SCoP Detection: A Fast Algorithm for Industrial
Compilers

Sebastian Pop and Aditya Kumar

SARC: Samsung Austin R&D Center

Jan 19, 2016

Polyhedral compilation in industrial compilers

» Goal: enable isl scheduler in GCC at -O3

Polyhedral compilation in industrial compilers

» Goal: enable isl scheduler in GCC at -O3

» search loops that can benefit from polyhedral compilation
» minimal overhead: search as fast as possible
> only use existing analysis information

> use the right abstract representation

What is a SCoP?

Regions of code that can be represented in the Polyhedral Model.
» SCoPs = Static Control Parts

What is a SCoP?

Regions of code that can be represented in the Polyhedral Model.
» SCoPs = Static Control Parts
» ACLs = Affine Control Loops
» PWACs = Parts With Affine Control

Step 1: accept natural loops

Natural loop
(S

J

a — X

[

b
maybe SCoP

Step 1: accept natural loops

Natural loop
(S

l

a — X

[

b
maybe SCoP

Nested loops
(S

-
\
b
/]
d C

maybe SCoP

Step 1: accept natural loops

Natural loop
(S

l

a — X

[

b
maybe SCoP

Nested loops
(S

-
\
b
/]
d C

maybe SCoP

Irreducible
C e

|]

—
bv‘\/a*)X

not a SCoP

Natural Loop Tree

int foo(int N)
{

int i, j, k;

for(i=0; i<N; ++i){//Loopl

stmtl;

for (j=0; j<N; ++j)//Loop?2
stmt2;

for (k=0; k<N; ++k)//Loop3
stmt3;

Natural Loop Tree

int foo(int N)
{

int i, j, k;

for(i=0; i<N; ++i){//Loopl

stmtl;

for (j=0; j<N; ++j)//Loop?2
stmt2;

for (k=0; k<N; ++k)//Loop3
stmt3;

Function

inner

=

inner

next
Loopy q::p

Step 2: check for side-effects

» function calls
> inline assembly

» volatile operations

Step 3: affine scalar evolutions

Linear

i0 = phi_11(0, i1)
// i0={0,+,1}_11
i1 = i0 + 1

// it={1,+,1}_11

maybe SCoP

Step 3: affine scalar evolutions

Linear

i0 = phi_11(0, i1)
// i0={0,+,1}_11
i1 = i0 + 1

// it={1,+,1}_11

maybe SCoP

Non-linear

j2 = phi_11(3, j3)

j3 j2 + it

/7 j2={3,+,{1,+,1F_11}_11

not an ACL: polynomial of degree 2

Step 3: affine scalar evolutions

Linear Non-linear

i0 = phi_11(0, i1) k4 = phi_12(4, k5)
// i0={0,+,1}_11 kb = k4 * 2

i1 = i0 + 1 // kd4d={4,*x,2}_12
/7 i1={1,+,1} 11 not an ACL: exponential
maybe SCoP

Non-linear

j2 = phi_11(3, j3)
j3 = j2 + it
/7 j2={3,+,{1,+,1} _11}_11

not an ACL: polynomial of degree 2

Step 3: affine scalar evolutions

Linear

i0 = phi_11(0, il)
// i0={0,+,1}_11
i1t = i0 + 1

// it={1,+,1}_11
maybe SCoP

Non-linear

j2 = phi_11(3, j3)

j3 j2 + it

/7 j2={3,+,{1,+,1F_11}_11

not an ACL: polynomial of degree 2

Non-linear

k4 = phi_12(4, k5)
kK5 = k4 * 2
// k4={4,%,2}_12

not an ACL: exponential

analyzed expressions

» branch conditions

> memory accesses

Step 4: delinearize memory access functions

Linear access functions
A[100*i + 400%j]
B[i]l[j]

can represent in isl

Step 4: delinearize memory access functions

Linear access functions

A[100*i + 400%j]
B[i]l[j]

can represent in isl

Non-linear access functions

Clix*il]
D[4*xN*xMxi + 4xMxj + 4xk]
E[4*i*N + 4%j]

cannot represent in isl

Step 4: delinearize memory access functions

Linear access functions

A[100*i + 400%j]
B[i][j]

can represent in isl

Non-linear access functions

Clix*il]
D[4*xN*xMxi + 4xMxj + 4xk]
E[4*i*N + 4%j]

cannot represent in isl

delinearization
> recognize array
multi-dimensions

» compute linear access
functions

Step 4: delinearize memory access functions

Linear access functions delinearization

A[100*i + 400%*j] > recognize array

B[i][j] multi-dimensions

can represent in isl » compute linear access
functions

Non-linear access functions delinearized access functions

ClLixil] int D[][N][M];
D[4xN*M*i + 4%M*j + 4x*k] D[i] [j1[k]

E[4*i*N + 4x%j]
int E[][N];
cannot represent in isl E[i]1[§]

can represent in isl

Overall picture: SCoP detection

Natural loops

’ no side-effects? ‘

|

’ affine branch conditions? ‘

I

’ affine memory accesses? ‘

Overall picture: SCoP detection

Natural loops Required analyses:

» natural loops tree

’ no side-effects? ‘ » (post-)dominators tree

l » alias analysis
’ affine branch conditions? ‘

I

’ affine memory accesses? ‘

> scalar evolution analysis

Detecting SCoPs by induction on Natural Loops Tree

» Start with a loop in the natural loops tree
rather than the root of the CFG

Detecting SCoPs by induction on Natural Loops Tree

» Start with a loop in the natural loops tree
rather than the root of the CFG

» Focus on structure of natural loops
before the validity of each statement

Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy

Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy

Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy

Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy

Example: Induction on Natural Loops Tree

DA 11/14

Other implementations of SCoP Detection

» Previous graphite SCoP detection based on CFG and DOM
(misses the structure of loops)

Other implementations of SCoP Detection

» Previous graphite SCoP detection based on CFG and DOM
(misses the structure of loops)

» Polly’s SCoP detection based on structure of SESE regions
(full function body analysis even without interesting loops)

Other implementations of SCoP Detection

» Previous graphite SCoP detection based on CFG and DOM
(misses the structure of loops)

» Polly’s SCoP detection based on structure of SESE regions
(full function body analysis even without interesting loops)

» Pet, Rose, other source-to-source compilers: SCoP detection
based on the AST of a specific programming language

Experimental Results

Compilation time overhead

Benchmark | Old % | New %
Polybench 1.4 1.9

Tramp3d-v4 7.0 0.3
GCC 6.0 0.24 0.01

SCoP Metrics on Polybench

SCoP Metric

Old

New

Polly

Loops/SCoP

2.59

6.09

5.17

% of overall compilation time

SCoP Detection Speedup

0.

o

0

2 z T
old SCoP detection +

-8 flew SCoP detection @

T T

0 50 100 150

200 250 300 350 400 450
Files of GCC 6.0

0 5

10

15

Files of Polybench

20 25

30

Conclusion and Future work

Conclusion
» New faster algorithm for SCoP detection

» Enable polyhedral optimization in industrial compilers

Future Work

» SCoP detection to drive polyhedral optimization
(avoid maximal SCoPs)

> Use profile data to guide and select polyhedral transforms

