
HiPEAC'15
1/19/2015

Towards Automated Characterization of the Data
Movement Complexity of Affine Programs

 V. Elango†, F. Rastello§, L-N Pouchet†, J. Ramanujam‡, P. Sadayappan†

†The Ohio State University §INRIA ‡Louisiana State University

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Un#led	 version	 	

Comp.	 complexity:	 (N-‐1)2	 Ops	 Tiled	 Version	
Comp.	 complexity:	 (N-‐1)2	 Ops	

• Data	 movement	 cost	 is	
different	 for	 two	 versions	

• Also	 depends	 on	 cache	 size	
Ques#on:	 Can	 we	 do	 beJer?	
How	 do	 we	 know	 when	 no	
further	 improvement	 possible?	
Ques#on:	 What	 is	 the	 lowest	
achievable	 data	 movement	
cost	 among	 all	 equivalent	
versions	 of	 the	 computa#on?	

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

CDAG	 for	 N=6	

o CDAG	 abstrac#on:	
– Vertex	 =	 opera#on,	 edge	 =	 data	 dep.	 	

• 2-‐level	 memory	 hierarchy	 with	 S	 fast	
mem	 loca#ons	 &	 infinite	 slow	 locs.	
– To	 compute	 a	 vertex,	 predecessor	 ver#ces	
must	 hold	 values	 in	 fast	 memory	

–  Limited	 fast	 memory	 =>	 computed	 values	
may	 need	 to	 be	 temporarily	 stored	 in	 slow	
memory	 and	 reloaded	

• Inherent	 data	 mvmt.	 complexity	 of	
CDAG:	 Minimal	 #loads+#stores	 among	
all	 possible	 valid	 schedules	

Minimum	 possible	 data	 movement	 cost?	
	 	 	 No	 known	 effec?ve	 solu?on	 to	 problem	

Develop	 upper	 bounds	 on	 min-‐cost	

Develop	 lower	 bounds	 on	 min-‐cost	

Modeling	 Data	 Movement	 Complexity	 	

Theory	 &	 Models	

Tools	 Applica#ons	

1)	 Alternate	 lower	 bounds	
approach	 (graph	 min-‐cut	 based)	
2)	 Composi#on	 of	 lower	 bounds	
3)	 Modeling	 ver#cal	 +	 horizontal	
data	 movement	 bounds	 for	
scalable	 parallel	 systems	 	 	 	 	
	 [SPAA	 ‘14]	
	

1)  Automated	 lower	
bounds	 for	 arbitrary	
explicit	 CDAGs	

2)  Automated	 parametric	
lower	 bounds	 for	 affine	
programs	

	 	 	 	 	 [this	 poster;	 POPL	 ’15]	

1)	 Compara#ve	 analysis	 of	
algorithms	 via	 lower	 bounds	
2)	 Assessment	 of	 compiler	
effec#veness	 	
3)	 Algorithm/architecture	 co-‐
design	 space	 explora#on	 	
	 [ACM	 TACO	 ’14,	 Hipeac	 ’15]	

Our	 work:	 Sta?c	 analysis	 to	 automate	 asympto?c	 parametric	 lower	
bounds	 analysis	 of	 affine	 codes	 for	 CDAG	 model	 	

o Linear-‐Algebra-‐like	 algorithms:	
§ Irony	 et	 al.	 (2004)	 and	 Ballard	 et	 al.	
(2011):	 Geometric	 approach	 based	
on	 geometric	 inequality	 	

§ Christ	 et	 al.	 (2013):	 Automa#on,	
based	 on	 generalized	 geometric	 HBL	
inequality	 (Holder-‐Brascamp-‐Lieb)	

§ (+)	 Automated	 asympto#c	
parametric	 lower	 bound	 expressions,	
e.g.,	 O(N3/sqrt(S))	 for	 NxN	 mat-‐mult	

§ (-‐)	 Restricted	 computa#onal	 model:	
weakness	 of	 bounds	 or	
inapplicability	

o Arbitrary	 CDAGs:	
§ Hong	 &	 Kung	 (1981):	 strong	
rela#on	 between:1)	 Data	
movement	 cost	 for	 a	 CDAG	
schedule,	 and	 2)	 Number	 of	
vertex-‐sets	 in	 “2S-‐par##on”	
of	 CDAG	

§ Change	 from	 reasoning	 about	
all	 valid	 schedules	 to	 all	 valid	
2S-‐par##ons	 of	 graph	

§ (+)	 Generality	
§ (-‐)	 Manual	 CDAG-‐specific	
reasoning	 =>	 challenge	 to	
automate	

Lower	 Bounds:	 Geometric	 Reasoning	 with	 Data	 Footprints	

Prior	 Work:	 Data	 Movement	 Lower	 Bounds	 Lower	 Bounds	 for	 CDAGs:	 Geometric	 Reasoning	

Lower	 Bounds:	 Research	 Direc?ons	

CDAG	 Lower	 Bounds:	 Hong/Kung	 S-‐Par??oning	
for	 (i=0;	 i<N;	 i++)	
	 	 for	 (j=0;j<N;j++)	
	 	 	 	 if	 (i	 <>	 j)	 	 force[i]	 +=	 	
	 	 	 	 func(pos[i],pos[j])	

E	

i	

j	 …...	
Ei	

Ej	

…
...	

Load	

Load	

Load	

Load	

Load	

Load	

Load	

Store	

Store	

Store	

Store	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

Ti
m

e

Se
g.

 1

Se
g.

 2

Se
g.

 3

S
o

u
rc

e
:

J
im

 D
e

m
m

e
l

	 2D	 Loomis-‐Whitney	 Inequality	 	 	 	 	 	 	
|E|	 <=	 |Ei|*|Ej|	 	

o Loomis-‐Whitney	 inequality	 (2D):	
bounds	 #points	 in	 a	 set	 by	 product	 of	
#	 projected	 points	 on	 coordinate	 axes	

o Prior	 work:	 Uses	 Loomis-‐Whitney	
inequality	 &	 generaliza#on	 (Holder-‐
Brascamp-‐Lieb)	 for	 lower	 bounds	 for	
linear-‐algebra-‐like	 computa#ons	
§ Projec#ons	 of	 itera#on-‐space	
points	 <==>	 Data	 footprint	 	

§ Geometric	 inequality:	 Bound	 max.	
#of	 ops	 for	 a	 given	 #	 of	 data	 moves	

o Divide	 execu#on	 trace	 into	 segments	 with	
S	 load/stores	 (3	 in	 ex.)	

o Within	 each	 segment,	 #dis#nct	 elements	
of	 pos[]	 <=	 2S	 (up	 to	 S	 coming	 into	
segment	 in	 scratchpad	 and	 another	 S	
explicitly	 loaded)	

o For	 code	 example,	 projec#on	 of	 Stmt(i,j)	
onto	 i-‐axis	 maps	 to	 data	 element	 pos[i];	
similarly	 for	 j-‐axis	 Max.	 #	 dis#nct	 elts	 of	
pos[i]	 or	 pos[j]	 read	 in	 any	 segment	 <=	 2S	

o By	 Loomis-‐Whitney,	 max.	 #	 itera#on	
points	 in	 any	 segment,	 |P|	 <=	 2S*2S	

o Min.	 #segments	 >=	 N2/4S2;	 each	 seg.	 (but	
last)	 has	 S	 load/stores	

o #load/stores	 >=	 (N2/4S2-‐1)*S	 =	 Ω(N2/S)	

Geometric	 Reasoning	 with	 Data	 Footprints:	 Limita?ons	
for (i=0; i<N; i++)
 for (j=0;j<N;j++)
 for (k=0;k<N;k++)
 C[i][j] += A[i][k]*B[k][j];

for (i=0; i<N; i++)
 for (j=0;j<N;j++)
 for (k=0;k<N;k++) {
 C[i][j] += 1;
 A[i][k] += 1;
 B[k][j] += 1;
 }

Same access functions
⇒ same analysis result
LB = Ω(N3/√S)

for (i,j,k) C[i][j] += 1;
for (i,j,k) A[i][k] += 1;
for (i,j,k) B[k][j] += 1;

Loop Distribution	

Semantically equivalent
code after loop distribution:
but different IO lower bound
LB = Ω(N2)

o Cannot	 handle	 mul#-‐
statement	 programs	
§ Computa#ons	 with	 very	
different	 data	 mvmt.	
Rqmts.	 but	 same	 array	
access	 footprint	 =>	 same	 LB	

§ Seman#cs	 preserving	 loop	
transforma#ons	 can	 result	
in	 change	 to	 lower	 bound	

o Cannot	 model	 effect	 of	 data	
dependences	
§ Dependences	 may	 impose	 	
constraints	 =>	 higher	 data	
movement	 cost	 than	
footprint	 analysis	 reveals	

§ Example:	 1D	 Jacobi	 –	
footprint	 based	 geometric	
analysis	 cannot	 derive	
known	 LB	 of	 Ω(NT/S)	 	

for (t=1; t<T; t++) {
 for (i=1; i<N-1; i++)
 B[i] = A[i-1]+A[i]+A[i+1];
 for (i=1; i<N-1; i++)
 A[i] = B[i];
}

Contributions: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

· Apply geometric reasoning on Z-polyhedra to bound |P|

21

Load	

Load	

Load	

Load	

Load	

Load	

Load	

Store	

Store	

Store	

Store	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

Store	

Load	

….	

1	

1	

2	

2	

3	

3	

4	

4	

5	

6	

7	

5	

6	

7	

VS1	

VS2	

VS3	

Total	 of	 NS	 Segments	

Se
gm

en
t 1

Se

gm
en

t 2

Se
gm

en
t 3

o Any	 valid	 schedule	 using	 S	 registers	 is	
associated	 with	 a	 2S-‐par##on	 of	 CDAG	
§ Divide	 trace	 into	 segments	 incurring	
exactly	 S	 load/stores	

§ Ops	 executed	 in	 segment-‐i	 form	 a	
convex	 vertex	 set	 VSi	

§ |In(VSi)|	 <=	 2S	 (up	 to	 S	 from	 prev.	
segment	 and	 up	 to	 S	 new	 loads)	

§ Each	 segment	 (except	 last)	 has	 S	 loads/
stores	 =>	 S*NS	 >=	 Total	 I/O	 >=S*(NS-‐1)	

§ Reasoning	 about	 minimum	 #vertex	 sets	
for	 any	 valid	 2S-‐par##on	 =>	 Lower	
bound	 on	 #	 loads/stores	

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

o Analyze	 	 CDAG	 structure	
§ Establish	 Max	 |VSi|	 <=	 VSmax(S)	
§ =>	 Min.	 #	 vertex	 sets	 =	 NSmin(S)	 =	 	
Nver#ces/VSmax(S)	

§ =>	 IOmin(S)	 >=	 (NSmin-‐1)*S	
§ In	 example:	 S=2,	 	 Nver#ces=16	
§ VSmax(S)	 =	 4	 	 =>	 	 NSmin=	 16/4	 =	 4	
§ IOmin	 >=	 2*(4-‐1)	 =	 6	

Background

Hong & Kung’s S-partitioning

I/O lower bounding technique based on graph partitioning.

Valid with and without re-computation.

Definition (SNR-partitioning – Recomputation prohibited)

Given a CDAG C, an SNR-partitioning of C is a collection of h subsets of V \ I
such that:

P1 8i 6= j, Vi \Vj = /0, and
Sh

i=1 Vi = V \ I

P2 there is no cyclic dependence between subsets

P3 8i, |In(Vi)| S

P4 8i, |Out(Vi)| S

In(Vi): set of vertices of V \Vi that have at least one successor in Vi.

Out(Vi): set of vertices of Vi that are also part of the output set O or that
have at least one successor outside of Vi.

POPL 2015 9 / 27

S-‐Par??on	 of	 CDAG	
sa?sfies	 4	 proper?es	

o How	 to	 upper-‐bound	 |VSi|for	 any	
valid	 2S-‐par##on?	

o Key	 Idea:	 Use	 geometric	 inequality,	
but	 relate	 itera#on	 points	 to	 In(VSi)	
and	 not	 data	 footprint	
§ Find	 rays	 corresponding	 to	
dependence	 chains	 =>	 projec#ons	

§ Projected	 points	 from	 VSi	 must	 be	
subset	 of	 In(VSi)	 	

§ Transform	 itera#on	 space	 so	 that	
rays	 are	 along	 coordinate	 axes	

for (t=1; t<T; t++) {
 for (i=1; i<N-1; i++)
 B[i] = A[i-1]+A[i]+A[i+1];
 for (i=1; i<N-1; i++)
 A[i] = B[i];
}

Parameters:	 N,	 T	
Inputs:	 In[N];	 Outputs:	 A[N]	
for	 (i=0;	 i<N;	 i++)	 	
	 	 	 A[i]	 =	 In[i];	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 S1	 	
for	 (t=0;t<T;t++)	 {	
	 	 for(i=1;i<N-‐1;i++)	
	 	 	 	 B[i]	 =	 A[i-‐1]+A[i]+A[i+1];	 	 S2	
	 	 for(i=1;i<N-‐1;i++)	
	 	 	 	 A[i]	 =	 B[i];	 }	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 S3	

5.3 Automated I/O Lower Bound Computation

We present a static analysis algorithm for automated derivation
of expressions for parametric asymptotic I/O lower bounds for
programs. We use two illustrative examples to explain the various
steps in the algorithm before providing the detailed pseudo-code
for the full algorithm.

Illustrative example 1: Consider the following example of Jacobi
1D stencil computation.

Parameters: N, T
Inputs: I[N]
Outputs: A[N]

for (i=0; i<N; i++)
S1: A[i] = I[i];

for (t=1; t<T; t++)
{
for (i=1; i<N-1; i++)

S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N-1; i++)
S3: A[i] = B[i];

}

I

S1

�e1�

S2

�e2� �e3� �e4� �e5� �e6�

S3

�e7� �e8��e9� �e10�

Figure 6: Data-flow graph for Jacobi 1D

Fig. 6 shows the static data-flow graph GF =(VF ,EF) for Jacobi
1D. GF contains a vertex for each statement in the code. The input
I is also explicitly represented in GF by node I (shaded in black in
Fig. 6). Each vertex has an associated domain as shown below:
• DI =[N]->{I[i]:0<=i<N}
• DS1 =[N]->{S1[i]:0<=i<N}
• DS2 =[T,N]->{S2[t,i]:1<=t<T and 1<=i<N-1}
• DS3 =[T,N]->{S3[t,i]:1<=t<T and 1<=i<N-1}

The edges represent the true (read-after-write) data dependences
between the statements. Each edge has an associated affine depen-
dence relation as shown below:
• Edge e1: This edge corresponds to the dependence due to copy-

ing the inputs I to array A at statement S1 and has the following
relation.
[N]->{I[i]->S1[i]:0<=i<N}

• Edges e2, e3 and e4: The use of array elements A[i-1], A[i]
and A[i+1] at statement S2 are captured by edges e2, e3 and
e4, respectively.

[T,N]->{S1[i]->S2[1,i+1]:1<=i<N-2}
[T,N]->{S1[i]->S2[1,i]:1<=i<N-1}
[T,N]->{S1[i]->S2[1,i-1]:2<=i<N-1}

• Edges e5 and e6: Multiple uses of the boundary elements
I[0] and I[N-1] by A[t][1] and A[t][N-2], respectively,
for 1<=t<T are represented by the following relations.
[T,N]->{S1[0]->S2[t,1]:1<=t<T}
[T,N]->{S1[N-1]->S2[t,N-2]:1<=t<T}

• Edge e7: The use of array B in statement S3 corresponds to edge
e7 with the following relation.
[T,N]->{S2[t,i]->S3[t,i]:1<=t<T and 1<=i<N-1}

• Edges e8, e9 and e10: The uses of array A in statement S2 from
S3 are represented by these edges with the following relations.
[T,N]->{S3[t,i]->S2[t+1,i+1]:1<=t<T-1 and 1<=i<N-2}
[T,N]->{S3[t,i]->S2[t+1,i]:1<=t<T-1 and 1<=i<N-1}
[T,N]->{S3[t,i]->S2[t+1,i-1]:1<=t<T-1 and 2<=i<N-1}

Given a path p=(e1, . . . ,el) with associated edge relations (R1, . . . ,Rl),
the relation associated with p can be computed by composing
the relations of its edges, i.e., relation(p) = Rl ◦ · · · ◦ R1. For
instance, the relation for the path (e7,e8) in the example, ob-
tained through the composition Re8 ◦Re7 , is given by Rp = [T,N]
-> {S2[t,i] -> S2[t+1,i+1]}. Further, the domain and im-
age of a composition are restricted to the points for which the
composition can apply, i.e., domain(R j ◦Ri) = Ri

−1(image(Ri)∩
domain(R j)) and image(R j ◦Ri) = R j(image(Ri)∩domain(R j)).
Hence, domain(Rp) = [T,N] -> {S2[t,i] : 1<=t<T-1 and
1<=i<N-2} and image(Rp) = [T,N] -> {S2[t,i] : 2<=t<T
and 2<=i<N-1}.

Two kinds of paths, namely, injective circuit and broadcast
path, defined below, are of specific importance to the analysis.

DEFINITION 6 (Injective edge and circuit). An injective edge a is
an edge of a data-flow graph whose associated relation Ra is both

affine and injective, i.e., Ra = A.⃗x + b⃗, where A is an invertible
matrix. An injective circuit is a circuit E of a data-flow graph such
that every edge e ∈ E is an injective edge.

DEFINITION 7 (Broadcast edge and path). A broadcast edge b is
an edge of a data-flow graph whose associated relation Rb is affine
and dim(domain(Rb)) < dim(image(Rb)). A broadcast path is a
path (e1, . . . ,en) of a data-flow graph such that e1 is a broadcast
edge and ∀n

i=2ei are injective edges.

Injective circuits and broadcast paths in a data-flow graph essen-
tially indicate multiple uses of same data, and therefore are good
candidates for lower bound analysis. Hence only paths of these two
kinds are considered in the analysis. The current example of Jacobi
1D computation illustrates the use of injective circuits to derive I/O
lower bounds, while the use of broadcast paths for lower bound
analysis is explained in another example that follows.
Injective circuits: In the Jacobi example, we have three circuits
to vertex S2 through S3. The relation for each circuit is computed
by composing the relations of its edges as explained earlier. The
relations, and the dependence vectors they represent, are listed
below.
• Circuit c1 = (e7,e8):

Rc1 = [T,N] -> {S2[t,i]->S2[t+1,i+1] : 1<=t<T-1 and
1<=i<N-2}
b⃗1 = (1,1)T

• Circuit c2 = (e7,e9):
Rc2 = [T,N] -> {S2[t,i]->S2[t+1,i] : 1<=t<T-1 and
1<=i<N-1}
b⃗2 = (1,0)T

• Circuit c3 = (e7,e10):
Rc3 = [T,N] -> {S2[t,i]->S2[t+1,i-1] : 1<=t<T-1 and
2<=i<N-1}
b⃗3 = (1,−1)T

o Use	 ISL	 to	 find	 all	 “must”	 data	 flow	
dependences	

o Cycles	 data	 dep.	 graph	 ==	 “rays”	 in	 the	 CDAG	
o Generalized	 geom.	 inequality	 allows	 different	
dimensional	 orthogonal	 projec#ons	
§ Parametric	 exponents	 in	 inequality:	 sum	 of	
weighted	 ranks	 of	 projected	 subspaces	
must	 exceed	 rank	 of	 full	 itera#on	 space	

§ solve	 a	 linear	 program	 to	 find	 op#mal	
weights	

§ =>	 asympto#c	 parametric	 I/O	 lower	 bound	
for	 affine	 program	

Background

Loomis-Whitney Inequality

E ⇢ Rd an open subset in the euclidian d-space
f1(E), . . . ,fd(E) its projections on the coordinates hyperplanes

Then,

|E|
d

’
j=1

|fj(E)|1/(d�1)

Application to a 2d-case example (d = 2):

|P| |Pi|⇥ |Pj|.

for(i=0;i<N;i++)
for(j=0;j<N;j++)
if (i <> j) force(i)
+= f(mass(i),mass(j),pos(i),pos(j));

max(|Pi| , |Pj|) |Pi [Pj| |In(P)| 2S
=) |P| 4S2

POPL 2015 12 / 27

Background

Brascamp-Lieb inequality

Generalizes Loomis-Whitney – allows more general linear maps, not
necessarily all mapping onto spaces of the same dimension.
Further generalized by Bennett et al.

|E|
d
’
j=1

|fj(E)|1/(d�1) |E|
m
’
j=1

|fj(E)|sj s.t., 8i, 1 Âm
j=1 sidi,j

where,
(s1, . . . ,sm) 2 [0,1]m

fj : Rd ! Rdj are orthogonal projections
di,j : dim(fj(span(�!ei))) – where �!ei , i-th canonical vector.

Example: f1 : (i, j,k)! (i) and f2 : (i, j,k)! (j,k)

We get D =

0

@
1 0
0 1
0 1

1

A

Which leads to |E| |f1(E)|s1 ⇥ |f2(E)|s2 s.t., 1 s1 ^1 s2

POPL 2015 13 / 27

