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Parallel languages, runtime execution, and static analysis

Solution(s) for high-level parallel programming?

Optimizations: static or dynamic?

Specifications: language constructs or libraries?

Expressiveness: deterministic (no data races) or deadlock-free?

How to represent communications and memories? Concurrency?

Endless list of approaches:

“Lower”-level: MPI, CUDA, OpenCL, Lime, . . .

Runtime-based: Kaapi, StarPU (with task dep. as in OpenMP 4.0), TBB, . . .

(A)PGAS languages: Co-Array Fortran, UPC, Chapel, X10, . . .

“Dataflow” languages: KPN, SDF, CSDF, StreamIt, SigmaC, OpenStream, . . .

Many other types: OpenMP, StarSs, SAC, Concurrent Collections, Galois, . . .

* Can static optimization help runtime optimizations?
Worst-case, liveness, deadlocks, races, buffer sizes, granularity, locality, . . .
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Multi-dimensional affine representation of loops and arrays

Matrix Multiply
int i,j,k;
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
S: C[i][j] = 0;

for(k = 0; k < n; k++) {
T: C[i][j] += A[i][k] * B[k][j];

}
}

}
iteration i

iteration j

Array C

Array B

Array A

iteration k

Polyhedral Description Omega/ISCC-like syntax
Domain := [n]->{S[i,j]: 0<=i,j<n; T[i,j,k]: 0<=i,j,k<n};

Read := [n]->{T[i,j,k]->A[i,k]; T[i,j,k]->B[k,j];
T[i,j,k]->C[i,j]};

Write := [n]->{S[i,j]->C[i,j]; T[i,j,k]->C[i,j]};

Order := [n]->{S[i,j]->[i,j,0]; T[i,j,k]->[i,j,1,k]};
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Triple interest of polyhedral model

Polyhedral “model”, model of what?

Specification model: affine loops, Alpha, CRP
Provable techniques with some hypotheses: SCoP, approximations.
Simplified form to prove hardnesss: NP-completeness, undecidability.

* Limits of automation often related to polyhedral model.

Principle: study a polyhedral subset of a specification/language.

Uniform loops as simple cases to discuss NP-completeness.
Polyhedral X10 (Yuki, Feautrier, Rajopadhye, Saraswat, PPoPP’13).
Polyhedral OpenStream (Pop/Cohen CDDF + this paper).

* Part of an effort in extending (with new techniques) and expanding
(with new applications) polyhedral compilation.
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Analyzing X10 through a polyhedral fragment

X10 language developed at IBM, variant at Rice (V. Sarkar)
PGAS (partitioned global address space) memory principle.
Parallelism of threads: in particular keywords finish, async, clock.
No deadlocks by construction but non-determinism is possible.

Polyhedral X10 Yuki, Feautrier, Rajopadhye, Saraswat (PPoPP 2013)

Can we analyze the code for data races?
finish {

for(i in 0..n-1) {
S1;
async {

S2;
}

}
}

Yes. Similar to data-flow analysis,
with partial order ≺ (incomplete
lexicographic order).

clocked finish {
for(i in 0..n-1) {

S1; advance();
clocked async {

S2; advance();
}

}
}

Undecidable. Partial order≺c defined
by ~x ≺c ~y iff ~x ≺ ~y or φ(~x) < φ(~y).
φ(~x) =# advances before (for ≺) ~x .
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Analyzing OpenStream through a polyhedral fragment
#pragma omp task output (x) // Task T1
x = ...;

for (i = 0; i < N; ++i) {
int window_a[2], window_b[3];

#pragma omp task output (x « window_a[2]) // Task T2
window_a[0] = ...; window_a[1] = ...;

if (i % 2) {
#pragma omp task input (x » window_b[2]) // Task T3
use (window_b[0], window_b[1]);

}

#pragma omp task input (x) // Task T4
use (x);

}

(Pop, Cohen, 2011)

T1 T2

T3 T4

Stream "x"

producers

consumers

Sequential control program for task creations (6= activations).
Unlike KPN, streams with multiple inputs/outputs (but deterministic).

Reservation for reads/writes in streams with burst and horizon.
Single assignment in streams (by construction) + dataflow semantics.
The order of creations is the sequential order of the control program.

Erbium runtime, optimizations of OpenStream explored by Pop,
Miranda & Cohen. Motivates the analysis of a polyhedral fragment.
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Some properties of polyhedral OpenStream

Write/read access functions to streams are polynomials that can be
expressed statically (loop counting: Ehrhart, Barvinok).

Ex. for writes: Is(~t ) =
∑
τ∈Ws

bτ,sCard{~x ∈ Dτ | ~x ≺lex ~t }

Dependence analysis and scheduling are “feasible” with tools capable
of handling polynomials. * link with P. Feautrier’s IMPACT’15 paper.

Deadlocks do not depend on the execution order of tasks (as KPN).
If a schedule exists with bounded streams, such sizes can be enforced
by blocking R/W, without creating deadlocks at runtime.

Buffer of size s: window of s live elements moving to increasing indices.
Deadlock detection is undecidable (polynomials encoding as for X10).

With dependences only, where a read waits for its corresponding write.
Even if a read must wait for all writes with smaller indices (“Kahnian”).
Even if writes must occur in increasing order of their indices (“causal”).
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First ingredient (Feautrier): build multivariate polynomials

Q(x1, . . . , xn): multivariate polynomial, nonnegative integer coefficients.

Write:
Q(x) = Q(x1, xr ), x1 first variable.
Q1(x1, xr ) = Q(x1 + 1, xr )− Q(x1, xr ) (first difference)
* smaller degree, still nonnegative integer coefficients.

* Can compute Q(x) with:
phi = Q(0,x_r);
for (i = 0; i < x; i++) {
phi += Q1(i, x_r);

}
Keep going until x1 disappears.

phi = Q(0,x_r);
for (i = 0; i < x; i++) {

// phi += Q1(i, x_r);
phi += Q1(0, x_r);
for (j = 0; j < i; j++) {

phi += Q2(j, x_r);
}

}

Continue with other variables:

phi = Q(0,x_r); // Put new loops
for (i = 0; i < x; i++) {

// phi += Q1(i, x_r);
phi += Q1(0, x_r); // Put new loops
for (j = 0; j < i; j++) {

phi += Q2(j, x_r); // Put new loops
}

}
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Second ingredient: build the OpenStream structure

s, t streams;
for (x in D) {
/* D is the n-dim. first orthant or
the n-dim. cube of size N in it */
R1: read Q(x) times in t;
W1: write P(x) times in t;
S: read once in t and write once in s;
T: read once in s and write once in t;
R2: read P(x) times in t;
W2: writes Q(x) times in t;

}

Deadlock situations:
General case: iff P(x) = Q(x).

Kahnian case: iff P(x) ≤ Q(x).
Note: iff no causal schedule.

* 10th Hilbert’s problem:
R(x) = 0 iff R+(x) = R−(x).

R(x) = 0 iff R2(x) ≤ 0.

Other problems:
Missing producer.

Bounded streams.

R1 R2

W1 W2

S

TP(x)

P(x)Q(x)

Q(x)

Stream t
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Take-home messages

About polyhedral specifications
Polyhedral fragments to understand the limit of automation.
Watch out: affine codes generate polynomials.
Towards polynomial optimizations? In progress. See also Feautrier IMPACT’15.

About OpenStream and Kahn Process Networks
Interesting intermediate model: CSDF < polyhedral OpenStream < KPN.
KPN: Turing-complete because model includes BDF (Buck/Parks).
But BDF can react on values in streams (unlike polyhedral OpenStream).
OpenStream with bounded buffers: not fully understood.
Code optimizations (e.g., granularity change): not understood yet.

About parallel languages and their analysis/optimization
What do you prefer: deadlocks or races?
How to express link between user/compiler and compiler/runtime?
Parallel constructs can help dep. analysis (e.g., Chatarasi et al. IMPACT/PACT’15).

* Towards the analysis of parallel languages, with better user/compiler
and compiler/runtime interactions (see also next talk on liveness analysis).
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