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ABSTRACT

SPMD (Single Program Multiple Data) parallelism contin-
ues to be one of the most popular parallel execution models
in use today, as exemplified by OpenMP for multicore sys-
tems and CUDA and OpenCL for accelerator systems. The
basic idea behind the SPMD model is that all logical pro-
cessors (worker threads) execute the same program, with
sequential code executed redundantly and parallel code exe-
cuted cooperatively. As with other imperative parallel pro-
gramming models, data races are a pernicious source of bugs
in the SPMD model. While there have been some recent ad-
vances in techniques for dynamic detection of data races for
SPMD and other parallel programming models, there is a
notable lack of tools for static detection of data races in
SPMD programs.

The polyhedral model is a powerful algebraic framework
that has enabled significant advances to static analysis and
transformation of sequential affine (sub)programs, relative
to traditional AST-based approaches. In this paper, we in-
troduce a new approach for static detection of data races
by extending the polyhedral model to enable static analysis
of explicitly parallel SPMD programs. Our contributions in-
clude the following: 1) An extension of the polyhedral model
to represent SPMD programs, 2) Formalization of the May
Happen in Parallel (MHP) relation in the extended model,
3) An approach for static detection of data races in SPMD
programs by generating race constraints that can be solved
by an SMT solver such as Z3, and 4) Demonstration of our
approach by automatic generation of race constraints from
two sample OpenMP programs. Further, our approach is
guaranteed to be exact (with neither false positives nor false
negatives) if the input program satisfies all the standard
preconditions of the polyhedral model (no non-affine con-
structs).
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1. INTRODUCTION
It is widely recognized that computer systems anticipated

in the 2020 time frame will be qualitatively different from
current and past computer systems. Specifically, they will be
built using homogeneous and heterogeneous many-core pro-
cessors with 100’s of cores per chip, their performance will be
driven by parallelism, and constrained by energy and data
movement [24]. This trend towards ubiquitous parallelism
has forced the need for improved productivity and scalabil-
ity in parallel programming models. Historically, the most
successful runtimes for shared memory multiprocessors have
been based on bulk-synchronous Single Program Multiple
Data (SPMD) execution models [15]. OpenMP [21] repre-
sents one such embodiment in which the programmer’s view
of the runtime is that of a fixed number of threads execut-
ing computations in “redundant” or “work-sharing” parallel
modes.

As with other imperative parallel programming models,
data races are a pernicious source of bugs in the SPMD
model. Recent efforts on static data race detection include
approaches based on symbolic execution, e.g., [29, 18], and
on polyhedral analysis frameworks, e.g., [3, 30]. Past work
on data race detection using polyhedral approaches have ei-
ther focused on loop parallelism, as exemplified by OpenMP’s
parallel for construct, or on task parallelism, as exempli-
fied by X10’s async and finish constructs, but not on gen-
eral SPMD parallelism.

In this paper, we introduce a new approach for static de-
tection of data races by extending the polyhedral model to
enable static analysis of SPMD programs1. The key contri-
butions of the paper are as follows:

• An extension of the polyhedral model to represent SPMD
programs.

• Formalization of the May Happen in Parallel (MHP)
relation in the extended model.

• An approach for static detection of data races in SPMD
programs by generating race constraints that can be
solved by an SMT solver such as Z3.

• Demonstration of our approach by automatic gener-
ation of race constraints from two sample OpenMP
programs.

1A two-page summary abstract of this approach was pre-
sented at the PACT ACM SRC’15 poster session [7].
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The rest of the paper is organized as follows. Section 2
summarizes the background for this work. Section 3 includes
an overview of our proposed approach and discusses two ex-
amples to explain our approach. Section 4 discusses the de-
tails of our extensions to the polyhedral model to represent
SPMD programs, and shows how the MHP relation can be
formalized in the extended model. Section 5 describes our
approach to compile-time data race detection via the ex-
tended polyhedral framework, and illustrates our approach
by automatic generation of race constraints from two sample
OpenMP programs that can be submitted to the Z3 solver.
Finally, Section 6 and Section 7 summarize related work, as
well as our conclusions.

2. BACKGROUND
This section briefly summarizes the SPMD execution model

using OpenMP constructs as an exemplar, as well as past
work on data race detection, that together provide the mo-
tivation for our work. We also briefly summarize the poly-
hedral model and the Z3 SMT solver since they contribute
to the foundation for our proposed approach to static data
race detection.

2.1 SPMD Parallelism using OpenMP
SPMD (Single Program Multiple Data) parallelism [14,

15] continues to be one of the most popular parallel exe-
cution models in use today, as exemplified by OpenMP for
multicore systems and CUDA and OpenCL for accelerator
systems. The basic idea behind the SPMD model is that all
logical processors (worker threads) execute the same pro-
gram, with sequential code executed redundantly and par-
allel code (worksharing constructs, barriers, etc.) executed
cooperatively.

In this paper, we focus on OpenMP [21] as an exemplar
of SPMD parallelism. The OpenMP parallel construct
indicates the creation of a fixed number of parallel worker
threads to execute an SPMD parallel region. The number
of threads can be specified in the code, or in an environ-
ment variable (OMP_NUM_THREADS), or via a runtime function,
set_omp_num_threads() that is called before the parallel

region starts execution.
The OpenMP barrier construct specifies a barrier op-

eration among all threads in the current parallel region.
Each dynamic instance of the same barrier operation must
be encountered by all threads, e.g., it is not permitted for a
barrier in a then-clause of an if statement executed by (say)
thread 0 to be matched with a barrier in an else-clause of
the same if statement executed by thread 1.

The for construct indicates that the immediately follow-
ing loop can be parallelized and executed in a work-sharing
mode by all the threads in the parallel SPMD region. An
implicit barrier is performed immediately after a for loop,
while the nowait clause disables this implicit barrier. Fur-
ther, a barrier is not allowed to be used inside a for loop.
When the schedule(kind, chunk_size) clause is attached
to a for construct, its parallel iterations are grouped into
batches of chunk size iterations, which are scheduled on the
worker threads according to the policy specified by kind.

In this paper, we restrict our attention to OpenMP par-
allel loops with kind = dynamic and chunk size = 1, which
implies that each iteration can be executed by any thread
in the parallel region. The justification for this assump-
tion is that if a program is proved to be data-race-free with

this assumption, it is guaranteed to be data-race-free for all
schedule clauses. Thus, this is a reasonable assumption to
make when debugging a parallel program.

2.2 Data Race Detection
Data races are a major source of semantic errors in shared

memory parallel programs. In general, a data race occurs
when two or more threads perform conflicting accesses (such
that at least one access is a write) to a shared variable with-
out any synchronization among threads. Complicating mat-
ters, data races may occur only in some of the possible sched-
ules of a parallel program, thereby making them notoriously
hard to detect and reproduce. So, static data race detec-
tion remains open even though there has been significant
progress in recent years on static data race detection for re-
stricted subsets of fork-join and OpenMP programs [19, 29,
18], as well as for higher-level programming models [3, 30,
4], there has been a notable lack of attention paid to static
data race detection for general SPMD programs.

2.3 Polyhedral model
In this section, we summarize polyhedral representations

of sequential programs. The polyhedral model is a flexi-
ble representation for arbitrarily nested loops. Loop nests
amenable to this algebraic representation are called Static
Control Parts (SCoPs) and represented in the SCoP format,
where includes three elements for each statement, namely,
iteration domain, access relations, and schedule. In the orig-
inal formulation of polyhedral frameworks, all array sub-
scripts, loop bounds, and branch conditions in analyzable
programs were required to be affine functions of loop index
variables and global parameters. However, decades of re-
search since then have led to a great expansion of programs
that can be considered analyzable by polyhedral frameworks [11,
12, 13].

Iteration domain, DS : A statement S enclosed by m loops
is represented by an m-dimensional polytope, referred to as
an iteration domain of the statement [17]. Each element in
the iteration domain of the statement is regarded as a state-
ment instance ~i ∈ DS .

Access relation, AS (~i): Each array reference in a state-
ment is expressed through an access relation, which maps
a statement instance ~i to one or more array elements to be
read/written [28]. This mapping is expressed in the affine
form of loop iterators and global parameters; a scalar vari-
able is considered to be a degenerate (zero-dimensional) ar-
ray.

Schedule, ΘS (~i): The sequential execution order of a pro-
gram is captured by the schedule, which maps instance ~i
to a logical time-stamp. In general, a schedule is expressed
as a multidimensional vector, and statement instances are
executed according to the increasing lexicographic order of
their time-stamps.

Scattering function: In the context of polyhedral frame-
works, the term “scattering function” is often used to com-
bine a schedule ΘS (~i) with further information related to par-
allel execution e.g., execution order/location/processor [2,
10]. For example, Parallel execution can be modeled by
schedules in which multiple statement instances are assigned
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the same time stamp.
Most existing polyhedral modeling techniques assume

that the input program is sequential and do not model any
explicit parallelism that may be present in the input pro-
gram. In recent work [8], we addressed the problem of ana-
lyzing and transforming programs with explicit parallelism
(doall and task parallelism in OpenMP 4.0) , that satisfy
the serial-elision property by extending existing polyhedral
modeling techniques. In contrast, this work focuses on ex-
tending the polyhedral model to enable static datarace de-
tection in SPMD programs, which, in general, do not satisfy
the serial elision property.

2.4 Z3 SMT Solver
Z3 is a state of the art theorem prover and SMT solver

from Microsoft Research [16] that is used to check the sat-
isfiability of logical formulae. The output from the solver
can be sat/ un-sat/ un-dec: the input logical formula is sat-
isfiable (there exists an assignment that marks logical for-
mula as true)/ unsatisfiable/ undecidable. The Z3 solver
is best used as a component in the context of other tools
that require solving logical formulae and exposes many API
facilities to make it convenient for tools to map into Z3.
It has support for uninterpreted functions, non-linear arith-
metic, divisions, bit vectors operations, recursive datatypes,
and quantifiers. Examples of satisfiability queries submit-
ted to the Z3 solver and responses from it, are presented
in Appendix A.

3. OVERVIEW OF OUR APPROACH
Our approach considers a read/ write or write/write pair

on the same shared variable in the same parallel region to
be a data race, and generates race constraints accordingly.
This race constraint encodes the necessary conditions for
conflicting accesses to that shared variable by two threads.
These race constraints are fed unto the Z3 SMT solver to
check for the existence of solutions.

Figure 1: Overview of our approach

The overall approach is summarized in Figure 1, and con-
sists of the following components: 1) Conversion from input
OpenMP-C code to an extended polyhedral representation.
This step involves generating PET data structures [27, 26]
from the Clang AST and converting the PET data struc-
tures to an extended polyhedral representation (SCoP),
2) Race constraint generator to generate race conditions,
3) Z3 SMT solver to compute a solution to the race con-
ditions (if one exists). Currently, the implementations of

generating race constraints from the extended polyhedral
representation (Component 2) and integrating with the Z3
solver (Component 3) are still work in progress. To ex-
plain the proposed approach, we discuss two simple SPMD
examples containing worksharing constructs and barrier di-
rectives that represent common patterns found in OpenMP
programs. We intentionally inserted data races in these ex-
amples, to illustrate how they are detected by our approach.

3.1 Example 1

Listing 1: Example of a race between statements inside different
worksharing constructs

1 // tid - Thread id
2 // T - Total number of threads
3 #pragma omp parallel shared (A) {
4 #pragma omp for schedule (dynamic ,1) nowait
5 for (int i = 0; i < N; i++) {
6 S1: A[i] = ... ;
7 }

9 #pragma omp for schedule (dynamic ,1)
10 for (int j = 0; j < N; j++) {
11 S2: ... = A[j];
12 }
13 }

The parallel region in Listing 1 spans the block of code
from line 3 to line 13. The first for-loop is parallelized (at
line 4) to produce values of the array A. Similarly, the sec-
ond for-loop is parallelized (at line 9) to consume values
of the array A. This pattern is very common in many ap-
plication programs, often with multidimensional loops and
multidimensional arrays (e.g., see the applu application in
the SPEC OMP benchmark suite). The problem in this
example arises from the fact that the first loop contains a
nowait clause. There are many plausible reasons why the
nowait clause may have been inserted by the programmer.
For example, it’s possible that the second loop did not orig-
inally contain an access of A[j] when the nowait clause was
inserted in the first loop. As a result, the later addition of
a read access to A[i] in the second loop leads to a data
race between the thread that produces an element of array
A in line 6 and the thread that consumes that element in
line 11. Another reason may be that the code was origi-
nally written with static schedule clauses, and later changed
to dynamic scheduled clauses for improved load balance (if,
say, the statements S1 and S2 have non-uniform execution
times). (Note that this data race is possible because of the
dynamic clause; there would not be a data race if both loops
had static clauses instead.)

We observe that existing polyhedral based race detection
tools, such as ompVerify, are unable to identify such races
since they concentrate on races among statements within
a given parallel for-loop [3]. Our race detection tool iden-
tifies such races by using our extended polyhedral frame-
work to generate constraints for each pair of read/write or
write/write accesses on the same shared variable in the same
parallel region. For example, the race constraint between
the write of A[i] at line 6 and the read of A[j] at line 11 is
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generated as follows:

(0 ≤ i < N) ∧ (0 ≤ j < N) ∧ (i = j) ∧ (0 ≤ tidi < T )

∧ (0 ≤ tid j < T ) ∧ (tidi , tid j) ∧ (0 = 0)

where T, tidi and tid j represent the total number of threads,
the thread id that executes iteration ‘i’ in the first for-loop
and thread id that executes iteration ‘j’ in the second for-
loop respectively. This modeling of dynamic schedules in
worksharing loops and of the nowait clause are discussed
in Section 4 and Section 5.

3.2 Example 2

Listing 2: Example of a race between statements within a sequen-
tial loop nest and separated by a barrier

1 // tid - Thread id
2 // T - Total number of threads
3 #pragma omp parallel shared (A) {
4 for (int i = 0; i < N; i++) {
5 for (int j = 0; j < N; j++) {
6 S1: int temp = A[tid + i + j];
7 #pragma omp barrier
8 S2: A[tid] += temp;
9 }

10 }
11 }

Listing 2 shows another parallel region (from lines 3-11),
which consists of a sequential doubly nested loop enclosing
a set of statements (at lines 6, 8) and a barrier (at line 7)
between them. This pattern is commonly used in accel-
erator programming where each thread proceeds in a lock
step fashion. An example to in which arrays are accessed
using the thread identifier can be seen in the kmeans ap-
plication in the Rodinia benchmark suite [9]. Line 6 reads
data to a temporary variable from the shared array A with
the index of tid+i+j and Line 8 reads the data from the
temporary variable to update the shared array A with the
index of tid. Note that tid represents the thread iden-
tifier, which can be obtained via the OpenMP runtime li-
brary omp_get_thread_num(). Although the programmer
provided an explicit barrier to prevent a race in a given i,j-
iteration across multiple threads between statement S1 read-
ing from A[tid+i+j] and statement S2 writing to A[tid],
the data race in this example is due to the lack of synchro-
nizations across the j-iterations; thereby the S1’s read access
of A[tid+i+j] on the next j-iteration can execute in parallel
with an update of the same location (A[tid]) performed in
statement S2 by another thread. This bug can be fixed by
inserting another barrier after statement S2. Existing static
race detection tools for OpenMP are unable to identify such
races arising from barriers nested within loops, because do-
ing so requires static analysis to detect which statement in-
stances in nested loop structures are synchronized/ordered
via such synchronization constructs [29]. Our modeling of
barriers is discussed in Section 4.

4. POLYHEDRAL EXTENSIONS TO SPMD

PROGRAMS

4.1 Extended Polyhedral Representation
The scattering function is a key data structure present

in the SCoP intermediate representation used in polyhedral

frameworks. It is used to describe the order in which state-
ment instances have to be executed relative to each other,
and contains a schedule map of the form ΘS (~i), which as-
signs logical timestamps to the statement instances S (~i).
These timestamps indicate the logical time at which differ-
ent statement instances should be executed (in lexicographic
increasing order of timestamps). These logical timestamps
can be multidimensional (in the case of multidimensional
schedules) to simplify the representation of ordering infor-
mation among the statements in a sequential program.

A major difference between a sequential program and an ex-
plicitly parallel program (such as OpenMP) is that a sequen-
tial program specifies a total execution order among state-
ment instances, and an explicitly parallel program specifies
a partial execution order. The existing schedule function
(ΘS (~i)) for sequential programs captures the total execution

order very effectively. The same schedule function (ΘS (~i))
can also specify parallelism by assigning the same logical
timestamp to multiple statement instances, thereby indicat-
ing that they can be executed at the same time. But, this
representation is not sufficient to specify the kinds of par-
allelism and synchronization constructs present in SPMD
parallel programs (e.g., barriers, point-to-point synchroniza-
tions). In this paper, the scattering function of a statement
is extended with additional mapping information such as al-
location (space) and computational phase (phase) to capture
the precise semantics of SPMD OpenMP constructs. We re-
fer to this kind of scattering function as a (space/ phase/
time) mapping. The semantics of this mapping is explained
below.

4.2 Allocation (space) mapping, ΘS
A
(~i)

Allocation (space) mapping assigns processor stamps that
indicate the logical processor on which a statement instance
S (~i) has to be executed. Algorithm 1 shows2 the overall
approach to compute space mapping for a given SPMD-
style OpenMP parallel region with support for regular state-
ments, worksharing constructs and barriers, while deferring
support for other OpenMP constructs to future work. We
replace the parallel region header by a logical parallel loop
that iterates over threads (with the iterator tid) as a con-
venience for computing spaces. The iteration vector of a
statement outside worksharing regions explicitly contains
tid, e.g., ~i = (tid, i, j) in Listing 2, while statements within
worksharing regions have regular iteration vectors.

In the case of a worksharing for-loop with a dynamic
schedule, the mapping function between the loop iterator
and processor is not known at compile time. So, we represent
its processor mapping with an existential quantifier. On
the other hand with static schedule, the mapping function
is non-affine (with the chunk size and number of threads
as parameters); as mentioned earlier, we defer support for
static schedules to future work. The space mappings for
statements (S1, S2) in the OpenMP program in Listing 1
are as follows:

{[ΘS 1
A ( ~iS 1)]→ [t1] : exists x : 0 ≤ x < T and t1 == x}

{[ΘS 2
A ( ~iS 2)]→ [t2] : exists x : 0 ≤ x < T and t2 == x}

2We chose to describe this mapping as an algorithm rather
a formal definition, for ease of presentation.
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Algorithm 1 Algorithm to compute space mapping

1: Input:

2: R, S: A given SPMD-style OpenMP parallel region R
with a set of statements, S.

3: Output:

4: ΘS i

A
(~i), mapping from statement instances to logical pro-

cessors (worker threads).
5: Method:

6: for each statement Si in S do

7: if Si is part of worksharing for-loop then

8: { [ΘS i

A
(~iS )] → [t] : exists x: 0 ≤ x < T and t == x }

(in isl-notation)
/* T is symbolic parameter that represents the to-
tal number of threads. The exists clause captures
the semantics of the dynamic schedule clause, by
indicating that any thread can be chosen. We de-
fer support for the static schedule clause to future
work. */

9: else

10: { [ΘS i

A
(~iS )] → [tid] } (in isl-notation)

/* tid refers to the “current” SPMD thread.*/
11: end if

12: end for

4.3 Phase mapping, ΘS
P
(~i)

A key property of SPMD programs is that their execu-
tion can be partitioned into a sequence of phases separated
by barriers. It has been observed in past work that state-
ments from different execution phases cannot execute con-
currently [31]. Thus, only pairs of data accesses that execute
within the same phase need to be considered as potential
candidates for data races.

The phase mapping assigns a logical identifier, that we
refer to as a phase stamp, to each statement instance S (~i).
Thus, statement instances are executed according to increas-
ing lexicographic order of their phase-stamps. Algorithm 2
summarizes the overall algorithm to compute the phase map-
ping in a given SPMD-style OpenMP parallel region, which
can include barriers within sequential perfectly nested loops.
(We defer computing phases for barriers enclosed within im-
perfect loop nests to future work.) Phase stamps can be
multidimensional, just like timestamps in schedules.

Reaching barriers for a statement ‘S’ is defined as a set
of barriers (including barrier instances if barriers are inside
loops) that can be executed after the statement ‘S’ with-
out an intervening barrier. Reaching barriers of the state-
ment are computed from control flow graph (CFG) of the
input program, in similar to reaching definitions of a vari-
able. Then, the phase mapping for a statement is computed
as OR of the time stamps for the reaching barriers of that
statement, along with reachability conditions from the state-
ment to the barriers. The phase mappings for statements
(S1, S2) in the OpenMP program in Listing 2 are as follows.

Θ
S 1
P (~i) = (i, j), ~i = (i, j)

Θ
S 2
P (~i) = (i, j + 1) if j < N − 1

(i + 1, 0) if j = N − 1

In case of the statement S2 (i,j), there are two instances of
the barrier (line 7) that can be reachable from the statement
S2. The time stamp of the first barrier instance is (i, j+1)
and it can be reachable if the value of j is less than N-1.

Algorithm 2 Algorithm to compute phase mapping

1: Input:

2: R, S: A given SPMD-style OpenMP parallel region R
with a set of statements as S.

3: Output:

4: ΘS i

P
(~i), mapping from statement instances to phase

stamp.
5: Method:

6: Preprocessing:
7: Assume input program is sequential (being run on single

thread), compute schedules ΘS for all the statements
(considering barriers also as regular statements) in S

8: for each statement Si in S do

9: Compute reaching barriers (BS i
) for the statement Si

based on control flow graph (CFG) of input program
10: for each reaching barrier (b) in BS i

do

11: Θ
S i

P
(~i) = ∨(Θb with reachability conditions between

Si and b)
12: end for

13: end for

The time stamp of the second barrier instance is (i+1, 0)
and it can be reachable if the value of j is N-1, which means
that this barrier is reachable in the first iteration of j-loop
in the next iteration of i-loop.

4.4 Extended Access Relation
Another major difference between a sequential program

and an explicitly parallel program (such as OpenMP) is the
presence of data sharing attributes. In an explicitly parallel
program, array data variables can be declared with different
sharing attributes, such as shared, private, reduction,

etc. These data sharing attributes play an important role
in the analysis of explicitly parallel programs, and are in-
corporated into access relations for the analysis. Variables
declared within parallel regions are also considered to be
private variables.

4.5 May Happen in Parallel Relation, MHP
Parallel programming languages offer many high-level par-

allel constructs to create parallel regions and synchronize
threads. All these parallel constructs indicate the relative
progress and interactions of threads during execution. Fur-
ther, these interactions among threads can impact the pos-
sible execution order of statement instances. For example,
statements before and after a barrier are ordered within a
region as they cannot be executed simultaneously. Knowl-
edge of these possible orderings can be very helpful when
debugging parallel programs.

May-Happen-in-Parallel (MHP) analysis statically deter-
mines if it is possible for execution instances of two state-
ments (or the same statement) to execute in parallel [1].

In general, two statement instances S and T in a parallel
region can be run in parallel if and only if both of them are
in same phase of computation (not ordered by synchroniza-
tion) and are executed by different threads in the region.

MHP(S, T) = true iff (ΘS
A
(~iS ) , ΘT

A(~iT )) ∧ (ΘA
P(~iS ) = ΘT

P(~iT )).
This condition appears quite simple because MHP contains
less information than the Happens Before (HB) relation. If
MHP(S, T) is true, then we know that HB(S, T) and HB(T,
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S) must both be false. However, if MHP(S, T) is false, then
we know that one of HB(S, T) and HB(T, S) must both be
true and the other false, but there is insufficient information
in MHP(S, T) to indicate which is which.

5. DATA RACE DETECTION ALGORITHM

FOR SPMD PROGRAMS
We identify data races in SPMD-style parallel programs

by taking advantage of extra semantic information provided
by the user via explicit parallel constructs/ directives in the
program. Our approach relies on the phase/ space mapping
introduced in Section 4 for May-Happen-in-Parallel (MHP)
analysis. The scope of applicability has limitations due to
the current restriction on the barrier timestamp modeling
and its assumption of a perfect loop nets, which will be
addressed in future work.

5.1 Algorithm
Algorithm 3 shows the overall approach to identify a race

between a given pair of read/ write or write/ write accesses
on the same shared variable in a given SPMD region.

Algorithm 3 Data race detection algorithm

1: Input:

2: R, A, fR, S, ~iS , D
S : Read R in statement S. S reads from

a shared array (or scalar) A with access function fR and

iteration vector ~iS ∈ D
S

3: W, A, fW , T, ~iT , D
T : Write W in statement T. T writes

to a shared array (or scalar) A with access function fW
and iteration vector ~iT ∈ D

T .
4: Method:

5: Generate race constraint as below:
(~iS ∈ D

S ) ∧ (~iT ∈ D
T ) ∧ (fR = fW) ∧ (MHP(S, T) =

true), where MHP(S, T) is defined as: (ΘS
A
(~iS ) , ΘT

A(~iT ))

∧ (ΘA
P(~iS ) = ΘT

P(~iT )).
6: Submit the race constraint to the Z3 SMT solver [16] to

check for the existence of solutions
7: Output:

8: If the race constraint is not satisfiable, there will not be
a race between the accesses fR in statement S and fW in
statement T.

9: If the race constraint is satisfiable, there may be a race
between accesses fR in statement S and fW in statement
T if conservative estimations (for non-affine constructs)
are used in the representation and analysis such as may-
access relations. Otherwise, the identified race is accu-
rate.

10: If the race constraint is undecidable, we still report it
as a potentially false positive race between accesses fR in
statement S and fW in statement T.

Our race detection algorithm considers a read/write or
write/write pair on the same shared variable in the same
parallel region and generates the race constraint accord-
ingly. This race constraint encodes necessary conditions for
conflicting accesses to that shared variable by two threads.
Then, the race constraint is passed onto the Z3 SMT solver
to check for the existence of solutions. If the race constraint
is not satisfiable, then we conclude that there are no races
on those pair of accesses. Our approach is guaranteed to be
exact (with neither false positives nor false negatives) if the

input program satisfies all the standard preconditions of the
polyhedral model (without any non-affine constructs) and
the race constraints are decidable by the Z3 SMT solver. If
the conservative estimations (for non-affine constructs) are
used during representation and analysis such as may-access
relations, then this approach may induce false positives.
With the restrictions over the type of parallel constructs
supported in this paper, the race conditions are restricted
to Presburger formulae. In this case, integer mathematical
libraries such as isl and Omega can be used to provide the re-
quired answer. In future, we plan to consider more general
parallel constructs in SPMD regions such as worksharing
loops with static schedules, critical sections, etc. In these
parallel constructs, the MHP conditions will not always be
Presburger formulae. In order to support such non-affine re-
lations in future, we will need to use the generality of the Z3
SMT solver to check for the satisfiability of the race condi-
tions. In the rest of section, we illustrate the data race detec-
tion algorithm using the examples introduced in Section 3.

5.2 Race detection for Example 1
The iteration domains, scattering functions and access re-

lations of the statements (S1, S2) in the OpenMP program
in Listing 1 are as follows:

• Statement S1:

– Iteration vector, ~iS 1 = (i)

– Domain, DS 1 = { i | 0 ≤ i < N }

– Access function, AS 1( ~iS 1) = (A[i])

– Space/ Phase/ Time mapping,

∗ {[ΘS 1
A

( ~iS 1)]→ [tidS 1] : exists x : 0 ≤ x < T and
tidS 1 == x},

∗ ΘS 1
P

( ~iS 1) = (0),

∗ ΘS 1( ~iS 1) = (0, i)

• Statement S2:

– Iteration vector, ~iS 2 = (j)

– Domain, DS 2 = { j | 0 ≤ j < N }

– Access function, AS 2( ~iS 2) = (A[j])

– Space/ Phase/ Time mapping,

∗ {[ΘS 2
A

( ~iS 2)]→ [tidS 2] : exists x : 0 ≤ x < T and
tidS 2 == x},

∗ ΘS 2
P

( ~iS 2) = (0),

∗ ΘS 2( ~iS 2) = (1, j)

The race constraint between the write of A[i] at line 6
(S1) and the read of A[j] at line 11 (S2) is generated as
follows:

(0 ≤ i < N) ∧ (0 ≤ j < N) ∧ (i = j) ∧ (0 ≤ tidS 1 < T )

∧ (0 ≤ tidS 2 < T ) ∧ (tidS 1 , tidS 2) ∧ (0 = 0)

The condition (tidS 1 , tidS 2) comes from the fact that the
space dimension of these statements should be different i.e,
S1 and S2 should be executed by two different threads. The
implicit barriers at the end of all parallel for loops are
modeled like any other barrier.The presence of the nowait
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clause ensures that all statement instances in this example
execute in the same phase (phase 0), so the condition (0 = 0)

is added to race constraint. If there was not a nowait clause
(which implies that S1 and S2 execute in different phases),
the condition (0 = 1) would have been added to the race
constraint, thereby ensuring that the condition is unsatis-
fiable. With the nowait clause, the race condition shown
above (with the 0 = 0 term) is fed into the Z3 SMT solver
as a satisfiability query and the Z3 returns a valid assign-
ment (i = 0, N = 1, tidS 1 = 0, j = 0, tidS 2 = 1, T = 2) to
the constraint (explained in Appendix A). This assignment
clearly indicates a race between iteration instance (i = 0) of
statement S1 and iteration instance (j = 0) of statement S2.
This race is precise as it doesn’t involve any conservative
estimates based on non-affine constructs.

5.3 Race detection for Example 2
The iteration domains, scattering functions and access re-

lations for the statements S1 and S2 in the OpenMP pro-
gram in Listing 2 are as follows:

• Statement S1:

– Iteration vector, ~iS 1 = (tidS 1, i, j )

– Domain, DS 1 = { (i, j) | 0 ≤ i, j < N }

– Access function, AS 1( ~iS 1) = (A[tidS 1 + i + j])

– Space/ Phase/ Time mapping,

∗ { [ΘS 1
A

( ~iS 1)] → [tidS 1] }

∗ ΘS 1
P

( ~iS 1) = (i, j)

∗ ΘS 1( ~iS 1) = (0, i, 0, j, 0)

• Statement S2:

– Iteration vector, ~iS 2 = (tidS 2, i
′, j′)

– Domain, DS 2 = { (i′, j′) | 0 ≤ i′, j′ < N }

– Access function, AS 2( ~iS 2) = (A[tidS 2])

– Space/ Phase/ Time mapping,

∗ { [ΘS 2
A

( ~iS 2)] → [tidS 2] }

∗

Θ
S 2
P ( ~iS 2) = (i′, j′ + 1) if j′ < N − 1

(i′ + 1, 0) if j′ = N − 1

∗ ΘS 2( ~iS 2) = (0, i′, 0, j′, 1)

The race constraint between the write of A[tid] at line 8
(S2) and the read of A[tid + i + j] at line 6 (S1) is gen-
erated as follows:

(0 ≤ i < N) ∧ (0 ≤ j < N) ∧ (0 ≤ i′ < N) ∧ (0 ≤ j′ < N)

∧ (tidS 1 + i + j = tidS 2) ∧ (tidS 1 , tidS 2)

∧ ((i = i′ + 1 ∧ j = 0 ∧ j′ = N − 1)

∨ (i = i′ ∧ j = j′ + 1 ∧ j′ < N − 1))

These race constraints are fed into the Z3 SMT solver as
a satisfiability query and the Z3 returns a valid assignment
(N=2, i = 1, j = 1, tidS 1 = 0, i′ = 0, j′ = 1, tidS 2 = 2)
to the constraints (explained in Appendix A). This assign-
ment clearly indicates a race between the statement S1 and
S2 across iterations of i,j-loop. This race is precise as
it doesn’t involve any conservative estimates based on non-
affine constructs. We note that recent work on symbolic

analysis of OpenMP programs [29, 18] would not be able to
identify such data races since they do not analyze the com-
putational phases present in the SPMD model that underlies
OpenMP programs.

6. RELATED WORK
There is an extensive body of literature on identifying

races in explicitly parallel programs (at compile-time [19,
29, 18, 3, 30, 4], run-time [23], and hybrid combinations of
both [22]). We focus our discussion on past work that is most
closely related to static analysis techniques for identifying
data races in SPMD-style parallel programs.

Among the static analysis techniques, symbolic approaches
have received a lot of attention in analyzing parallel pro-
grams, especially in the context of OpenMP. Yu et al. [29]
presented a symbolic approach for checking consistency of
multi-threaded programs with OpenMP directives using ex-
tended thread automata (with a tool called Pathg). This
approach uses the Omega library for constraint solving and
a symbolic simulator for guided witness search for consis-
tency. However, their checking is only guaranteed for a fixed
number of worker threads, whereas our approach generates
race constraints based on may-happen-in-parallel relations
for phases in SPMD computations and effectively checks for
data races for all values of numbers of worker threads. Ma et
al. [18] also use a symbolic execution-based approach (run-
ning the program on symbolic inputs and fixed number of
threads) to detect data races and deadlocks in OpenMP
codes, based on constraint solving using an SMT solver.
This tool (called OAT) focuses on a variety of OpenMP di-
rectives such as worksharing, barriers and locks. The data
races and deadlocks reported from this toolkit is applicable
only to a fixed number of input threads unlike our approach
which takes number of threads as variable. Thus, a key dif-
ference between our approach and those based on symbolic
execution, is that we extended the polyhedral framework to
generate constraints that can be applicable to variable num-
ber of worker threads.

Betts et al. [4] presented a technique for verifying race and
divergence freedom of GPU kernels that are written in main-
stream kernel programming languages such as OpenCL and
CUDA. This tool (called GPUVerify) first translates a given
GPU kernel into a sequential Boogie program that models
the lock-step execution of two threads using a two-thread
reduction method. The race freedom of the original kernel
is implied by the correctness of the sequential Boogie pro-
gram. The tool proves the correctness of this program by
using existing modular techniques for program verification.
On the other hand, our approach identify races in the input
parallel SPMD kernel by modeling into the extended poly-
hedral representation without converting into its sequential
Boogie program.

Recent race detection work of Basupalli et.al [3] is based
on polyhedral modeling to identify races in OpenMP parallel
for-loops and is integrated into the standard open source
Eclipse IDE. This tool automatically converts a region of
code into polyhedral representation, and analyzes for data
races using polyhedral analysis techniques. However, this
tool is limited to omp parallel for constructs with work-
sharing loops, whereas our approach is applicable to parallel
SPMD programs in general.

A number of papers addressed the problem of data-flow
analysis of explicitly parallel programs, including adapta-
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tion of array data-flow analysis to X10 programs with fin-
ish/async parallelism [30]. In this approach, the happens-
before relations are first analyzed and the data-flow is com-
puted based on the partial order imposed by happen-before
relations. This extended array dataflow analysis is used to
certify determinacy in X10 finish/ async parallel programs
by identifying the possibility of multiple sources of write for
a given read. Their work [30] does not encompass analysis
of SPMD programs (which would have been possible if their
work also supported X10 programs with clocks).

In our past work [8], we addressed the problem of ana-
lyzing and transforming programs with explicit parallelism
(doall and task parallelism in OpenMP 4.0) that satisfy the
serial-elision property, i.e., the property that removal of all
parallel constructs results in a sequential program that is
a valid implementation of the parallel program semantics.
That work starts by enabling a conservative dependence
analysis of a given region of code, which may contain non-
affine constructs. Next, it identifies happens-before rela-
tions from the explicitly parallel constructs, such as tasks
and parallel loops, and intersects them with the conserva-
tive dependences. Finally, the resulting set of dependences
is passed on to a polyhedral optimizer, such as PLuTo [5, 6]
or PolyAST [25], to enable transformation of explicitly par-
allel programs with unanalyzable data accesses. However,
the approach in [8] does not apply to general SPMD parallel
programs (as in OpenMP parallel regions), since they do not
satisfy the serial-elision property.

7. CONCLUSIONS & FUTURE WORK
This work is motivated by the observation that software

with explicit parallelism is on the rise, and that SPMD par-
allelism is a common model for explicit parallelism as evi-
denced by the popularity of OpenMP, OpenCL, and CUDA..
As with other imperative parallel programming models, data
races are a pernicious source of bugs in the SPMD model.
Complicating matters, data races may occur only in few of
the possible schedules of a parallel program, thereby mak-
ing them extremely hard to detect dynamically. However,
effective approaches to static data race detection remains an
open problem, despite significant progress in recent years.

In this paper, we introduced an extension of the polyhe-
dral model to represent SPMD programs and formalized the
May Happen in Parallel (MHP) relation in this extended
model, by adding “space” and “phase” dimensions to the
scattering function. We also provided an approach for static
detection of data races in SPMD programs by generating
race constraints that can be solved by an SMT solver such
as Z3. Our approach is guaranteed to be exact (with neither
false positives nor false negatives) if the input program sat-
isfies all the standard preconditions of the polyhedral model
(without any non-affine constructs).

In summary, our contributions include the following: 1)
An extension of the polyhedral model to represent SPMD
programs, 2) Formalization of the May Happen in Paral-
lel (MHP) relation in the extended model, 3) An approach
for static detection of data races in SPMD programs by
generating race constraints that can be solved by an SMT
solver such as Z3, and 4) Demonstration of our approach by
automatic generation of race constraints from two sample
OpenMP programs.

As part of future work, we would like to combine the pro-
posed static race detection with dynamic analysis to prune

false positives arising from conservative analysis, as has been
done with hybrid data race detection for Java program [20].
At first, the static analysis can be applied to remove non-
racy accesses. Then, dynamic analysis can be performed
to take care of the rest. This hybrid approach can reduce
false positives from static analysis and reduce unnecessary
runtime overhead incurred by the dynamic analysis.
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APPENDIX

A. Z3 SMT SOLVER

A.1 SMT logical formulae for example 1
The race constraint between the write of A[i] at line 6

(S1) and the read of A[j] at line 11 (S2) is generated as
follows:

(0 ≤ i < N) ∧ (0 ≤ j < N) ∧ (i = j) ∧ (0 ≤ tidS 1 < T )

∧ (0 ≤ tidS 2 < T ) ∧ (tidS 1 , tidS 2) ∧ (0 = 0)

The equivalent Z3 query looks as follows and can be run
in http://rise4fun.com/z3.

(declare-const N Int)

(declare-const i Int)

(declare-const j Int)

(declare-const T Int)

(declare-const tid_s1 Int)

(declare-const tid_s2 Int)

(push)

(assert (>= i 0))

(assert (< i N))

(assert (>= j 0))

(assert (< j N))

(assert (= i j))

(assert (>= tid_s1 0))

(assert (< tid_s1 T))

(assert (>= tid_s2 0))

(assert (< tid_s2 T))

(assert (not( = tid_s1 tid_s2)))

(check-sat)

(get-model)

The output from the Z3 solver is as follows.

sat

(model

(define-fun i () Int

0)

(define-fun N () Int

1)

(define-fun tid_s1 () Int

0)

(define-fun j () Int

0)

(define-fun tid_s2 () Int

1)

(define-fun T () Int

2)

)

One satisfiable assignment to the race constraint is (i = 0,
N = 1, tidS 1 = 0, j = 0, tidS 2 = 1, T = 2).

A.2 SMT logical formulae for example 2
The race constraint between the write of A[tid] at line 8

(S2) and the read of A[tid + i + j] at line 6 (S1) is gen-
erated as follows:

(0 ≤ i < N) ∧ (0 ≤ j < N) ∧ (0 ≤ i′ < N) ∧ (0 ≤ j′ < N)

∧ (tidS 1 + i + j = tidS 2) ∧ (tidS 1 , tidS 2)

∧ ((i = i′ + 1 ∧ j = 0 ∧ j′ = N − 1)

∨ (i = i′ ∧ j = j′ + 1 ∧ j′ < N − 1))

The equivalent Z3 query looks as follows and can be run
in http://rise4fun.com/z3.

(declare-const N Int)

(declare-const i Int)

(declare-const j Int)

(declare-const i1 Int)

(declare-const j1 Int)

(declare-const T Int)

(declare-const tid_s1 Int)

(declare-const tid_s2 Int)

(push)

(assert (>= i 0))

(assert (< i N))

(assert (>= j 0))

(assert (< j N))

(assert (>= i1 0))

(assert (< i1 N))

(assert (>= j1 0))

(assert (< j1 N))

(assert (= i j))

(assert (= (+ (+ tid_s1 i) j) tid_s2))

(assert (not( = tid_s1 tid_s2)))

(assert (or

(and (and (= i i1) (= j (+ j1 1)) )

(< j1 (- N 1)))

(and (and (= i (+ i1 1)) (= j j1) )

(= j1 (- N 1)))))

(check-sat)

(get-model)

The output from the Z3 solver is as follows.

sat

(model

(define-fun i () Int

1)

(define-fun tid_s1 () Int

0)

(define-fun tid_s2 () Int

2)

(define-fun j () Int

1)

(define-fun N () Int

2)

(define-fun i1 () Int

0)

(define-fun j1 () Int

1)

)

One satisfiable assignment to the race constraint is (N=2, i
= 1, j = 1, tidS 1 = 0, i′ = 0, j′ = 1, tidS 2 = 2)
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