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ABSTRACT

SCoP detection is a search algorithm that a compiler for
imperative programming languages is using to find loops to
be represented and optimized in the polyhedral model.

We improved the current algorithms for SCoP detection
by operating on the natural loops tree, a higher level rep-
resentation of the CFG, in order to lower the overall com-
pilation time. The algorithm described in this paper has
been implemented in GCC 6.0 as a requirement to enable
by default the isl schedule optimizer at “-O3 -fprofile-use”.

We present evidence that the new SCoP detection algo-
rithm improves the overall compilation time: on a large
C++ application, the overall compilation time spent in SCoP
detection was reduced from 7% to 0.3%. Experimental re-
sults also show that GCC detects larger SCoPs on Poly-
bench: 6.09 loops per SCoP as compared to 2.59 loops per
SCoP with the previous algorithm.

1. INTRODUCTION

Loop optimizations are usually described for languages
like Fortran where loops and arrays are well-behaved syn-
tactic constructs. In contrast with Fortran, low-level lan-
guages like C or C++ do not offer similar ease in the anal-
ysis of loops, induction variables, memory references, and
data dependences, which are essential to all high-level loop
transforms. Compilers for low-level languages like GCC
and LLVM lower the statements and expressions into low-
level constructs common to all imperative programming lan-
guages: loops are represented by their control flow, i.e.,
jumps between basic blocks, memory references are lowered
into pointer accesses, and expressions are lowered into three-
address code.

From a practical point of view, optimization passes in
compilers like GCC and LLVM are implemented on this
low-level intermediate representation (IR) in order to avoid
duplicating analyses and optimizations for each supported
language, and in order to abstract away from the specifics
of each language: for instance, consider the semantics vari-
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ability of loop statements in Fortran, C, C++, Java, and
Ada languages, all currently compiled and optimized by the
middle end of GCC. The price paid for the generality of the
approach is extra compilation time spent in recognizing all
the high-level loop constructs from the low-level represen-
tation. This paper describes a fast algorithm to discover,
from a low-level representation, loops that can be handled
and optimized by a polyhedral compiler.

1.1 What are the boundaries of a SCoP?

Regions of code that can be handled in the polyhedral
model are usually called Static Control Parts [6| 3], abbre-
viated as SCoPs. Usually, SCoPs may only contain regular
control flow free of exceptions and other constructs that may
provoke changes in control flow such as conditional expres-
sions dependent on data (read from memory) or side effects
of function calls. As the compiler cannot easily handle such
constructs in the polyhedral model these statements are not
integrated in a SCoP, causing a split of the region containing
such difficult statements into two SCoPs.

To extend the applicability of polyhedral compilation, [2]
presents techniques to represent general conditions, enlarg-
ing the limits of SCoPs to full function bodies. We will not
consider these SCoP extension techniques in the current pa-
per, as we want a fast SCoP detection suitable to be turned
on by default at usual optimization levels, like “-02”, “-03”,
and “-Ofast”. For that, we need an algorithm that is able to
quickly converge on the largest SCoPs that can profitably
be transformed by a polyhedral compiler like isl [20] within
a reasonable amount of compilation time. Practically, on a
large number of compiled programs, we want close to zero
overhead for functions without loops and for functions with-
out any interesting loops to polyhedral compilation, and less
than ten percent of the overall compilation time when op-
timizing loops for paths shown as hot in the profile of the
compiled program.

1.2 High level overview of SCoP detection al-
gorithms

Existing implementations of SCoP detection based on low-
level representations are based on some form of representa-
tion of the control flow graph: the first implementation we
did for Graphite |[19] was based on the control flow graph
itself and the basic-block dominators tree. Then Polly im-
proved on this SCoP detection [10} 7] by working on an ab-
straction of the control-flow graph: the Single Entry Single
Exit (SESE) regions tree, a representation that integrates
the dominator tree with the control flow graph [12].
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In order to avoid constructing the regions tree, and to

help the SCoP detection algorithm converge faster on the
parts of code that matter to polyhedral compilation, we
use an abstraction of the control flow graph — the natural
loops tree [1] — together with dominance information [16].
In terms of compilation time, both representations come at
zero cost, as they are maintained intact and correct between
GCC’s middle-end optimization passes, lowering the com-
pilation cost for the most numerous functions compiled by
GCQC: functions with no loops, or with non-contiguous iso-
lated loops that cannot be profitably transformed in a poly-
hedral compilation.

1.3 Contributions of this paper

2.

. We present a new algorithm for SCoP detection that

improves the existing techniques of extracting SCoPs
from a low-level intermediate representation.

. We provide a comparative analysis of the earlier algo-

rithm implemented in Graphite, the SCoP detection as
implemented in LLVM-Polly, and the new SCoP detec-
tion that we implemented and integrated into GCC.

. We provide an analysis of the shape of SCoPs de-

tected by these three algorithms in terms of the num-
ber of SCoPs detected in benchmarks and the number
of loops per SCoP.

. We present results on compilation time improvements.

COMPARATIVE ANALYSIS OF SCoP DE-
TECTION ALGORITHMS

We first describe the SCoP detection algorithms imple-

mented originally in Graphite and in Polly, and then we
show how the new algorithm improves over these earlier im-
plementations. The common point of all these algorithms is
that they work on a low-level representation of the program.
Analysis passes are building more synthetic representations
as described in the next subsection.

2.1 Code analysis: from low-level to higher-

level representations

SCoP analysis orchestrates the call to several analysis

passes that will be described in this subsection. SCoP detec-
tion calls on demand each of the following analysis passes,
caching the results for the polyhedral translation pass, or
asking for different analysis results when the context changes,
for example, when a SCoP is extended upwards, a variable
that used to be considered a parameter of the SCoP could
be analyzable in the context of the larger extended SCoP.

The following analysis passes are both available in LLVM

and GCC. Graphite and Polly are using these analysis passes
to detect SCoPs, with differences in the order, composition,

and use of the passes.

The main difference that will be

described in detail in the paper is the use of a high level
representation of natural loops and irreducible strongly con-
nected components instead of a more raw representation of
the same information under the form of dominance or dom-
inance frontier.

Starting from a low-level representation of the program, a

compiler extracts information about specific aspects of the
program through program analysis:

The control flow graph (CFG) [1] is built on top of a
goto based intermediate representation: each node of
the CFG represents a basic block, i.e., the largest num-
ber of statements to be executed sequentially without
branches, and the edges of the CFG correspond to the
jumps between basic blocks.

The basic-block dominator (DOM) and post-dominator
(Post-DOM) trees |1, |16] represent the relations be-
tween basic blocks with respect to the control flow
properties of the program: a basic block A is said
to dominate another basic block B when all execu-
tion paths from the beginning of the function have to
pass through A before reaching B. Similarly, the post-
dominator information is obtained by inverting the di-
rection of all edges in the CFG and then asking the
same question with respect to the block ending the
function: A is said to post-dominate B when all paths
from the end of the function have to pass through A
to reach B in the edge-reversed CFG.

The Single Entry Single Exit (SESE) regions [12] are
obtained from the CFG and the DOM and Post-DOM
trees by identifying contiguous sequences of basic blocks
dominated and post-dominated by unique basic blocks.
In LLVM the computation of SESE regions tree is
based on iterated dominance frontier [16] that can be
quadratic in some cases. The SESE regions may con-
tain sub regions that have the SESE property: this
inclusion relation is represented as a tree.

Natural loops |1} |16] are detected as strongly connected
components (SCC) [18] on the CFG, loop nesting and
sequence are represented under the form of a tree: loop
nodes are linked with inner loop and next loop rela-
tions. The function body is represented as a loop at
the root of the loop tree, and its depth is zero. The
depth of inner loops is one more than their parent,
and sibling loops linked through next are at the same
depth. When the CFG contains an SCC that is not re-
ducible to a natural loop, for example two back-edges
pointing back to a same basic block, all the edges and
nodes of the CFG involved in that SCC are marked
with a flag IRREDUCIBLE_LOOP.

[17] contains the description of an algorithm to de-
tect natural loops in the presence of irreducible control
flow: the main objective is to detect reducible natural
loops and minimize the number and span of irreducible
regions, to confine the effect of irreducibility (i.e., in-
ability to optimize loops) to small regions. To detect
reducible regions nested within irreducible regions, and
to detect finer irreducible regions, they use the loop
nesting level information, an information that we also
use in our improved SCoP detection algorithm.

Static Single Assignment (SSA) form [4] inserts ex-
tra scalar variables such that each definition is unique.
The assignments to scalar variables are either the re-
sult of expressions, or the result of phi nodes placed at
control flow junctions in basic blocks that are target of
two or more control flow edges. Assignments from phi
nodes represent all the possible assignments consider-
ing the control flow graph. For example, the following
imperative program



a = 0;

b = 0;

loop:
a=a+1;
b=a*x 2;
if (a > 10)

goto end;

goto loop;

end:

c = b;

is translated to SSA by adding new variable names and
phi nodes that merge values at control-flow junctions:

a_0 = 0;
b_1 = 0;
loop:
a_2 = phi (a_0, a_4);
b_3 = phi (b_1, b_5);
a_4 = a2 + 1;
b_b =a_4 *x 2;
if (a_4 > 10)
goto end;
goto loop;
end:

c_6 = phi (b_5);

An abstract view of the SSA representation is a declar-
ative language [14] in which there are no assignments
or imperative language constructs: it only represents
the computation of scalar variables that are either the
result of arithmetic expressions, or the result of two
kinds of phi nodes. Loop-phi nodes define recursive
expressions: the first argument of a loop-phi node de-
fines the initial value, and the second argument defines
the recursion by using self-references. For example,

a
b

loop_1-phi (0, a + 1)
loop_1-phi (0, 2 * a)

a is defined as 0 on the first iteration, and uses a self-
reference expression a + 1 for all other iterations; b
is defined to have the value 0 in the first iteration,
followed by an expression that references another loop-
phi node 2 * a for all the subsequent iterations.

Loop close-phi nodes compute the last value defined in
a loop by a loop-phi node: they correspond to the min
operator of partial recursive functions. For example,

¢ = loop_1l-close-phi (b, a > 10)

c is defined as the value of b on the first iteration when
a becomes greater than 10: in this particular example,
the value of ¢ can be statically evaluated to 22.

The analysis of scalar evolutions (scev) [13] starts from
the abstraction of the SSA representation described
above by recognizing the evolution function of scalar
variables for loop phi nodes, loop close-phi nodes, and
derived scalar declarations. Loop phi nodes are de-
clared by an initial value and an expression containing
a self reference, when the self reference appears in an
addition expression together with a scalar value or an

invariant expression in the current loop, the scev rep-
resents a recursive function with linear or affine evo-
lution. Loop close-phi nodes are declared as the last
value computed by an expression that may variate in a
loop, the scev then represents a partial recursive func-
tion. All other scalar declarations can be expressed as
scevs derived from declarations of other recursive and
partial recursive functions. scev analysis would pro-
vide the following expressions for the above running
example:

a =90, +, 1}_1
b = {0, +, 2}_1
c = 22

The scev of a shows that its initial value is 0 and every
iteration the value linearly increments + by 1. Simi-
larly, the initial value of b is 0 and is incremented every
iteration by 2. Since c is evaluated outside the loop its
value does not change.

The analysis of the number of iterations |13] provides
a scev that represents the number of times a loop is
executed. The number of iterations is computed as the
scev of a close-phi node, or last value, of a scev starting
at zero and incremented by one at each iteration of the
loop. In the running example, the number of iterations
can be computed as the value of a when exiting the
loop, and could be statically evaluated to 11.

The number of iterations can also be computed by isl,
as we provide the scevs of all the variables involved in
each condition that we translate.

Pointer analysis detects base and access functions for
all memory locations that are accessed in the program.

Alias analysis disambiguates the base pointers and iden-
tifies which pointers may access the same memory.

Data reference analysis uses the results of pointer, alias,
and scev analyses to determine the memory access pat-
terns of arrays and pointers in loops. SCoP detection
uses the data reference analysis to determine whether
memory accesses are linear and suitable for polyhe-
dral representation. Frequently the compiler linearizes
the access functions of a multi-dimensional array into
base pointer plus offset, leading to access functions
that cannot be represented in the polyhedral model:
for example, in the following code

int N;
int A[10][N];
for (int i = 0; i < 10; i++)
for (int j = 0; j < N; j++)
A[i1[3] = 42;

the linear form of the array access A[i][j] is A + ¢ x
N x4+ 7%x4. As N is a parameter and ¢ is an induc-
tion variable, the polyhedral model cannot represent
i+ N. In order to represent such array accesses, the
SCoP detection needs to verify that the access func-
tion is actually that of a multi-dimensional array, and
thus it calls a delinearization pass over all memory ac-
cesses to retrieve the array multi-dimensions lost in the
translation from the front-end to the middle-end.



e The delinearization analysis |9} [8] reconstructs a high-
level representation of arrays under the form of Fortran
subscripts. The delinearization uses all the access func-
tions of all the data references in a loop, a region, or
a function, in order to make sure all memory accesses
follow the exact same pattern, i.e., the same subscript
dimensions are valid in all accesses.

As we have seen, gradually, these analyzes extract from
low-level constructs higher-level representations: later ana-
lyzes are based on earlier lower-level results, building up a
castle out of basic bricks. All this information synthesized by
the compiler allows the representation of diverse imperative
programming languages into a polyhedral form [6] contain-
ing a very high-level information of loop iteration domains,
memory accesses, and static and dynamic schedules.

To reduce compilation time, the SCoP detection algo-
rithms start from the lowest-level analysis results that are
commonly available and try to quickly discard parts of code
that either cannot be translated in the polyhedral model or
that cannot be profitably transformed. The compiler has to
quickly evaluate whether a part of the code is amenable to
translation in the polyhedral model before spending time in
computing higher-level costly information. For that reason,
information about the CFG structure, and the number of
loops per function are the first checks in the SCoP detection
algorithms, followed by a linear walk over all the statements
of the region of code to gather more costly information.

2.2 Former SCoP detection in Graphite

The first Graphite SCoP detection algorithm was imple-
mented on a very low-level representation of CFG and DOM
[19]. These representations were too restrictive for the scev
analysis to be able to determine the loops to be considered
as variant and the loops that have to be considered as in-
variant, in which the scev analysis should not analyze and
instantiate further scalar variables in order to consider them
as parameters [13]. This resulted in a very restrictive limita-
tion of SCoPs that had to have one full loop fully contained
in the SCoP: for instance a sequence of two loops with no
surrounding loop would not be represented as a SCoP and
the SCoP detection would split these two loops into two dis-
tinct SCoPs. This limitation has been removed in GCC 6.0
by the improvements to the SCoP detection described later
in this paper.

2.3 Polly SCoP detection on SESE regions

Polly’s SCoP detection is based on an analysis of SESE re-
gions [10]. The discovery of all the regions in a function may
be expensive, especially when the number of basic blocks in
its CFG is very large. In the current LLVM implementation
of SESE region discovery, the use of dominance frontiers
may have quadratic behavior in some cases. The algorithm
described in this paper may help in reducing the cost of the
SESE region analysis by replacing the use of dominance fron-
tiers with a simpler check based on the natural loops prop-
erties of depth levels and regions of the CFG corresponding
to irreducible loops, see Figure in Section

2.4 Why maximal SCoPs are not very useful

A maximal SCoP is the largest region satisfying all the
properties of a SCoP and which cannot be further extended.
This concept is currently used in Polly |10] and was used in
the previous SCoP detection of Graphite [19].

Figure 1: Maximal SCoP bounded by IfCondition
and EndIf

Since the main focus in the polyhedral model is the trans-
formation of loops, all code translated in the polyhedral
model that is not part of a loop, or part of a sequence
of loops, only constitutes an overhead in compilation time.
Finding and representing a maximal SCoP is not necessary
as it is possible to analyze all the surrounding conditions and
extract constraints on the parameters while translating the
IR to the polyhedral representation (after SCoP detection).

To illustrate our point, consider the maximal SCoP in
Figure{l} suppose that the region from IfCondition to En-
dIf satisfies the properties of a SCoP, and contains a single
loop composed of a LoopHeader and a LoopLatch. All the
other blocks of a maximal SCoP IfCondition, TrueRegion,
and EndIf add extra overhead to the polyhedral compila-
tion without real benefit in terms of adding opportunities for
loop optimizations. Having a SCoP only containing the loop
would prove more beneficial in terms of optimizations and
overall compilation time. The reader could argue that the
guard expression in IfCondition may bring valuable context
information on the domain parameters, which in turn can
have a significant impact on the efficiency of the generated
code. This is correct, however the compiler does not need
to extend the SCoP to contain the IfCondition to be able to
extract the same information about the parameters: indeed,
the constraints on parameters are extracted from outer con-
ditions, variable types, and everything else the compiler can
reason about the parameter variables defined outside the
SCoP.

The greedy approach of detecting maximal SCoPs is not
necessarily optimal in terms of compilation time, as well as
in terms of performance achieved: detecting smaller SCoPs
may prove beneficial to compilation time, as well as narrow-
ing the choices of possible optimizations that would again
lead to compilation time improvements.

We do not yet have a heuristic on how to limit the SCoPs
to only those regions containing loops that can be profitably
transformed by a polyhedral compilation, leading to perfor-
mance improvements. Our implementation of the SCoP de-
tection still tries to maximize the size of SCoPs, with the
exception that it will not detect regions of code without
loops. We think that SCoP detection is the right place to
implement heuristics based on the shape of the code to avoid
the high cost of the translation into the polyhedral represen-
tation.



// sese: { edge entry, edge exit }
// bb: basic block

// Recurse on the loop.inner.
sese build_scop_depth (sese s1, loop 1):
sl = build_scop_depth (s1, l.inner)
sese s2 = merge_sese (sl, get_sese (1))
if (s2 is an invalid scop)
{

// sl might be a valid scop, so return it

// and start analyzing from the adjacent loop.

build_scop_depth (invalid_sese, 1l.next)
return si
}
if (1 is an invalid scop in s2)
return build_scop_depth (invalid_sese, 1l.next)
return build_scop_breadth (s2, 1)

// Recurse on loop.next.
sese build_scop_breadth (sese s1, loop 1):
sese s2 = build_scop_depth (invalid_sese, l.next)
if (s2 is an invalid scop)
{
if (sl is a valid scop)
add_scop (s1)
return si
}
sese combined = merge_sese (sl, s2)
if (combined is a valid scop)
sl = combined
else
add_scop (s2)
if (sl is a valid scop)
add_scop (s1)
return si

Figure 2: Induction on the structure of natural loops

3. A NEW FASTER SCoP DETECTION

The new algorithm for SCoP detection works by induction
on the structure of the tree of natural loops as described
in Section{3.1] and listed in Figure{2] The traversal of the
loop tree tries to enlarge a region by attaching adjacent or
outer valid regions as described in Section{3.3] and listed in
Figuref3] Section{2.1]has a brief introduction to the notions
and properties used in this section; we refer our readers to
[16] for an in-depth discussion. The algorithm assumes the
following preconditions during the SCoP detection:

e The natural loops tree represents a reducible CFG:
all edges and basic blocks in an irreducible SCC are
tagged with an IRREDUCIBLE_LOOP flag.

e Dominance information is available.

e Mechanism to compute the evolution of scalars in a
region exists.

3.1 Induction on the structure of natural loops

The traversal of the natural loops tree starts at a loop-
nest at depth one (the loop at depth zero is the function
body). The code inside the loop and all its nested loops are
analyzed recursively for validity, as described in Section{3.2]
and function build_scop_depth in Figure{2] Once all the

sese merge_sese (sese a, sese b):
// ncd: the nearest common dominator
bb dom = ncd (a.entry, b.entry)
// ncpd: the nearest common post-dominator
bb pdom = ncpd (a.exit, b.exit)

edge entry = nearest_dom_with_single_entry (dom)
if (entry not found) return invalid_sese
edge exit = nearest_pdom_with_single_exit (pdom)
if (exit not found) return invalid_sese

// entry and exit should be in the same loop,
// and hence in the same sese.
if (loop_depth (entry.src.loop_father) !=
loop_depth (exit.dest.loop_father))
return invalid_sese

// edge should belong to reducible loop.
if (entry.flag == EDGE_IRREDUCIBLE_LOOP
or exit.flag == EDGE_IRREDUCIBLE_LOOP)
return invalid_sese

sese combined = new_sese (entry, exit)
if (entry does not dominate exit
or exit does not post-dominate entry
or combined is an invalid scop)
return invalid_sese
return combined

Figure 3: Merging two SESE regions

edge nearest_dom_with_single_entry (bb b):
if (b has 1 predecessor edge e)
return e
if (b has 2 predecessor edges el and e2)
{ // Check for a back-edge
if (el.src dominates e2.src) return el
if (e2.src dominates el.src) return e2
}
b = get_immediate_dominator (b)
return nearest_dom_with_single_entry (Db)

edge nearest_pdom_with_single_exit (bb b):
if (b has 1 successor edge e)
return e
if (b has 2 successor edges el and e2)
{ // Check for a back-edge
if (el.dest post dominates e2.dest)
return el
if (e2.dest post dominates el.dest)
return e2
}
b = get_immediate_post_dominator (b)
return nearest_pdom_with_single_exit (b)

Figure 4: Recursive computation of a single entry
dominator and a single exit post-dominator



validity constraints are satisfied, the loop-nest becomes a
valid SCoP and it is saved in a set of already found SCoPs.
While adding a new SCoP to the set of detected SCoPs, we
first remove any SCoP which either is a sub-SCoP (com-
pletely surrounded) or intersects (partially overlaps), with
the new one. The SCoP which only intersects with the new
one is completely lost and we do not try to recover the non-
intersecting portion for now. We would like to extend this
in future. The way algorithm runs, from bottom up for each
loop nest, any new SCoP to be added cannot be subsumed
by an existing SCoP in the set. This way, the SCoPs main-
tained in the set are mutually exclusive w.r.t. the regions
they span i.e., no SCoP intersects with another in the set of
detected SCoPs. It may be noted that the return value of
build_scop_depth in line 10 has not been captured. This is
because the algorithm goes two ways, first part sl is to be
returned while the algorithm continues from the next loop
at the same depth.

After a valid loop is found, the algorithm analyzes the next
loop (see build_scop_breadth in Figure7 a loop at same
depth and immediate sibling of the loop just analyzed. If an
adjacent loop is found to be a valid SCoP, we try to merge
both loop nests as described in Section and Figure
If a combined SESE has been found, which subsumes both
SCoPs, it is analyzed for validity. Even if we have already
analyzed the statements in the combined SESE in their re-
spective sub-SCoPs, we need to re-analyze them because the
scalar evolution of the data references change with the re-
gion of the program under analysis. If the combined SESE
represents a valid SCoP, then it is saved, after removing any
intersecting or sub-SCoPs, and further analysis is continued
to extend the SCoP again. If no such SESE could be found,
the algorithm keeps them as two separate SCoPs, and con-
tinues by trying to extend the second SCoP.

With the new approach it is faster to discard many invalid
loop-nests early. The algorithm analyzes statements which
matter most by starting the SCoP detection from a loop-tree
node (CFG node which begins from a loop header). This
allows discarding unrepresentable loops early in the SCoP-
detection process, thereby discarding SESE region surround-
ing them. This way, the number of instructions to be an-
alyzed for validity reduces to a minimal set. We start by
analyzing those statements which are inside a loop, because
validity of those statements is necessary for the validity of
loop. The statements outside the loop nest can be excluded
from the SESE if they are not valid. Since this algorithm
starts from the loop header, it excludes statements before
the first, and after the last loop in an SESE. Also, regions
without loops are excluded if they are not surrounded by
loops. SCoPs thus detected are not maximal, in contrast
with the example and discussion in Section{2.4]

3.2 When is an SESE region a valid SCoP?

An SESE region is regarded as a valid SCoP when it sat-
isfies the following conditions:

1. The entry basic block should have only one predecessor
and the exit basic block should have only one successor
(i.e., an SESE).

2. The entry should dominate the exit.
3. The exit should post-dominate the entry.
4. All the loops in the SESE should have single exits.

5. The scalar evolution of all memory accesses and con-
ditional expressions should be affine.

6. All the statements inside the region should be repre-
sentable in the polyhedral model. For example, labels,
pure function calls, assignments and comparison oper-
ations on integer types are allowed.

7. The induction variables of all the loops should be of (or
convertible to) signed integer type because isl might
generate negative values in the optimized expressions
which would have to be code-generated.

3.3 Merging SCoPs

We compose a larger SESE by merging two smaller SCoPs.
In order to merge two SESEs, as described in Figuref3} to
form a new SESE, we search the nearest common dominator
dom and the nearest common post-dominator pdom to form
a new region. After that we find the nearest dominator of
dom with single entry because we want to build an SESE.
We iterate on the dominator tree until we find such basic
block, as described in Figurefd If any of the dominators
has two predecessors but one of them is a back edge, then
that basic block also qualifies as a dominator with single en-
try. Similarly, we find nearest post-dominator of pdom with
single exit. For this, we iterate on the post-dominator tree
until we find such basic block. If any of the post-dominators
has two successors but one of them is a back edge, then that
basic block also qualifies as a post-dominator with single
exit.

After such entry and exit edges have been found, we check
whether the entry basic block of the region, which is the
destination of the entry edge entry.dest, dominates the exit
basic block of the region, which is the source basic block
of the exit edge ewit.src. Similarly, exit.src should post-
dominate the entry.dest. Also, the bounding basic blocks
— source basic block of the entry edge and the destination
basic block of exit edge — should belong to the same loop
depth. It is possible to continue extending the region by
finding edges satisfying both these conditions, although for
now the algorithm chooses to bail out. We would like to
extend this functionality in the future.

If all the previous constraints are satisfied, the algorithm
returns a larger SESE which subsumes both the SCoPs, oth-
erwise it returns an invalid SESE to inform that the merge
was unsuccessful.

3.4 Analysis of the SCoP detection algorithms

The new algorithm is linear in the number of loops as it
iterates on the tree of natural loops. The number of calls
to the dominators and post-dominators is also linear in the
number of loops.

The previous implementation of SCoP detection in Graphite
was linear in the number of CFG edges as it discovers regions
by walking on the CFG. In the implementation of Polly,
the use of iterated dominance frontiers to build the SESE
regions tree may lead to quadratic behavior in some cases
|16]. This can be expensive when the function body is large,
specially with aggressive inlining. The reader could argue
that the quadratic behavior of Polly’s SCoP detection will
not occur in practice, and could only happen on patholog-
ical constructs [5] (Figures 1 and 2.) As Polly requires the
analysis of dominance frontiers on all compiled functions, its



SCoP detection is exposed to all the pathological constructs
that could trigger the quadratic behavior.

The complexity of the validating function is still a point
that could be improved in all the SCoP detection algorithms:
every statement of the SESE has to be validated. When a
SCoP is extended upwards, either including in the larger
region sequential loops, or going from an inner loop to an
outer loop, the scev instantiation point changes, and thus
the scevs of inner or lower regions become invalid under the
new instantiation point, and have to be reanalyzed.

The new SCoP detection algorithm helps analyze fewer
statements in case of an invalid SCoP because it focuses
on the structure of the natural loops first rather than the
validity of each statement.

4. EXPERIMENTAL RESULTS

To compare against the existing SCoP detection algo-
rithms, we set up two experiments: first we look at a static
metric consisting in counting the number of SCoPs and the
number of loops in those SCoPs discovered on a set of bench-
marks known to contain loops that benefit from polyhedral
compilation. Then we evaluate how much time the compiler
spends on trying to find SCoPs containing meaningful loop
nests to be optimized in the polyhedral compilation on a
large code-base.

4.1 SCoP metrics on Polybench

To validate the impact of our changes to the Graphite
framework by replacing the old SCoP detection algorithm
with the new one, we evaluate the number of SCoPs and
number of loops per SCoP discovered on the Polybench [15]
in Table We also provide the same metrics for Polly, and
we intentionally do not provide conclusions based on these
metrics because a fair comparison on these metrics is dif-
ficult: the pass ordering and level in the pass pipeline at
which Graphite and Polly apply are very different, and so
the shapes of the CFG and natural loops tree on which the
SCoP detection applies are radically different.

Metric New | Old | Polly
SCoPs 34 189 30
Max loops/SCoP 17 8 11
Min loops/SCoP 2 1 2
SCoPs with min loops/SCoP 7 109 3
Loops in SCoPs 207 | 316 155
Loops/SCoP 6.09 | 2.59 | 5.17

Table 1: SCoP metrics on Polybench.

There were no regressions in Graphite while moving from
the old to the new SCoP detection because the difference:
316 — 207 = 109, corresponds to SCoPs with only one loop.
The improved algorithm for SCoP detection does allow for
the discovery of SCoPs with single loops, which could be
profitably transformed as the polyhedral model could expose
parallelism and vectorization opportunities. In our imple-
mentation we deliberately have chosen to discards all SCoPs
with less than 2 loops, a choice we will revisit when we will
have a reason to enable single loop SCoPs.

We also see that the new algorithm discovers larger SCoPs
on an average, i.e., from 2.59 to 6.09 loops per SCoP. This
is because, the new algorithm allows SESE without a sur-
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Figure 5: Speedup of improved SCoP detection on
Polybench.
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Figure 6: Overhead of the new and old SCoP detec-
tion on the overall compilation time when compiling
the code of GCC 6.0.

rounding loop to be a SCoP so that two adjacent outermost
loops can be a SCoP, which was not possible with the old al-
gorithm (Section. Now the largest SCoP discovered has
17 loops whereas, with the old SCoP detection the largest
SCoP only contained 8 loops.

4.2 Evaluation of compilation time overhead

The current infrastructure to measure the compilation
time in GCC isn’t precise enough to benchmark portions
of passes which are not dominating the overall compilation
time. On a recent x86_64 machine, the overall compilation
time spent in Graphite was a fraction of a second for each
benchmark in Polybench [15].

We used Valgrind to get more precise data on the number
of instructions executed by the SCoP detection algorithms.
The command used is:
$ CFLAGS="-0Ofast -fgraphite-identity"
$ valgrind --dsymutil=yes --tool=callgrind \

--dump-instr=yes cclplus $CFLAGS $file
$ callgrind_annotate --threshold=100 \
--inclusive=yes callgrind.out

The output of callgrind_annotate lists all the functions
in the execution of the program together with a count of
the number of instructions executed by the CPU. The op-
tion “~inclusive=yes” allows us to gather the total number
of instructions executed in a function and all the functions



called from it. We thus report the number of instructions of
the top-level functions of the old and new SCoP detectors,
respectively build_scops and build_scop_depth.

Table 2] presents the overall number of instructions exe-
cuted in the new and old SCoP detection on several bench-
marks: Polybench [15], a large C++ application Tramp3d-
v4 [11], and all the source files of GCC 6.0. Columns New
and Old report the number of instructions executed by the
old and new SCoP detectors of GCC; Speedup reports the
speedup between Old and New; Main reports the cumula-
tive number of instructions executed by the main function
of the GCC cclplus compiler; Old % and New % report
the overall compilation time overhead of the old and new
SCoP detection. On large applications, the speedup over
the old algorithm for SCoP detection is very important: on
Tramp3d-v4, the old SCoP detection accounted for 7.0%,
vs. 0.3% in the new SCoP detection. On Polybench there
is some slowdown corresponding to the detection of larger
SCoPs: every step in enlarging the SCoP may trigger extra
computations for scevs. The slowdowns only correspond to
benchmarks with loops that can be optimized by a polyhe-
dral compilation.

Figure reports the speedup in SCoP detection when
compiling the 32 files of Polybench, and Figure]f] presents
the ratio of how many instructions are used for the original
and improved SCoP detection implementations against the
overall number of instructions executed for the compilation
of the 578 files of the source code of GCC 6.0.

It may appear to the reader that the initial SCoP de-
tection had low enough overhead for industrial use, i.e., less
than 2% of the total compilation time. However, when look-
ing at Tablef2] we see that cumulatively over the large code-
base of GCC, the improvement of the new SCoP detection
results in an order of magnitude reduction: 1.5¢'® vs. 6.7¢®
number of instructions used for SCoP detection. Essentially,
in order to enable polyhedral optimization by default in an
industrial compiler, the SCoP detection should be as neutral
as possible, as it is the only part of a polyhedral compiler
that has to scan the complete program.

Benchmark Old New | Speedup | Main | Old % | New %
Polybench | 3.3¢% | 4.8e 0.7 2.5e10 1.4 1.9

Tramp3d-v4 | 1.8¢° | 6.2¢® 2.8 1.9¢" | 7.0 0.3
GCC 6.0 | 1.5¢'° | 6.7¢% | 22.6 | 6.1e"* | 0.24 0.01

Table 2: Overall number of instructions spent in
SCoP detection.

S. CONCLUSION AND FUTURE WORK

We have shown that our new algorithm of SCoP detec-
tion is faster in terms of compilation time and that it detects
larger SCoPs than the previous implementation in Graphite.
This stems from the fact that operating on a higher-level
program representation allows the algorithm to converge
faster on regions that cannot be represented in the poly-
hedral model.

The improvements in compilation time assure that en-
abling the polyhedral optimizations by default at common
optimization levels will not slow down the compilation time
for the majority of programs compiled by an industrial com-
piler: i.e., programs with no loops, or with sparse loops that
should not be translated into the polyhedral model.

While the new algorithm focuses only on detecting SCoPs
with relevant loops, it still tries to maximize the size of the
SCoP. This may lead to increased polyhedral compilation
time. We think that the SCoP detection should take a more
active role in driving the polyhedral optimizations by an-
alyzing the shape of the SCoPs and selecting appropriate
polyhedral optimizations.

Another way to improve the compilation time of an in-
dustrial polyhedral compiler, that is not discussed in this
paper, is by using the profile information collected during
an earlier execution of the program and made available to
the compiler during subsequent compilation: one could use
the profile information to tune the SCoP detection algorithm
to focus only on the hot paths of the program. We are also
investigating techniques to tune the amount of compilation
time allocated to the polyhedral optimizer (isl [20] in case
of gce).
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