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ABSTRACT
This paper studies the applicability of polyhedral techniques
to the parallel language OpenStream [25]. When applicable,
polyhedral techniques are invaluable for compile-time debug-
ging and for generating efficient code well suited to a target
architecture. OpenStream is a two-level language in which
a control program directs the initialization of parallel task
instances that communicate through streams, with possibly
multiple writers and readers. It has a fairly complex seman-
tics in its most general setting, but we restrict ourselves to
the case where the control program is sequential, which is
representative of the majority of the OpenStream applica-
tions. This restriction offers deterministic concurrency by
construction, but deadlocks are still possible.
We show that, if the control program is polyhedral, one

may statically compute, for each task instance, the read
and write indices to each of its streams, and thus reason
statically about the dependences among task instances (the
only scheduling constraints in this polyhedral subset). These
indices may be polynomials of arbitrary degree, thus requiring
to extend to polynomials the standard polyhedral techniques
for dependence analysis, scheduling, and deadlock detection.
Modern SMT allow to solve polynomial problems, albeit
with no guarantee of success; the approach of Feautrier [10]
may offer an alternative solution. We also establish two
important results related to deadlocks in OpenStream: 1) a
characterization of deadlocks in terms of dependence paths,
which implies that streams can be safely bounded as soon as
a schedule exists with such sizes, 2) the proof that deadlock
detection is undecidable, even for polyhedral OpenStream.

1. INTRODUCTION
For the every-day programmer, the performance increase

of processors has been felt, for a long time, with no need to
change programming paradigms. In the last years however,
the development of more-difficult-to-program accelerators
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(FPGA, GPU, multicores), and even larger-scale platforms,
has offered an impressive computational power to a larger
public while exposing the users to the difficulty of paral-
lel programming. The pressure to still achieve portability,
performance, and productivity has become much stronger
on compilers and programming languages. The question
still remains to find the right trade-off between relying on
optimized libraries, on static analysis and optimizations, or
on runtime systems with more dynamic decisions, and how
to make these three views collaborate.
Parallel programming is notoriously difficult. The reasons

are multiple: in contrast to sequential programming, there
is no unique model of parallel programming and computer,
and it is difficult to visualize a process in which many events
occur independently. Most importantly, parallel programs—
like all programs—have bugs, which are difficult to track
and correct. A concurrency bug may not be reproducible,
or have a very low probability of occurrence. Hence the
importance of creating parallel programs that are correct by
construction, or whose correctness can be checked statically.
The last years have seen the emergence of many parallel

programming approaches: low-level (MPI, OpenCL, CUDA),
runtime-based (Kaapi, StarPU, TBB), vector and array lan-
guages (APL, HPF, ZPL, SaC), PGAS languages (Co-Array
Fortran, Chapel, UPC, X10). The class of streaming dataflow
languages (SDF, StreamIt, OpenStream, SigmaC), based on
Kahn process networks (KPN), has the desirable property
that determinism is enforced at the language level; it is also
popular for the design of reactive systems. However, all
types of bugs can only be excluded at the price of severely
restricting the expressive power. For instance, there are
deterministic languages with (deterministic) deadlocks (e.g.,
StreamIt) or non-deterministic deadlock-free languages (e.g.,
Cilk, StarSs, OpenMP, X10), and fragments of these are
deterministic when shared variables are synchronized with
task joins and/or dependences.
Similarly, due to familiar undecidability theorems, static

checking can be obtained only at the price of severely re-
stricting the expressive power of the base language. The
polyhedral model is such a system of restrictions: in its
classical setting, control statements are restricted to counted
loops with affine bounds, program statements are restricted
to simple calculations on scalars and array elements, and
array subscripts are restricted to affine functions of the loop
counters. Most programs do not fit these constraints, but it
is often possible to isolate polyhedral fragments or to define a
“polyhedral subset” of a language, either to develop analyses
for this well-defined subset (when feasible) or to prove the
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difficulty of an analysis or optimization of this subset, and
thus of the general language. This has been done for the X10
language in [32] (for a subset where race detection is solvable
by polyhedral techniques) and [33] (for a subset where it is
undecidable). The aim of this paper is to similarly define a
polyhedral subset of the OpenStream language [22, 25] and
to use it to explore different questions such as:
• What is the flow of the computations in the program?
Can it be described as a closed form relation, rather
than a more general inductive one?
• Can we bound statically and safely the size of streams?
• Is it possible to change the granularity of the computa-
tions w.r.t. communications in streams?

The first question amounts to defining a form of dependence
analysis for polyhedral OpenStream and is discussed in Sec-
tion 2, after a definition of the language. The second and
third questions are linked to the problem of deadlock detec-
tion, which is discussed in Section 3. They are motivated
by the fact that OpenStream is a language with tasks whose
schedule is fully guided by its runtime while grouping tasks
and coalescing communications statically can only be done
safely if it does not introduce deadlocks. Finally, Section 4
discusses related work, to position OpenStream in the land-
scape of streaming languages and to recall results obtained
for the analysis of polyhedral X10. Section 5 summarizes
our main contributions and some research directions.

2. THE OPENSTREAM LANGUAGE
The design of OpenStream builds on a previous stream-

ing extension [22] to OpenMP. Source code, support tools,
benchmarks, and bibliography can be found on http://www.
openstream.info. For a more detailed presentation, one
may refer to [25], and to the formal model underlying the
operational semantics of OpenStream [23].

2.1 The Base Language
In a nutshell, OpenStream allows the composition of tasks

communicating through dataflow streams, as well as separate
compilation. It also provides more general dynamic con-
structs to support complex data structures and unbounded
fan-in/fan-out communications. It has been shown that it is
sufficiently expressive to efficiently encode high-level parallel
language features such as the memory regions of StarSs [21],
as well as low-level point-to-point communication primitives
such as futures [24, 25]. OpenStream also provides syntactic
support for broadcast operations.

2.1.1 Concurrency
OpenStream relies on programmer annotations to specify

regions of the control flow that may be spawned as concurrent
coroutines and delivered to a runtime execution environment.
These regions are called tasks and inherit the OpenMP task
syntax and, without stream annotations, the same semantics.
OpenStream is a two-level language: a control program di-
rects the creation of tasks, then each created task waits until
its activation, which means that all tasks it depends upon (see
hereafter) have terminated execution and it can now start its
execution as soon as it is selected by the runtime scheduler.
There are no constraints in the amount of work done by
the control program or the tasks. At the time of creation,
tasks have access to all variables of the control program in
the current scope, using standard OpenMP mechanisms like
firstprivate and copyin. Communication from tasks to

the control program is through shared variables, under con-
trol of barrier synchronization, thanks to constructs inherited
from OpenMP. For the polyhedral subset we consider, there
is no communication from the tasks to the control program.
Despite its expressiveness, the OpenStream programming

model comes with specific conditions under which the func-
tional determinism of Kahn process networks [15] is guar-
anteed by construction. These conditions enforce a precise
interleaving of data in streams derived from the control flow
of the control program. One simple sufficient condition for
determinism is that the control program is sequential, as in
our polyhedral subset. More general conditions exist [23],
which are not considered here.

2.1.2 Synchronization
OpenStream allows to express the flow of data between

tasks through the concept of streams, inducing producer-
consumer dependences. A stream is a virtual one-dimensional
array of indefinite size, which can only be accessed through a
sliding window. A window is defined by two nonnegative inte-
gers, the horizon (the size of the window) and the burst (the
amount by which the window is shifted at each task creation).
These numbers may be arbitrary data-dependent expressions.
Our polyhedral fragment restricts them to numerical or sym-
bolic constants, or polynomial expressions for static analysis
purposes (see Section 2.2.2 for details). General OpenStream
programs allow dynamic connections between tasks, multiple
tasks interleaving their communications in the same streams,
arbitrary and variable fan-in, fan-out, and communication
rates in a dynamically constructed task graph. Also, unlike
OpenMP, streams are first class objects of the language al-
lowing for arbitrary task graph topologies. The definition of
streams themselves is done thanks to two additional clauses
for the task construct: the input and output clauses. The
syntax uses the C++ style for stream operators, << and >>.
An array declaration (in plain C) defines the sliding window
accessible within the task, as well as its size (the horizon).
The connection of a sliding window to a stream in an input
or output specifies the burst. The abbreviated form with
no specified burst means a burst equal to 1. For an output
clause, the burst and horizon must be equal. Task activation
is enabled by the availability, on each input stream, of all
horizon elements on the input window (see Section 2.2.1 for
dependence analysis between tasks).
The example in Figure 1 (in pseudo-code to make it shorter)

illustrates the use of the input and output clauses. The
semantics of stream operations is determined by the control
program, at the time of task creation. T0 is a producer task,
pushing two elements to stream s after execution (but the

stream int s;
int a[2], b[3], c[2];

T0 #pragma omp task output (s << a[2]);
a[0] = 42, a[1] = 43; // write two cells in s

for (i = 0; i < N; i++) {
if (i % 2) {

T1 #pragma omp task output (s << b[3]), input (s)
b[0] = b[1] = b[2] = foo(s); // read one, write three

}
T2 #pragma omp task output (s), input (s >> c[2])

s = bar(c[0], c[1]); // read two, write one
}

Figure 1: Example of input/output clauses.
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two slots are reserved at task creation). T1 and T2 are both
producers and consumers of stream s and T1 is created only
every even iteration of the enclosing loop. Here, the values
of the bursts and horizons imply that a single (sequential)
execution is possible. The first created task instance in
the loop is T2(0), which pops the two elements from s and
writes a new one. This one is then read by T1(1), which
adds three new elements. Two of them are read by T2(1),
a new one is created, then T2(2) pops the two, and writes
one, etc. In general, tasks can also be guarded by more
complex control flow and, as shown here, tasks can have
interleaved accesses through the same stream. Also, when
burst < horizon, dependences can be even less intuitive.

2.2 Dependence Analysis for OpenStream
In this paper, we focus on programs for which the exe-

cution order of the control program is easily deduced from
the abstract syntax tree (AST). (This is not the case for
programs with goto or even non-affine if constructs, for
example.) As a side effect, one obtains the creation order of
task instances (Section 2.2.1). For each stream and each task
instance, one can then compute a read or write index (Sec-
tion 2.2.2). One can finally compute dependences between
tasks (Section 2.2.3). In short, since streams are accessed
in single assignment mode by construction, there are only
producer-consumer (PC, or flow, or RAW) dependences. Two
task instances are in dependence if, for some stream, the
output window of one of them intersects the input window
of the other. In this case, the writer must be executed first.
The execution order of task instances is the transitive closure
of the dependence relation.

2.2.1 Creation Order of Tasks
We restrict the study to a subset of OpenStream, where the

control program fits the polyhedral model [11]. We consider
unions and projections of polyhedra defined as Presburger
formulas; affine is implicitly lifted to piecewise, quasi-affine
expressions (integer division with a numerical constant). The
code of the tasks themselves can be arbitrary, but without
nested task creation (no tasks can be created within tasks).
Control statements are restricted to counted loops with affine
bounds, operations are restricted to simple calculations on
scalars and array elements, and array subscripts are restricted
to affine functions of the loop counters. Each task instance
can then be identified by its position vector, following the
AST labels, encoding:
• Sequence: S1; ...; Sn, with n outgoing edges, la-
beled from 1 to n.
• Loop: for(i = 0; i < n; i++), with one outgoing
edge, labeled by i.
• Task: with one outgoing edge labeled by the letter a.
• Conditional: two outgoing edges, labeled tt and ff.
• Basic statement: with no outgoing edge.

The position vector of a node is the list of labels encountered
on the unique path from the AST root to the node. In the
example of Figure 1, the position vectors of T1 and T2 are
[1, i, 0, tt, a] and [1, i, 1, a], respectively. The creation order
of tasks is then simply given by the lexicographic order of
position vectors (excluding the terminal “a”, not necessary
here). For example, consider an instance of T1, [1, i, 0, tt, a],
and an instance of T2, [1, i′, 1, a]. The first is created before
the second if and only if 1 < 1 or (1 = 1 ∧ i < i′) or
(1 = 1 ∧ i = i′ ∧ 0 < 1), i.e., i ≤ i′ (in the case both exist,

which may not be the case due to conditionals). This creation
order is denoted � (and ≺ if strict).
Note that, in this context, as often, conditionals pose a dif-

ficulty. The execution order of exclusive conditional branches
is undefined. However, when the conditional expression is
affine, one may associate an iteration domain to each state-
ment in any of the branches, and state that two position
vectors can be compared only if their iteration domains in-
tersect. In the following, we restrict ourselves to such affine
conditional expressions. In the example of Figure 1, T1 is
guarded by the quasi-affine expression i mod 2 = 1.

2.2.2 Stream Indices
Let Ws (resp. Rs) be the set of tasks with write (resp.

read) access to a stream s. Each task instance t writes (resp.
reads) s through a window, with an associated burst bt,s.
The position of the window (its index) is computed by the
control program by summing the bursts of all preceding task
instances that write (resp. read) the stream. To show the
strong link with computations of cardinals (and generaliza-
tions), we first consider the case where a burst is a numerical
or symbolic constant that can be extracted from the program
text, in which case we can write bτ,s instead of bt,s for any
instance t of a task τ . A burst is a nonnegative integer, and
can only be null for an input stream (the peek operation).
Let Is(t) (resp. Js(t)) be the first index of output (resp.

input) stream s written (resp. read) at task instance t.
Let Dτ be the domain (set of instances) of task τ . We have
the fundamental formulas (see also Definition 8 in [23]):

Is(t) =
∑
τ∈Ws

bτ,sCard {x ∈ Dτ |x ≺ t} (1)

Js(t) =
∑
τ∈Rs

bτ,sCard {x ∈ Dτ |x ≺ t} (2)

Since for polyhedral programs Dτ is a polyhedron, and
since ≺ is a disjunction of (quasi-)affine constraints, the
cardinal can be computed as a closed form by familiar tech-
niques (Ehrhart polynomials [3] or Barvinok generating func-
tions [31]) and their corresponding libraries (Polylib or barvi-
nok). The result will usually be a polynomial, the degree of
which is equal to the dimension of Dτ . However, these poly-
nomials are not arbitrary, and their properties may be used to
advantage for program analysis. For instance, the innermost
loop counter in t will usually occur linearly in Is(t). The
index function Is is also, of course, related to the relation ≺,
the task creation order, as follows:

Proposition 1. If t ≺ t′ have write access to the stream s,
then Is(t) + bτ,s ≤ Is(t′) and, in particular, Is(t) < Is(t′).

Proof. Observe that the sets whose cardinals contribute
to Is(t′) are super-sets of those contributing to Is(t), and
that t belongs to the first one but not to the other. Also, for
write accesses, bursts are positive integers.

Note that if bursts are not constants, Proposition 1 remains
true with bt,s instead of bτ,s. From this follows directly
that streams have the single assignment property, since the
write windows for t and t′, i.e., [Is(t), Is(t) + bt,s − 1] and
[Is(t′), Is(t′) + bt′,s − 1], are always disjoint. Also, if bursts
are not constants, Formulas (1) and (2) become

Is(t) =
∑

τ∈Ws, x∈Dτ , x≺t

bx,s and Js(t) =
∑

τ∈Rs, x∈Dτ , x≺t

bx,s
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When the bursts are polynomials in the control program loop
counters, the resulting sums can still be evaluated at compile
time by tools such as the barvinok library [30].

2.2.3 Dependences between Tasks
Two operations are in dependence if they both access the

same memory location, and at least one of the accesses is
a write. According to [25], the shared memory locations
must belong to a stream. (It would be possible to compute
dependences on global variables, but this is not in the spirit
of a streaming language.) By definition, writes always occur
before reads, which defines the semantics and constrains valid
runtime schedules: there are no WAR (anti-) dependences.
Furthermore, the single assignment property implies that
WAW (output) dependences do not exist.

To simplify the analysis, let us assume that each task
access all elements of its windows. This condition can easily
be checked if windows are accessed with constant values.
Holes in input windows emulate subsampling, which we
conservatively approximate as windows accessing their entire
range of elements, and there are no holes in output windows
since this would leave undefined elements in streams.
Let t be an instance of task τ that writes to stream s and

let t′ be an instance of task τ ′ that reads from stream s, with
horizon ht′,s. The write window is [Is(t), Is(t) + bt,s − 1]
and the read window is [Js(t′), Js(t′) + ht′,s − 1]. There is a
dependence if these two segments overlap, i.e., if:

Is(t) ≤ Js(t′) + ht′,s − 1 ∧ Js(t′) ≤ Is(t) + bt,s − 1 (3)

To these constraints, one must add conditions expressing
the fact that t and t′ are legal iterations, i.e., t ∈ Dτ and
t′ ∈ Dτ ′ . Condition (3) enforces only that the writer of a
given stream cell occurs before its readers. One can also
impose a “Kahnian continuity” condition on streams (as in a
fifo), which states that a read can occur only if all stream
cells with a smaller index have already been written. This is
equivalent to considering that the read window starts from 0,
i.e., is [0, Js(t′)+ht′,s−1], and the condition becomes simply:

Is(t) ≤ Js(t′) + ht′,s − 1 (4)

as the second inequality of (3) is always satisfied.
Let us write t δ t′ if these constraints are satisfied, which

may be tested by any available tool. The δ relation defines the
instance-wise dependence graph of the program. The result
is a relation τ∆τ ′, the statement-wise dependence graph,
where the dependence pair (τ, τ ′) is labeled by the set of
instances that satisfy the inequalities in (3)—or (4) with the
Kahnian continuity semantics—or an over-approximation of
this set. The statement-wise dependence graph can then be
analyzed for defining valid code transformations, in particular
for bounding streams or changing the granularity of task
instances (e.g., by changing bursts). Note that while these
transformations may share similar effects on parallelism and
locality as nested loop optimizations [19], they change the
task graph structure. Applying “valid” loop transformations
to the control program only changes the order of task creation
but, by definition of their validity, not the task graph itself.
If the index functions are linear, a linear programming tool

may be sufficient. If not, the use of an SMT solver like Z3 [6],
which can handle polynomials, is necessary. Z3 uses heuris-
tics and pattern matching and is able to solve undecidable
problems in acceptable time, albeit without guarantee of
success. Also, as in the case of ordinary dependences, one

may relax the integrality constraints on t and t′ and obtain
conservative results. The advantage of this approximation
is that solving polynomials in the reals is decidable, while
looking for integer solutions is not. Other approximation
schemes are to be explored.
Whatever the situation, if t and t′ are in dependence, then

the writer t must be executed before the reader t′. Observe
that the dependence relation for OpenStream tasks is not
a subset of the sequential creation order, as is the case for
sequential programs. Hence, this raises the possibility of
deadlocks, whose study is addressed in Section 3.
Note also that, if a stream cell is never written, Condi-

tion (3) does not generate a dependence to its readers, which
can thus be understood—wrongly—as tasks without a pre-
decessor with respect to this access. Indeed, unlike in a
control-driven program where a read to an un-initialized
variable is executed anyway and returns garbage, for Open-
Stream programs, the readers should wait forever, i.e., should
never be activated, resulting in a form of deadlock. This case
has thus to be checked as a special case. For the polyhedral
fragment, it can be detected statically, by checking that, for
each stream s, its largest write index Is(t) (see Equation 1)
is greater than or equal to its largest read index Js(t′) (see
Equation 2). This can be done, for example, as follows.
• If there is a task τ ∈ Ws whose iteration domain is
infinite, the write index Is(t) in s is unbounded since
the write bursts are positive. Thus, there is nothing
more to check, all cells of s have a producer. If not, by
Proposition 1, one may compute τlast, the lexicographic
last instance of τ ∈ Ws, e.g., by using PIP [7], then
compute Is(τlast). The result is, for each τ ∈ Ws, a
piecewise polynomial function of the parameters.
• Then, one can check that, for each instance t′ reading

the stream s, there is a task τ ∈Ws such that Js(t′) +
ht′,s ≤ Is(τlast) + bτlast,s. Such a check is undecidable
in general. However, one can give two complementary
semi-algorithms. If we find t′ such that Js(t′) + ht′,s >
Is(τlast) + bτlast,s, for all τ ∈Ws, then we know that a
producer is missing, and there is a deadlock. This can
be checked again with an SMT solver. Conversely, with
a generalization of the Farkas lemma to polynomial
constraints [14, 27], one can try to prove, for each
subdomain of the parameters, that Js(t′) + ht′,s ≤
Is(τlast) + bτlast,s for all possible t′ reading s. If yes,
we know that, for this subdomain, there is no deadlock
due to an absence of producer.

Note that, if bursts and horizons are constants for a given
task, then we can also compute the last read for each given
task as explained above for the last write. The resulting test
is then a comparison between polynomial expressions of the
parameters. This is still undecidable in general, but again, it
can be proved or disproved with semi-algorithms involving
parameters only. Also, for a fixed value of the parameters, the
test boils down to the evaluation of polynomial expressions.

2.2.4 Additional Remarks
Let us add some remarks concerning dataflow analysis, i.e.,

the problem, given an element i in stream s, of finding the
position vector of the task that wrote s[i]. For OpenStream,
this is, again, both trivial and impossible in general. This
vector and the associated task must satisfy the constraints
t ∈ Dτ and Is(t) ≤ i ≤ Is(t) + bt,s − 1. This is a constraint
satisfaction problem, which may be solved if Is is linear
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or a low degree polynomial, but which seems impossible in
general—this is a form of quantifier elimination, which is
impossible in general for integers and polynomials. Due to its
special form, it may be that the Is function may be inverted,
giving a closed form expression for i as suggested earlier.
This is a subject for future work.

Finally, let us conclude this study on dependence analysis
with a remark concerning barriers. There is not much about
barriers in [25], but they certainly exist in OpenMP, and
are a prominent feature in [23]. The semantics here is that
when the control program executes a barrier, it stops until
all created tasks have terminated. The first consequence is
that the presence of barriers does not change anything in
the ≺ relation, hence has no impact on the write and read
functions Is and Js, and does not change stream dependences.
However, it adds new “control-induced” dependences to the
instance-wise dependence graph. If b is the position vector of
a barrier and if t ≺ b and b ≺ t′, then it adds a dependence
from t to t′ to the stream-based dependences. Note that
this dependence is some variation on the lexicographic order,
hence it fits in the polyhedral model and does not increase
the difficulty of deadlock detection and scheduling.

3. DEADLOCKS IN OPENSTREAM
OpenStream programs have strong similarities with KPNs

(Kahn Process Networks), but the equivalence of the two
models, or of restricted versions, is not obvious. In Open-
Stream, unlike in KPNs, streams can be read and written by
several actors, but in a single assignment manner and with
a deterministic interleaving, fully expressed by the control
program only. General KPNs are deterministic too, but the
decision of reading in one stream or another can depend on
the data that circulate on the streams. Because of these dif-
ferences, it is not clear how to transfer the characterization
and detection of deadlocks in KPNs to OpenStream pro-
grams. In fact, in [20], Parks showed that it is undecidable
to detect if a KPN will deadlock (i.e., terminates). The argu-
ment is that BDFs (Boolean Data Flow) are a particular case
of KPNs and because BDFs can simulate Turing machines
(as shown by Buck [2]), they lead to the undecidable halting
problem. The proof of Buck exploits the fact that, unlike
SDFs (Synchronous Data Flow), BDFs have two actors select
and merge that allow conditional token consumption and
production, and these conditions can depend themselves on
the history on streams—typically what was read/written on
the tape of the Turing machine. In such a proof, undecidabil-
ity comes from the complexity of the computation through
the streams but does not say anything on the complexity of
the stream structure. Similarly, one could imagine a KPN
with a single process whose program is a universal Turing
machine and reading an empty stream whenever the Turing
machine halts. Such undecidability proofs do not give any
insight for the situation of OpenStream where the readers
and writers of a particular stream element do not depend on
the computations themselves, only on the control program
that creates tasks. Hence, we need to develop new proofs
dedicated to OpenStream to answer the following questions:
• Which dependence structures lead to deadlocks?
• Can deadlocks depend on the execution order of tasks?
• Is it decidable to detect deadlocks?
Section 3.1 addresses the first two questions. To answer

the last one, we use two ingredients: a particular stream
and dependence structure exposed in Section 3.3 and, as for

the problem of race detection in X10 (see Section 4.2), the
fact that it is possible to encode, in a polyhedral fragment,
multi-variate polynomials as the number of iterations in a
set of affine (imperfectly) nested loops. This construction
can find other applications and is recalled in Section 3.2.

3.1 Characterization of Deadlocks
The most intuitive method for proving the absence of

deadlocks consists in building a schedule. A schedule is a
function σ from the set of task instances to the nonnegative
integers N such that σ(t′) ≥ σ(t) + 1 whenever t′ depends
on t. If a schedule exists, even if a “parallel front”—set of
tasks t with same value σ(t)—is infinite, a runtime scheduler
following σ has always some ready task instance to activate,
thus does not lead to a deadlock. A ready task instance
is an instance for which all predecessors in the dependence
graph have terminated. However, remember that an instance
reading a cell with no producer should not be considered
as ready for activation. From now on, we thus exclude
this situation, assuming it has already been considered as
explained in Section 2.2.3. In other words, we assume that
all stream cells that belong to the input window of some
instance also belong to the output window of some instance
so that a ready task instance can indeed be activated.
If the Is and Js functions are linear, checking for the

existence of an affine schedule can be done using algorithms,
standard in the polyhedral community, based on the affine
form of the Farkas lemma. In case of polynomial functions,
the special form of (3) may simplify the construction of
a schedule. In the general case, extensions of the Farkas
lemma can be used for generating schedules with polynomial
constraints, as explored in [10]. Nevertheless, to better
understand the equivalence between schedules and absence
of deadlock situations, we need to characterize them in terms
of dependence paths. Consider the following example in an
OpenStream-like format:

stream s, t;
c read once in t;

for (i = 0; ; i++) { /* infinite domain */
a write once in s; read once in t;
b write once in t; read once in s;

}

Here, c depends on b(0), which produces the first value of the
stream t, while other values produced by b(i) for i > 0 are
read by a(i− 1). As for stream s, it induces a dependence
from a(i) to b(i). In other words, for all i, a(i) depends
on b(i + 1), which depends on a(i + 1), etc. The program
cannot start: an infinite number of tasks is created but none
of them can execute. This is a case of deadlock where, in the
graph defined by dependences among task instances, there
is no cycle, but an infinite path. However, with the Kahnian
continuity semantics, there is a cycle: a(i−1) depends on b(i)
through stream t, and b(i) depends on a(i − 1) through
stream s as it depends “functionally” on a(i).
As another simple example, consider:
stream s;
for(i = 0; ; i++)

a read once in s; write once in s;

Each instance of a has a dependence on itself (Condition (3)),
hence cannot be scheduled. This code has a deadlock.
The following proposition explicits these situations in gen-

eral. We are not interested in the case of infinite programs
where fairness in the runtime scheduler may be needed to
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ensure all tasks make progress. We say that a program has no
deadlock if, at runtime, whatever the tasks already activated
by the runtime scheduler and for each task instance not yet
activated, there is always an order of activations such that
this task instance will be ready, and thus possibly activated.

Proposition 2. There is a deadlock if and only if there
is no schedule, more precisely iff there is an infinite number
of instances (possibly equal) of the same task that depend
(possibly indirectly) on each other in the reverse order of their
creation. If the control program generates a finite number
of task instances, there is a deadlock iff the instance-wise
dependence graph has a cycle. The same is true for an infinite
number of instances and the Kahnian continuity semantics.

Proof. As task creation does not depend on dependences,
there is no deadlock due to task creation, we only need to
consider when tasks start executing. We show the following,
using arguments similar to those used for the computability
of systems of uniform recurrence equations (see [16, 5]).

Property 1. There is no schedule if and only if there
exists a task instance t such that the length of the dependence
paths leading to it is unbounded, i.e., σ(t) = +∞ where

σ(t) = sup{length(P) | P dependence path leading to t}

Indeed, if σ(t) is finite for any t, and if t′ depends on t, then
any path P leading to t, extended with the dependence from t
to t′, gives a path leading to t′, thus length(P) + 1 ≤ σ(t′),
and finally σ(t)+1 ≤ σ(t′). Thus σ is a schedule. Conversely,
if a schedule σ′ exists, then, by induction on the length ` of
a path leading to t, σ′(t) ≥ `, thus σ(t) ≤ σ′(t) < +∞.

Property 2. Each task instance depends (directly) on a
finite number of other task instances. Indeed, a task instance
reads only a finite number of streams and bursts/horizons
are finite. This is true also in the Kahnian continuity case
as streams start at 0 (and not −∞). This implies that there
is no schedule if and only if there is a task instance with
an infinite dependence path leading to it. Indeed, if such
a task instance t exists then, of course, σ(t) = +∞. Con-
versely, since σ(t) = max{σ(u) | t depends directly on u},
then σ(t) = +∞ implies that σ(u) = +∞ for at least one
direct predecessor u of t. Continuing this way, one can con-
struct, by induction, an infinite dependence path leading to t
(this is nothing but König’s lemma).

Property 3. The previous property implies that if there
is no schedule, some task instance can never be ready in
finite time (due to an infinite dependence path leading to
it), whatever the tasks that have been activated so far, thus
what we call a situation of deadlock. Conversely, if there is
a schedule σ, the length of any dependence path leading to t
is bounded by σ(t), thus each task instance depends (even
indirectly) on a finite number of other task instances. Thus,
there exists an execution order that will make it ready.

Property 4. Now, consider an infinite dependence path
leading to a task instance t, i.e., an infinite sequence of task
instances (ti)i∈N, such that t0 = t and ti depends (directly)
on ti+1. Now, let i0 such that ti0 is the first created task
instance in the path and i0 is minimal. Then, by induction
on j, define ij+1 such that tij+1 is the smallest (following
the creation order �) task instance ti with i > ij and ij+1 is
minimal. The “smallest” exists because the order � has no
infinite descent (the number of task instances created before
a given task instance is finite). By construction, tij � tij+1
as the first one is the smallest element in a larger set and tij

depends (possibly indirectly, by transitivity) on tij+1 because
ij < ij+1. Finally, as there is a finite number of tasks in
the program, at least one task τ appears infinitely many
times in this subsequence (tij )j∈N. In other words, if there
is a deadlock, there is a task τ and an infinite sequence of
instances (τi)i∈N of τ such that τi depends on τi+1 in the
non-strict reverse order of creation (i.e., τi � τi+1).
This shows most of Proposition 2; when there is only a

finite number of task instances, an infinite path traverses at
least twice the same task instance, thus there is a cycle. It
remains to consider the case of an infinite number of task
instances, assuming the Kahnian continuity semantics. If a
task instance τ(i) depends (directly or by transitivity) on
a task instance τ ′(j), then the task instance that directly
depends on τ ′(j) in this dependence path—a task instance
reading a stream element written by τ ′(j)—also depends
on τ ′(k) for all k � j (this depends on the reasonable as-
sumption that, in OpenStream, all task instances of a given
task always write in the same streams). Then, by transitivity,
τ(i) depends on τ ′(k) for all k � j. Finally, if there is a dead-
lock, as a particular case of Property 4 in this proof, there
is a task τ and two position vectors i and j such that i � j
and τ(i) depends on τ(j), thus τ(i) also depends on τ(k) for
all k � j, in particular k = i, which forms a cycle.

This shows that finding a schedule is indeed a certificate
ensuring the absence of deadlocks (in the sense defined previ-
ously). Now, consider a schedule σ. If a stream s is such that,
for some positive integer `s, all indices i ≤ j − `s of s are
dead for σ (i.e., already produced and consumed) whenever
index j is written, then s can be implemented as a “bounded
stream” of size `s. Conversely, if s is implemented this way in
the runtime execution environment, keeping track of the cur-
rent smallest live index i and blocking writes from i+ `s and
beyond, then no deadlock will occur at runtime. Indeed, such
a mechanism is equivalent to extending the instance-wise
dependence graph with “back-pressure” dependences from τ ′

to τ , where τ ′ reads s[i] and τ writes s[j], with i ≤ j − `s.
According to Proposition 2, since this new dependence graph
has at least one schedule (e.g., σ is valid), it has no dead-
lock. Actually, there is a small subtlety: the previous proof
assumed that each task instance depends on a finite number
of task instances. With these additional dependences, this
may not be true if an element e of s has an infinite number
of readers. But in this case, with a finite number of compu-
tation resources, there cannot be a schedule with a bounded
stream s anyway, as e can never be reused.
It is also important to note that OpenStream, in its sim-

plest form studied here, only defines dependences among
task instances, which are the only constraints for the run-
time scheduler. Thus, standard loop transformations have
no effect on the program execution, as they will not change
dependences. What can be of interest however is to over-
constrain the runtime, by adding dependences. For example,
one can add artificial back-pressure dependences in the code.
One can also increase the bursts and horizons to change
the granularity of communications, or merge several tasks.
Now, the validity of such code transformations is not any-
more a problem of preserving dependences (as for standard
languages) but of avoiding deadlocks. This is why deadlock
detection is important and addressed in Section 3.3. Before,
we need an extra ingredient, related to the expressiveness of
polyhedral loops, that we recall in Section 3.2.
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3.2 Construction of Counting Nested Loops
Our aim here is to recall a proof technique, borrowed

from [33], which, given a multi-variate polynomial Q(x) with
nonnegative integer coefficients, builds a set of nested loops
computing Q(x), for some multi-dimensional parameter x,
using only increments by constant integers. This technique
shows how expressive simple affine nested loops can be. It is
then enough to replace each increment d by the introduction
of a task instance accessing some stream with a burst of d,
and the corresponding read or write index increment after
these loops is Q(x).
Let us select one particular variable x1 and write Q(x) =

Q(x1, ~xr) where ~xr, the vector of remaining variables, may
be empty. The first difference Q1 of Q in x1 is:

Q1(x1, ~xr) = Q(x1 + 1, ~xr)−Q(x1, ~xr).

The following program computes Q(x):
q = Q(0, ~xr);
for (i = 0; i < x1; i++)

q += Q1(i, ~xr);

The degree of Q1 is at most m − 1, where m is the degree
of Q, and its coefficients are still nonnegative. A similar con-
struction applied to Q1 creates a second level loop involving
the second difference of Q. Iterating at most m times results
in a program where the increments are of degree zero in x1,
i.e., do not involve x1. The construction is then applied
recursively to the next variables in ~xr, and the final result
is a program where all increments are positive integers. A
complete example is given in [33].

3.3 Detecting Deadlocks is Undecidable
This section shows that it is in general undecidable (thanks

to a reduction from Hilbert’s tenth problem) to detect if an
OpenStream program has:
• a functional deadlock;
• a spurious or a functional deadlock;
• a stream causal schedule.
A functional deadlock is a deadlock situation as exposed in

Section 3.1, assuming the general semantics of dependences
given by the constraints in (3). A spurious deadlock is a
deadlock that arises only because of the Kahnian continuity
semantics, i.e., if a read in a stream at a given index must
wait for all writes in the stream at smaller indices. A causal
schedule is a schedule where writes to a given stream occur
in the same order as their indices, i.e., in the same order
as the creation of the corresponding task: σ(t) < σ(u) if t
and u write to the same stream and t ≺ u (in this case, the
index written by t is smaller than the index written by u).
The proof is based on the following construction, inspired

by a similar proof about race conditions in X10 [33]. It uses
the same link to Hilbert’s 10th problem, the same ingredient
for building polynomials (as presented in Section 3.2), but of
course a different program structure as neither deadlocks and
races, nor X10 and OpenStream, have particular connections.
Hereafter, P and Q are two multivariate polynomials (with n
variables), with nonnegative coefficients (actually, they are
the positive and negative parts of a polynomial R = P −Q
used to relate to Hilbert’s 10th problem). The code can use
only horizons and bursts equal to 1, thanks to additional
loops, or horizons and bursts can be used to emulate the
constants appearing in the construction of Section 3.2.
In the following code, D is either the multidimensional first

orthant scanned along diagonal hyperplanes (to prove unde-
cidability for a program with infinitely many task instances)
or the cube of size N in this orthant (to prove undecidability
for a family of parametric programs with one parameter N).

s, t streams;
for (x ∈ D) {

R1 read Q(x) times in t;
W1 write P (x) times in t;
S read once in t and write once in s;
T read once in s and write once in t;
R2 read P (x) times in t;
W2 writes Q(x) times in t;

}

Following Section 3.2, we can write affine loops so that R1
reads Q(x) times in t (same for the other polynomial expres-
sions). The dependence graph has only one possible cycle,
involving S and T , other tasks cannot induce deadlocks. For
each iteration of x, there are P (x) + Q(x) + 1 writes and
reads in stream t and one write and one read in stream s,
thus functional dependences among task instances can only
involve instances corresponding to the same iteration x. Be-
cause of stream s, there is always a dependence from S(x)
to T (x). Concerning streamt, T (x) writes in position P (x)
(if we start positions at 0, without counting all previous
iterations of the x loop) and S(x) reads in position Q(x).
If P (x) = Q(x), there is a functional dependence from T (x)

to S(x), thus a deadlock. Otherwise, there always exists a
schedule for iteration x: execute W1(x) and W2(x), then
S(x)—which reads a value produced either by W1(x) or by
W2(x)—then T (x), and finally R1(x) and R2(x). Thus, there
exists a deadlock if and only if there exists a nonnegative
vector x such that P (x) = Q(x), i.e., R(x) = 0. This is
undecidable as a variant of Hilbert’s 10th problem (one can
examine all possible signs of variables or replace x in Hilbert’s
problem by x = x1 − x2, where x1 and x2 are nonnegative).
This is for functional deadlocks.
Now let us consider spurious deadlocks, i.e., with the

Kahnian continuity semantics. If P (x) = Q(x), there is
still a functional deadlock. If P (x) < Q(x), the situation is
depicted in Figure 2: S(x) reads in a position written by
an instance of W2(x), beyond the position written by T (x).
Thus, with the Kahnian continuity condition given by (4),
there is a (spurious) dependence (dotted arrow in the figure)
from T (x) to S(x), thus a cycle (and therefore a deadlock).
Finally, if P (x) > Q(x) (depicted in Figure 3), there is a

schedule and even a causal schedule: execute successively
W1(x), R1(x), S(x)—reading a value produced by W1(x)—,
then T (x), W2(x), and finally R2(x). In conclusion, there is
a deadlock (and here, equivalently, no causal schedule) if and
only if there exists a nonnegative x such that P (x) ≤ Q(x).
This leads to another variant of Hilbert’s 10th problem: for
a given polynomial R, is there a nonnegative x such that

R1 R2

W1 W2

S

TP (x)

P (x)Q(x)

Q(x)

Stream t

Figure 2: Spurious dependence and cycle.
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R1 R2

W1 W2

S

TP (x)

P (x)Q(x)

Q(x)

Stream t

Figure 3: No deadlock, and even a causal schedule.

R(x) ≤ 0? If this problem was decidable, then one could also
decide if R(x) = 0, since R(x) = 0 if and only if R2(x) = 0,
which is also equivalent to R2(x) ≤ 0.

4. RELATED WORK
The work on OpenStream is yet another attempt to provide

a safe and efficient environment for parallel programming.
In Section 4.1, this effort is put in perspective with respect
to many languages and systems with the same target. Sec-
tion 4.2 discusses previous work on the X10 language, from
which we have borrowed several methods and ideas.

4.1 Other Streaming/Dataflow Languages
There are two motivations for the design of streaming

languages. The first one is that they fit well with impor-
tant application domains, like reactive systems and signal
processing applications. The second one is that they also
fit with distributed architectures, processors implementing
processes and network links implementing streams. They
therefore have the potential of improving both programmer
productivity and hardware performance.
Kahn process networks (KPN) [15] form the basis for most

deterministic languages based on stream computing concepts.
In his survey of stream processing [28], Stephens classifies
stream processing systems based on three criteria: synchrony,
determinism, and the type of communication channel. Fun-
damentally, stream-based models of computation all share
the same structure, which can generally be represented as a
graph, where computing nodes are connected through stream-
ing edges. However, cyclic networks can lead to deadlocks or
unbounded growth of in-flight data, which has spurred the
development of restricted forms of KPN such as static data-
flow (SDF) [18] and cyclo-static data-flow (CSDF) [1]. While
processes in KPNs execute asynchronously and can produce
or consume variable amounts of data, CSDF processes have
a statically-defined behavior. With rates of production and
consumption known at compile time, it is possible to stati-
cally decide whether the execution is free of deadlocks and to
statically schedule the execution. It can also guarantee the
absence of resource deadlocks when executing on bounded
memory, a realistic restriction. SPDF [12] is another exten-
sion of SDF where production/consumption rates can be
parametric. StreamIt is an instantiation of CSDF, building
on the strong static restrictions of the underlying model to
enable aggressive compiler optimizations. It achieves ex-
cellent performance and performance portability across a
variety of targets [13] for a restricted set of benchmarks that
properly map on this model.
It is also worth comparing our OpenStream polyhedral frag-

ment with restricted classes of process networks amenable to
polyhedral modeling. This includes the modular scheduling
approach of Feautrier [9] and the automatic construction of

process networks from static control loop nests by Kienhuis
et al. [17] and Verdoolaege [29]. These process networks are
meant as formal models and intermediate representations.
They are generally extracted from imperative code rather
than allowing the programmer to control the construction of
the network. As a result, they only involve static analyses
and decision procedures on (multi-dimensional) affine rela-
tions, although communications among Verdoolaege’s PPN
involve polynomial index expressions. Finally, note that the
pionneering work of Clauss and Meister on spatial locality [4]
does introduce polynomial expressions, but these are not
the subject of further dependence analysis unlike our index
expressions.
All of these diverse approaches to stream programming

have the potential to help mitigate the memory wall, but they
only apply to restricted classes of applications. Programs are
generally considered built around regular streams of data,
which fits the models where channels of communication are
implemented as single-producer and single-consumer FIFO
queues. We believe that the development of applications for
current and upcoming multi- and many-core architectures re-
quires a more general model, where communication patterns
are not always regular or statically defined, but can occur
and be exploited dynamically. The insight that the flow of
data plays a central role in all programs is an essential one,
but data-driven computations often need to be predicated
by complex control flow due to data-dependent, sporadic
events, as is the case in synchronous control programs. This
complementarity of control and data flow is covered in depth
in the Control-Driven Data Flow framework [23]. This paper
explores the case of polyhedral OpenStream programs, sup-
porting the insight that new approches to streaming should
preserve the strong properties provided by some existing
models, like functional determinism or deadlock-freedom.

4.2 Analysis of Polyhedral X10
The US Department of Energy led a research program

with the aim of increasing parallel programming efficiency
and productivity. The X10 language [26], developed at IBM
Research, is one outcome of this program. It is an object-
oriented language of the Java family.
Concurrency is expressed in X10 through two constructs,

async S and finish S, where S is an arbitrary statement or
statement block. The effect of async S is to create a new
activity or lightweight thread, which executes S in parallel
with the rest of the program. The effect of finish S is to
launch the execution of S, then to wait until all activities
created inside S have terminated. In some cases, it may be
necessary to synchronize several parallel activities, which can
be achieved with clocks. Clocks are an improved version of
the classical barriers. They come in two flavors: named and
implicit. It can be proved that, if only implicit clocks are
used, an X10 program is deadlock-free. However, in contrast
to OpenStream, it may have races, i.e., non-determinism.
To cross a barrier, the program must execute an advance
statement. The different activities that registered to the
same clock cannot proceed until all of them have executed
an advance statement. One may associate to each clock and
each activity a counter that gives the number of advance
statements executed so far by the activity and its ancestors
since the creation of the clock.
Detection of races in X10 program is only possible, with to-

day’s techniques, for a polyhedral subset of the language, in

8



which tests and method calls are forbidden, data structures
are restricted to arrays, and loops are restricted to counted
loops. X10 is simpler than OpenStream in that its execu-
tion order or happens-before relation can be extracted from
the program text (or its AST) in a straightforward manner,
instead of being the result of a complex dependence calcula-
tion. As a result, the array dataflow analysis for polyhedral
sequential programs [8] can be extended for polyhedral X10
programs [32]. Dataflow analysis finds the source of each
value generated by the program. A race exists if a value has
several possible sources; in that case, the program may not
be deterministic.
Clocks may be used to remove a race and re-establish de-

terminism. Informally, two instances can happen in parallel,
therefore creating a race, only if they belong to the same
phase of their enclosing clocks, i.e., if their counters are equal.
However, even for polyhedral programs, when an advance is
enclosed in several loops, its counter is a polynomial. Again,
it can be obtained by classical counting algorithms but, as
for deadlock detection in OpenStream, race detection then
entails the resolution of polynomial equations in integers,
and hence is undecidable (see [33] for details).
In fact, polynomials crop up whenever a program or a

language needs to map a multi-dimensional object into a
lower-dimensional one. For OpenStream, one maps a multi-
dimensional sequence of values into a one-dimensional stream.
For X10, a multi-dimensional set of operations is mapped
into a one-dimensional sequence of advance. A more trivial
example is the mapping of a multi-dimensional array into
linear memory. The multi-dimensional channels of CRP [9]
were designed to avoid this phenomenon.

5. CONCLUSION
This preliminary study has shown how an interesting frag-

ment of the OpenStream language can be defined where
polyhedral techniques are fully or partially applicable. This
fragment revisits the traditional restrictions on imperative
control flow in the context of the control program and of the
task streaming clauses of an OpenStream program.
• On the bright side, dependences among task instances
may be statically computed, and the formalization
of the polyhedral fragment of OpenStream allowed
to derive important undecidability properties about
dynamic schedulability and the absence of deadlocks.
Interestingly, these properties do not directly relate to
the existing literature on (cyclo-)static dataflow graphs
or Kahn networks, partly due to the yet incompletely
understood simulation of one model into another. In
particular, the undecidability of deadlocks derives from
the polynomial nature of stream indexing alone, rather
than the complexity of Boolean conditions as in Boolean
dataflow [2].
• Dataflow analysis, scheduling for granularity control,

and compilation-time deadlock detection, show a more
ambivalent picture: our polyhedral fragment leads to
polynomials of arbitrary degree as stream indexing
functions. To enforce affine stream indexing, one may
consider control programs with one-dimensional loops
only; this enables all polyhedral tools but only to a
very limited set of OpenStream programs.

We are considering multiple directions to deal with the
polynomial constraints exposed in our polyhedral fragment.
The most immediate one is to rely on affine approximations

of the indexing functions, e.g., overestimating the range of
the access indices J and I in the dependences. One may also
take advantage of the special properties of I and J , such
as their monotony w.r.t. the lexicographic order of position
vectors (task activations), or the fact that the counter of the
innermost loop in the control program always occur linearly.
Alternatively, modern SMT solvers can handle polynomial
problems, albeit with no guarantee of success. We believe
a more promising approach is to explore polynomial exten-
sions to native polyhedral techniques [10], with heuristics for
the construction of low-degree polynomial schedules. These
extensions were proposed, thanks to recent generalizations of
the Farkas lemma (a key technique in polyhedral optimiza-
tion) to polynomial constraints [14, 27], in order to extend
automatic parallelization methods to programs involving—
directly or indirectly—polynomials. The clocks in polyhedral
X10 are an example; the stream-induced dependences of
OpenStream bring another motivation to look beyond the
affine form of the Farkas lemma.
One may also wonder if the analysis techniques proposed

in this paper may be extended to more advanced features
of OpenStream, like nested tasks, variadic streams, or data-
dependent conditionals. More generally, this work also en-
courages further studies on the interactions between the
semantics of parallel constructs, static dependence analysis,
static scheduling, and dynamic scheduling, and the impact of
the choice of the language constructs on both the programmer
and the compiler.
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