f(b) or 3Jk:{a,b}c Sk

Band: nested sequence of affine functions that can be freely reordered
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Scheduling Example 1

for (i = 1; i < n; ++1i)

A:M[i, 0] = £O; .
for (i = 1; i < n; ++1i)
B:M[0, i] = gQ); ¢

for (i = 1; i < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);
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Scheduling Example 1

for (i = 1; 1 < n; ++1i)

A:M[i, 0] = £O; .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = g(O); ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

Schedule Schedule constraints

A[i] - C[i, 0]
B[i] — [0, ]
Cli.j] = Cfi+1.]]
Cli.j] = Cli.j+1]
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for (i = 1; 1 < n; ++1)
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for (i = 1; 1 < n; ++1i)
B:M[0, i] = gQ); ¢
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Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] = £O; .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = g(O); ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
C: M[il[j] = hM[i-11[3]1, M[il[j-11);

SCthUBa ' - Schedule constraints
Ali] — 7; B[i] = 0;C[i,j] — i Afi] - C[i, 0] =i
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Live Range Reordering

Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] = £O;

for (i = 1; 1 < n; ++1i)

B:M[0, i] = gO;

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)

C: M[il[j] = h(M[i-1][3], M[i][j-11);

Schedule
Ali] = i;B[i] = 0;C[i,j] > i
Ali] = 0;B[i] = i;C[i,j] = j

A[i] - C[i, 0]
B[i] — [0, ]
Cli,f] = C[i+ 1,]]
C[i,f] = C[i,j+ 1]

Schedule constraints

[ ] [ ] [ ] ®
=i 0—-0
0—-0 i— i
f—=i+1 j—j
= j—oj+1
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Scheduling Example 1

for (i = 1; 1 < n; ++1)

A:M[i, 0] O3 .
for (i = 1; 1 < n; ++1i)
B:M[0, i] = gQ; ¢

for (i = 1; 1 < n; ++1i)
for (j = 1; j < n; ++j)
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Scheduling Example 1

for (i = 1; 1 < n; ++1)
A:M[i, 0] = £Q0); o
for (i = 1; 1 < n; ++1i)
B:M[0, i] = gO; ¢
for (i = 1; 1 < n; ++1i) _
for (j = 1; j < n; ++j) i
C: M[il[j]l = h(M[i-11[31, M[i1[j-11); e
Schedulg , ) Schedule constraints
Ali] = i; B[] = 0; C[i.j] - i A[i] - C[i,0] =y 00
Ali] = 0;B[i] = i;C[i,j] = j B[i] — C[0, i] 050 i—i
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Scheduling Example 2

0; i < n; ++1i)
for (j = 0; j < n; ++j)
(t, A[Li1[i1);
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
Schedule constraints
S[i, j] — S[i,j + 1]
S[li,n—1] = S[i+1,0]
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule

S[i,j] =i Schedule constraints
S[isj] = S[i.j +1]
S[i,n—1] - S[i+ 1,0]
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Scheduling Example 2

for (i = 0; i < n; ++1)
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Schedule
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule

S[i,j] = i, S[i,j] = J Schedule constraints
S[i,j] = S[i,j+ 1] i—i
S[li,n—=1] - S[i+1,0] i—>i+1
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule

S[i,j] = i, S[i,j] = J Schedule constraints
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
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Schedule
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Scheduling Example 2
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for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

S[i,j] = S[i,j+ 1] =i
S[li,n—=1] - S[i+1,0] i—>i+1



Live Range Reordering Scheduling January 19, 2016 20/26

Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

| S[i,j] = Sl[i,j+ 1] =i

S[i.j] = J
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Scheduling Example 2

for (i = 0; i < n; ++1)
for (j = 0; j < n; ++j)
S: t = f(t, A[Li]1[iD);

Schedule
S[i,j] =i Schedule constraints

| S[i.j] = S[i.j + 1] i—i j—=j+1

S[i.j] = J
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Relaxed Permutability Criterion

@ Adjacency
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other
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Relaxed Permutability Criterion

@ Adjacency o
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other ¢ *
[ )
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Relaxed Permutability Criterion

@ Adjacency ®
An anti-dependence is adjacent to a live-range

if the source of one is the sink of the other ° ® ° ®
[ ]
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Relaxed Permutability Criterion

@ Adjacency ®
An anti-dependence is adjacent to a live-range
if the source of one is the sink of the other

@ Local live-ranges
A live-range is local to a band if its source and
sink are assigned the same value by all affine o ° °
functions in the band

@ Relaxed permutability criterion ° ° o e
If an anti-dependence is only adjacent to
live-ranges that are local to a band,
then the anti-dependence can be ignored
within the band

Baghdadi, Cohen, et al. (2013) use criterion to reinterpret schedule
= combine nested sequences of bands after schedule construction
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Conditional Validity Constraints

@ A conditional validity constraint is a pair of
— condition — live-ranges
— conditioned validity constraint — anti-dependences

@ A conditional validity constraint is satisfied if

— source and sink of condition — local live-ranges
are assigned the same value,
or
— adjacent conditional validity — adjacent anti-dependences

constraints are satisfied
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Conditional Validity Constraints

@ A conditional validity constraint is a pair of
— condition — live-ranges
— conditioned validity constraint ~— anti-dependences

@ A conditional validity constraint is satisfied if

— source and sink of condition — local live-ranges
are assigned the same value,
or
— adjacent conditional validity — adjacent anti-dependences

constraints are satisfied
@ Conditional validity constraints handled during schedule construction

> ignore conditioned validity constraints during band member
computation

» compute violated conditioned validity constraints

» compute adjacent conditions

» force adjacent conditions to be local in subsequent band members

» recompute band if not local in current or previous members
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Schedule Constraints Example

avg =

0.

f;

for (i=0; i<N; ++1)
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {

tmp
A[i]
3

A[i] - avg;
tmp;

for (i=0; i<N; ++i) {

tmp
B[i]
3

A[N - 1 - 1i];
tmp ;

Conditional Validity Constraints

flow

January 19, 2016
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++i) °
avg += A[i];

avg /= N;

for (i=0; i<N; ++1i) {
tmp = A[i] - avg;
A[i] = tmp;

}

for (i=0; i<N; ++1i) {
tmp = A[N - 1 - i];
B[i] = tmp;

¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) °

avg += A[i];
avg /= N;

for (i=0; i<N; ++i) {
tmp = A[i] - avg;

A[i] = tmp;
} [ N [ 2N ] [ N ) [ N L N [ N ] L N J L N J
for (i=0; i<N; ++i) {
tmp:A[N_l_i];.. [ N (N J [ BN J [ N [ 2N [ N ) [ N
B[i] = tmp;

¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }
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Live Range Reordering Conditional Validity Constraints

Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++i) °
avg += A[i];

avg /= N; °

for (i=0; i<N; ++i) {
tmp = A[i] - avg; ®
A[i] = tmp;

} e o [ N o o e o [ BN

for (i=0; i<N; ++i) {
tmp:A[N—l—i]-" e o0 o0 oo
B[i] = tmp;

¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

January 19, 2016

anti
[ ] [ ]
[ N ) [ BN}
[ I ) [ BN ]
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Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++1i) R
avg += A[i];

avg /= N; o

for (i=0; i<N; ++i) {
tmp = A[i] - avg; °
A[i] = tmp;

} oo 00 00 00 oo

for (i=0; i<N; ++i) {
tmp:A[N_l_i];oo oo o0 oo [ )
B[i] = tmp;

d (SO[; s1[i]; s2[]}, { 3[1]; s4[il; S5[1]; s6[i]}

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

January 19, 2016
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Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++1i) R
avg += A[i];

avg /= N; o

for (i=0; i<N; ++i) {
tmp = A[i] - avg; °
A[i] = tmp;

} oo 00 00 00 oo

for (i=0; i<N; ++i) {
tmp:A[N_l_i];oo oo o0 oo [ )
B[i] = tmp;

d (SO[; s1[i]; s2[]}, { 3[1]; s4[il; S5[1]; s6[i]}

//////

SO[] = 0; S1[i] = i;S2[]] > N -1
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Schedule Constraints Example
avg = 0.f; flow anti

for (i=0; i<N; ++1)

[ ]
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) {
tmp = A[i] - avg;
A[i] = tmp;
} [ N [ 2N ] [ N ) [ N L N [ N ] L N J L N J
for (i=0; i<N; ++i) {
tmp:A[N_l_i];.. [ N (N J L N J [ N [ 2N [ N ) [ N
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

//////

SO[] = 0; S1[i] = i;S2[]] > N -1
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Schedule Constraints Example

avg = 0.f; flow

for (i=0; i<N; ++1i) R
avg += A[i];

avg /= N; o

for (i=0; i<N; ++i) {
tmp = A[i] - avg; °
A[i] = tmp;

} oo 00 00 00 oo

for (i=0; i<N; ++i) {
tmp:A[N_l_i];oo oo o0 oo [ )
B[i] = tmp;
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//////
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1)
avg += A[i]; I I
avg /= N; ° ° ° °
for (i=0; i<N; ++1i) { / /
tmp = A[i] - avg;
A[i] = tmp;
} [ N [ 2N ] [ N ) [ N L N [ N ] L N J L N J
for (i=0; i<N; ++i) {
tmp:A[N_l_i];.. [ N (N J L N J [ N [ 2N [ N ) [ N
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

//////

SO[] = 0; S1[i] = i;S2[]] > N -1
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1)
avg += A[i]; I I

avg /= N; ° ° ° °
for (i=0; i<N; ++1i) { / /
tmp = A[i] - avg;

A[i] = tmp;
} [ N [ 2N ] [ N ) [ N L N [ N ] L N J L N J
for (i=0; i<N; ++i) {
tmpzA[N—l—i];" [ N (N J L N J [ N [ 2N [ N ) [ N
B[i] = tmp;
¥ {SO[]; S1[i]; S2[] }, { S3[i]; s4[il; S5]i]; S6[i] }

//////

SO[] = 0; S1[i] = i;S2[]] > N -1

{SO[ L {S1[i] ), £s2]]}
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;
}
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tmp = A[N - 1 - i];
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° o
A[i] = tmp;

} [ BN} [ N ) [ BN} [ BN}
for (i=0; i<N; ++i) { é%
[ B} [ I ) [ BN ] [ BN ]

tmp = A[N - 1 - 1i];
B[i] = tmp;
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;

} [ BN} [ N ) [ BN} [ BN}
for (i=0; i<N; ++i) { é%
[ B} [ I ) [ BN ] [ BN ]

tmp = A[N - 1 - il;
B[i] = tmp;
! {SO[]; s1[i]; S2[] 1. { S3[1]; S4[i]; S5[i]; s6[1]}
- ,_
SO[] = 0; S1[i] — i;S2[] = N -1 S3[i] = i;S5[i] > N—=1—1;
|

{SO[ L {S1[i] ), £s2]]}

S4li] = i;S6[i] > N—1—1i
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
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Schedule Constraints Example

avg = 0.f; flow anti
for (i=0; i<N; ++1) ° °
avg += A[i];
avg /= N; ° ° ° ° ° ° ° °
for (i=0; i<N; ++1i) {
tmp = A[i] - avg; ° °
A[i] = tmp;
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[ [ ] [ ] [}
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External Live-Ranges and Output Dependences

@ External live-ranges
> live-in reads
= order before all (later) writes
> live-out writes
= order after all (earlier) reads
@ Output dependences
> there is a read between the two writes
= covered by live-range and anti-dependence
» the two writes form live-ranges with the same read
= preserve order of the writes
» first write does not appear in a live-range

= add output dependence to conditioned validity constraints
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Conclusion

@ Enforcing anti-dependences limits scheduling freedom
@ Live-range reordering

» allows anti-dependences to be partly ignored
» without increasing memory requirements
» with limited loss of scheduling freedom

@ Conditional validity constraints

> allow live-range reordering during construction of schedule bands
> available in PPCG since version 0.02 (April 2014)
» crucial for experiments of Baghdadi, Beaugnon, et al. (2015)

Thanks to
@ European FP7 project CARP id. 287767
@ COPCAMS ARTEMIS project
@ Baghdadi, Beaugnon, et al. (2015)
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