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Polyhedral compilation in industrial compilers

» Goal: enable isl scheduler in GCC at -O3

» search loops that can benefit from polyhedral compilation
» minimal overhead: search as fast as possible
> only use existing analysis information

> use the right abstract representation



What is a SCoP?

Regions of code that can be represented in the Polyhedral Model.
» SCoPs = Static Control Parts



What is a SCoP?

Regions of code that can be represented in the Polyhedral Model.
» SCoPs = Static Control Parts
» ACLs = Affine Control Loops
» PWACs = Parts With Affine Control
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Natural Loop Tree

int foo(int N)
{

int i, j, k;

for(i=0; i<N; ++i){//Loopl

stmtl;

for (j=0; j<N; ++j)//Loop?2
stmt2;

for (k=0; k<N; ++k)//Loop3
stmt3;



Natural Loop Tree
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Step 2: check for side-effects

» function calls
> inline assembly

» volatile operations
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Step 3: affine scalar evolutions

Linear

i0 = phi_11(0, il)
// i0={0,+,1}_11
i1t = i0 + 1

// it={1,+,1}_11
maybe SCoP

Non-linear

j2 = phi_11(3, j3)

j3 j2 + it

/7 j2={3,+,{1,+,1F_11}_11

not an ACL: polynomial of degree 2

Non-linear

k4 = phi_12(4, k5)
kK5 = k4 * 2
// k4={4,%,2}_12

not an ACL: exponential

analyzed expressions

» branch conditions

> memory accesses
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Step 4: delinearize memory access functions

Linear access functions delinearization

A[100*i + 400%*j] > recognize array

B[i][j] multi-dimensions

can represent in isl » compute linear access
functions

Non-linear access functions delinearized access functions

ClLixil] int D[][N][M];
D[4xN*M*i + 4%M*j + 4x*k] D[i] [j1[k]

E[4*i*N + 4x%j]
int E[][N];
cannot represent in isl E[i]1[§]

can represent in isl
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Overall picture: SCoP detection

Natural loops Required analyses:

» natural loops tree

’ no side-effects? ‘ » (post-)dominators tree

l » alias analysis
’ affine branch conditions? ‘

I

’ affine memory accesses? ‘

> scalar evolution analysis




Detecting SCoPs by induction on Natural Loops Tree

» Start with a loop in the natural loops tree
rather than the root of the CFG



Detecting SCoPs by induction on Natural Loops Tree

» Start with a loop in the natural loops tree
rather than the root of the CFG

» Focus on structure of natural loops
before the validity of each statement



Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy




Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy




Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy




Example: Induction on Natural Loops Tree

Function)

inner

=

inner

next
Loopy




Example: Induction on Natural Loops Tree
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Other implementations of SCoP Detection

» Previous graphite SCoP detection based on CFG and DOM
(misses the structure of loops)

» Polly’s SCoP detection based on structure of SESE regions
(full function body analysis even without interesting loops)

» Pet, Rose, other source-to-source compilers: SCoP detection
based on the AST of a specific programming language



Experimental Results

Compilation time overhead

Benchmark | Old % | New %
Polybench 1.4 1.9

Tramp3d-v4 7.0 0.3
GCC 6.0 0.24 0.01
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Conclusion and Future work

Conclusion
» New faster algorithm for SCoP detection

» Enable polyhedral optimization in industrial compilers

Future Work

» SCoP detection to drive polyhedral optimization
(avoid maximal SCoPs)

> Use profile data to guide and select polyhedral transforms



