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for (i=1; i<N-1; i++) 
  for (j=1;j<N-1; j++) 
    A[i][j] = A[i][j-1] + A[i-1][j]; 

for(it = 1; it<N−1; it +=B) 
  for(jt = 1; jt<N−1; jt +=B) 
    for(i = it; i < min(it+B, N−1); i++) 
      for(j = jt; j < min(jt+B, N−1); j++)  
        A[i][j] = A[i−1][j] + A[i][j−1]; Un#led	  version	  	  

Comp.	  complexity:	  (N-‐1)2	  Ops	   Tiled	  Version	  
Comp.	  complexity:	  (N-‐1)2	  Ops	  

• Data	  movement	  cost	  is	  
different	  for	  two	  versions	  

• Also	  depends	  on	  cache	  size	  
Ques#on:	  Can	  we	  do	  beJer?	  
How	  do	  we	  know	  when	  no	  
further	  improvement	  possible?	  
Ques#on:	  What	  is	  the	  lowest	  
achievable	  data	  movement	  
cost	  among	  all	  equivalent	  
versions	  of	  the	  computa#on?	  
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Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.
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Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in
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CDAG	  for	  N=6	  

o CDAG	  abstrac#on:	  
– Vertex	  =	  opera#on,	  edge	  =	  data	  dep.	  	  

• 2-‐level	  memory	  hierarchy	  with	  S	  fast	  
mem	  loca#ons	  &	  infinite	  slow	  locs.	  
– To	  compute	  a	  vertex,	  predecessor	  ver#ces	  
must	  hold	  values	  in	  fast	  memory	  

–  Limited	  fast	  memory	  =>	  computed	  values	  
may	  need	  to	  be	  temporarily	  stored	  in	  slow	  
memory	  and	  reloaded	  

• Inherent	  data	  mvmt.	  complexity	  of	  
CDAG:	  Minimal	  #loads+#stores	  among	  
all	  possible	  valid	  schedules	  

Minimum	  possible	  data	  movement	  cost?	  
	  	  	  No	  known	  effec?ve	  solu?on	  to	  problem	  

Develop	  upper	  bounds	  on	  min-‐cost	  

Develop	  lower	  bounds	  on	  min-‐cost	  

Modeling	  Data	  Movement	  Complexity	  	  

Theory	  &	  Models	  

Tools	   Applica#ons	  

1)	  Alternate	  lower	  bounds	  
approach	  (graph	  min-‐cut	  based)	  
2)	  Composi#on	  of	  lower	  bounds	  
3)	  Modeling	  ver#cal	  +	  horizontal	  
data	  movement	  bounds	  for	  
scalable	  parallel	  systems	  	  	  	  	  
	  [SPAA	  ‘14]	  
	  

1)  Automated	  lower	  
bounds	  for	  arbitrary	  
explicit	  CDAGs	  

2)  Automated	  parametric	  
lower	  bounds	  for	  affine	  
programs	  

	  	  	  	  	  [this	  poster;	  POPL	  ’15]	  

1)	  Compara#ve	  analysis	  of	  
algorithms	  via	  lower	  bounds	  
2)	  Assessment	  of	  compiler	  
effec#veness	  	  
3)	  Algorithm/architecture	  co-‐
design	  space	  explora#on	  	  
	  [ACM	  TACO	  ’14,	  Hipeac	  ’15]	  

Our	  work:	  Sta?c	  analysis	  to	  automate	  asympto?c	  parametric	  lower	  
bounds	  analysis	  of	  affine	  codes	  for	  CDAG	  model	  	  

o Linear-‐Algebra-‐like	  algorithms:	  
§ Irony	  et	  al.	  (2004)	  and	  Ballard	  et	  al.	  
(2011):	  Geometric	  approach	  based	  
on	  geometric	  inequality	  	  

§ Christ	  et	  al.	  (2013):	  Automa#on,	  
based	  on	  generalized	  geometric	  HBL	  
inequality	  (Holder-‐Brascamp-‐Lieb)	  

§ (+)	  Automated	  asympto#c	  
parametric	  lower	  bound	  expressions,	  
e.g.,	  O(N3/sqrt(S))	  for	  NxN	  mat-‐mult	  

§ (-‐)	  Restricted	  computa#onal	  model:	  
weakness	  of	  bounds	  or	  
inapplicability	  

o Arbitrary	  CDAGs:	  
§ Hong	  &	  Kung	  (1981):	  strong	  
rela#on	  between:1)	  Data	  
movement	  cost	  for	  a	  CDAG	  
schedule,	  and	  2)	  Number	  of	  
vertex-‐sets	  in	  “2S-‐par##on”	  
of	  CDAG	  

§ Change	  from	  reasoning	  about	  
all	  valid	  schedules	  to	  all	  valid	  
2S-‐par##ons	  of	  graph	  

§ (+)	  Generality	  
§ (-‐)	  Manual	  CDAG-‐specific	  
reasoning	  =>	  challenge	  to	  
automate	  

Lower	  Bounds:	  Geometric	  Reasoning	  with	  Data	  Footprints	  

Prior	  Work:	  Data	  Movement	  Lower	  Bounds	   Lower	  Bounds	  for	  CDAGs:	  Geometric	  Reasoning	  

Lower	  Bounds:	  Research	  Direc?ons	  

CDAG	  Lower	  Bounds:	  Hong/Kung	  S-‐Par??oning	  
for	  (i=0;	  i<N;	  i++)	  
	  	  for	  (j=0;j<N;j++)	  
	  	  	  	  if	  (i	  <>	  j)	  	  force[i]	  +=	  	  
	  	  	  	  func(pos[i],pos[j])	  
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	  2D	  Loomis-‐Whitney	  Inequality	  	  	  	  	  	  	  
|E|	  <=	  |Ei|*|Ej|	  	  

o Loomis-‐Whitney	  inequality	  (2D):	  
bounds	  #points	  in	  a	  set	  by	  product	  of	  
#	  projected	  points	  on	  coordinate	  axes	  

o Prior	  work:	  Uses	  Loomis-‐Whitney	  
inequality	  &	  generaliza#on	  (Holder-‐
Brascamp-‐Lieb)	  for	  lower	  bounds	  for	  
linear-‐algebra-‐like	  computa#ons	  
§ Projec#ons	  of	  itera#on-‐space	  
points	  <==>	  Data	  footprint	  	  

§ Geometric	  inequality:	  Bound	  max.	  
#of	  ops	  for	  a	  given	  #	  of	  data	  moves	  

o Divide	  execu#on	  trace	  into	  segments	  with	  
S	  load/stores	  (3	  in	  ex.)	  

o Within	  each	  segment,	  #dis#nct	  elements	  
of	  pos[]	  <=	  2S	  (up	  to	  S	  coming	  into	  
segment	  in	  scratchpad	  and	  another	  S	  
explicitly	  loaded)	  

o For	  code	  example,	  projec#on	  of	  Stmt(i,j)	  
onto	  i-‐axis	  maps	  to	  data	  element	  pos[i];	  
similarly	  for	  j-‐axis	  Max.	  #	  dis#nct	  elts	  of	  
pos[i]	  or	  pos[j]	  read	  in	  any	  segment	  <=	  2S	  

o By	  Loomis-‐Whitney,	  max.	  #	  itera#on	  
points	  in	  any	  segment,	  |P|	  <=	  2S*2S	  

o Min.	  #segments	  >=	  N2/4S2;	  each	  seg.	  (but	  
last)	  has	  S	  load/stores	  

o #load/stores	  >=	  (N2/4S2-‐1)*S	  =	  Ω(N2/S)	  

Geometric	  Reasoning	  with	  Data	  Footprints:	  Limita?ons	  
for (i=0; i<N; i++) 
  for (j=0;j<N;j++) 
     for (k=0;k<N;k++) 
       C[i][j] += A[i][k]*B[k][j]; 

for (i=0; i<N; i++) 
  for (j=0;j<N;j++) 
     for (k=0;k<N;k++) { 
       C[i][j]  += 1; 
       A[i][k] += 1; 
       B[k][j] += 1; 
    } 

Same access functions 
⇒ same analysis result 
LB = Ω(N3/√S) 

for (i,j,k) C[i][j]  += 1; 
for (i,j,k) A[i][k] += 1; 
for (i,j,k) B[k][j] += 1; 

Loop Distribution	  

Semantically equivalent 
code after loop distribution: 
but different IO lower bound 
LB = Ω(N2) 

o Cannot	  handle	  mul#-‐
statement	  programs	  
§ Computa#ons	  with	  very	  
different	  data	  mvmt.	  
Rqmts.	  but	  same	  array	  
access	  footprint	  =>	  same	  LB	  

§ Seman#cs	  preserving	  loop	  
transforma#ons	  can	  result	  
in	  change	  to	  lower	  bound	  

o Cannot	  model	  effect	  of	  data	  
dependences	  
§ Dependences	  may	  impose	  	  
constraints	  =>	  higher	  data	  
movement	  cost	  than	  
footprint	  analysis	  reveals	  

§ Example:	  1D	  Jacobi	  –	  
footprint	  based	  geometric	  
analysis	  cannot	  derive	  
known	  LB	  of	  Ω(NT/S)	  	  

for (t=1; t<T; t++) { 
 for (i=1; i<N-1; i++) 
   B[i] = A[i-1]+A[i]+A[i+1]; 
 for (i=1; i<N-1; i++)  
   A[i] = B[i]; 
} 

Contributions: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

· Apply geometric reasoning on Z-polyhedra to bound |P|
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Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.
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Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in
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o Any	  valid	  schedule	  using	  S	  registers	  is	  
associated	  with	  a	  2S-‐par##on	  of	  CDAG	  
§ Divide	  trace	  into	  segments	  incurring	  
exactly	  S	  load/stores	  

§ Ops	  executed	  in	  segment-‐i	  form	  a	  
convex	  vertex	  set	  VSi	  

§ |In(VSi)|	  <=	  2S	  (up	  to	  S	  from	  prev.	  
segment	  and	  up	  to	  S	  new	  loads)	  

§ Each	  segment	  (except	  last)	  has	  S	  loads/
stores	  =>	  S*NS	  >=	  Total	  I/O	  >=S*(NS-‐1)	  

§ Reasoning	  about	  minimum	  #vertex	  sets	  
for	  any	  valid	  2S-‐par##on	  =>	  Lower	  
bound	  on	  #	  loads/stores	  
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optimize data locality by applying loop transformations, in particular involving loop tiling and loop
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o Analyze	  	  CDAG	  structure	  
§ Establish	  Max	  |VSi|	  <=	  VSmax(S)	  
§ =>	  Min.	  #	  vertex	  sets	  =	  NSmin(S)	  =	  	  
Nver#ces/VSmax(S)	  

§ =>	  IOmin(S)	  >=	  (NSmin-‐1)*S	  
§ In	  example:	  S=2,	  	  Nver#ces=16	  
§ VSmax(S)	  =	  4	  	  =>	  	  NSmin=	  16/4	  =	  4	  
§ IOmin	  >=	  2*(4-‐1)	  =	  6	  

Background

Hong & Kung’s S-partitioning

I/O lower bounding technique based on graph partitioning.

Valid with and without re-computation.

Definition (SNR-partitioning – Recomputation prohibited)

Given a CDAG C, an SNR-partitioning of C is a collection of h subsets of V \ I
such that:

P1 8i 6= j, Vi \Vj = /0, and
Sh

i=1 Vi = V \ I

P2 there is no cyclic dependence between subsets

P3 8i, |In(Vi)| S

P4 8i, |Out(Vi)| S

In(Vi): set of vertices of V \Vi that have at least one successor in Vi.

Out(Vi): set of vertices of Vi that are also part of the output set O or that
have at least one successor outside of Vi.
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S-‐Par??on	  of	  CDAG	  
sa?sfies	  4	  proper?es	  

o How	  to	  upper-‐bound	  |VSi|for	  any	  
valid	  2S-‐par##on?	  

o Key	  Idea:	  Use	  geometric	  inequality,	  
but	  relate	  itera#on	  points	  to	  In(VSi)	  
and	  not	  data	  footprint	  
§ Find	  rays	  corresponding	  to	  
dependence	  chains	  =>	  projec#ons	  

§ Projected	  points	  from	  VSi	  must	  be	  
subset	  of	  In(VSi)	  	  

§ Transform	  itera#on	  space	  so	  that	  
rays	  are	  along	  coordinate	  axes	  

for (t=1; t<T; t++) { 
 for (i=1; i<N-1; i++) 
   B[i] = A[i-1]+A[i]+A[i+1]; 
 for (i=1; i<N-1; i++)  
   A[i] = B[i]; 
} 

Parameters:	  N,	  T	  
Inputs:	  In[N];	  Outputs:	  A[N]	  
for	  (i=0;	  i<N;	  i++)	  	  
	  	  	  A[i]	  =	  In[i];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  S1	  	  
for	  (t=0;t<T;t++)	  {	  
	  	  for(i=1;i<N-‐1;i++)	  
	  	  	  	  B[i]	  =	  A[i-‐1]+A[i]+A[i+1];	  	  S2	  
	  	  for(i=1;i<N-‐1;i++)	  
	  	  	  	  A[i]	  =	  B[i];	  }	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  S3	  

5.3 Automated I/O Lower Bound Computation

We present a static analysis algorithm for automated derivation
of expressions for parametric asymptotic I/O lower bounds for
programs. We use two illustrative examples to explain the various
steps in the algorithm before providing the detailed pseudo-code
for the full algorithm.

Illustrative example 1: Consider the following example of Jacobi
1D stencil computation.

Parameters: N, T
Inputs: I[N]
Outputs: A[N]

for (i=0; i<N; i++)
S1: A[i] = I[i];

for (t=1; t<T; t++)
{
for (i=1; i<N-1; i++)

S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N-1; i++)
S3: A[i] = B[i];

}

I

S1

�e1�

S2

�e2� �e3� �e4� �e5� �e6�

S3

�e7� �e8��e9� �e10�

Figure 6: Data-flow graph for Jacobi 1D

Fig. 6 shows the static data-flow graph GF =(VF ,EF ) for Jacobi
1D. GF contains a vertex for each statement in the code. The input
I is also explicitly represented in GF by node I (shaded in black in
Fig. 6). Each vertex has an associated domain as shown below:
• DI =[N]->{I[i]:0<=i<N}
• DS1 =[N]->{S1[i]:0<=i<N}
• DS2 =[T,N]->{S2[t,i]:1<=t<T and 1<=i<N-1}
• DS3 =[T,N]->{S3[t,i]:1<=t<T and 1<=i<N-1}

The edges represent the true (read-after-write) data dependences
between the statements. Each edge has an associated affine depen-
dence relation as shown below:
• Edge e1: This edge corresponds to the dependence due to copy-

ing the inputs I to array A at statement S1 and has the following
relation.
[N]->{I[i]->S1[i]:0<=i<N}

• Edges e2, e3 and e4: The use of array elements A[i-1], A[i]
and A[i+1] at statement S2 are captured by edges e2, e3 and
e4, respectively.

[T,N]->{S1[i]->S2[1,i+1]:1<=i<N-2}
[T,N]->{S1[i]->S2[1,i]:1<=i<N-1}
[T,N]->{S1[i]->S2[1,i-1]:2<=i<N-1}

• Edges e5 and e6: Multiple uses of the boundary elements
I[0] and I[N-1] by A[t][1] and A[t][N-2], respectively,
for 1<=t<T are represented by the following relations.
[T,N]->{S1[0]->S2[t,1]:1<=t<T}
[T,N]->{S1[N-1]->S2[t,N-2]:1<=t<T}

• Edge e7: The use of array B in statement S3 corresponds to edge
e7 with the following relation.
[T,N]->{S2[t,i]->S3[t,i]:1<=t<T and 1<=i<N-1}

• Edges e8, e9 and e10: The uses of array A in statement S2 from
S3 are represented by these edges with the following relations.
[T,N]->{S3[t,i]->S2[t+1,i+1]:1<=t<T-1 and 1<=i<N-2}
[T,N]->{S3[t,i]->S2[t+1,i]:1<=t<T-1 and 1<=i<N-1}
[T,N]->{S3[t,i]->S2[t+1,i-1]:1<=t<T-1 and 2<=i<N-1}

Given a path p=(e1, . . . ,el) with associated edge relations (R1, . . . ,Rl),
the relation associated with p can be computed by composing
the relations of its edges, i.e., relation(p) = Rl ◦ · · · ◦ R1. For
instance, the relation for the path (e7,e8) in the example, ob-
tained through the composition Re8 ◦Re7 , is given by Rp = [T,N]
-> {S2[t,i] -> S2[t+1,i+1]}. Further, the domain and im-
age of a composition are restricted to the points for which the
composition can apply, i.e., domain(R j ◦Ri) = Ri

−1(image(Ri)∩
domain(R j)) and image(R j ◦Ri) = R j(image(Ri)∩domain(R j)).
Hence, domain(Rp) = [T,N] -> {S2[t,i] : 1<=t<T-1 and
1<=i<N-2} and image(Rp) = [T,N] -> {S2[t,i] : 2<=t<T
and 2<=i<N-1}.

Two kinds of paths, namely, injective circuit and broadcast
path, defined below, are of specific importance to the analysis.

DEFINITION 6 (Injective edge and circuit). An injective edge a is
an edge of a data-flow graph whose associated relation Ra is both

affine and injective, i.e., Ra = A.⃗x + b⃗, where A is an invertible
matrix. An injective circuit is a circuit E of a data-flow graph such
that every edge e ∈ E is an injective edge.

DEFINITION 7 (Broadcast edge and path). A broadcast edge b is
an edge of a data-flow graph whose associated relation Rb is affine
and dim(domain(Rb)) < dim(image(Rb)). A broadcast path is a
path (e1, . . . ,en) of a data-flow graph such that e1 is a broadcast
edge and ∀n

i=2ei are injective edges.

Injective circuits and broadcast paths in a data-flow graph essen-
tially indicate multiple uses of same data, and therefore are good
candidates for lower bound analysis. Hence only paths of these two
kinds are considered in the analysis. The current example of Jacobi
1D computation illustrates the use of injective circuits to derive I/O
lower bounds, while the use of broadcast paths for lower bound
analysis is explained in another example that follows.
Injective circuits: In the Jacobi example, we have three circuits
to vertex S2 through S3. The relation for each circuit is computed
by composing the relations of its edges as explained earlier. The
relations, and the dependence vectors they represent, are listed
below.
• Circuit c1 = (e7,e8):

Rc1 = [T,N] -> {S2[t,i]->S2[t+1,i+1] : 1<=t<T-1 and
1<=i<N-2}
b⃗1 = (1,1)T

• Circuit c2 = (e7,e9):
Rc2 = [T,N] -> {S2[t,i]->S2[t+1,i] : 1<=t<T-1 and
1<=i<N-1}
b⃗2 = (1,0)T

• Circuit c3 = (e7,e10):
Rc3 = [T,N] -> {S2[t,i]->S2[t+1,i-1] : 1<=t<T-1 and
2<=i<N-1}
b⃗3 = (1,−1)T

o Use	  ISL	  to	  find	  all	  “must”	  data	  flow	  
dependences	  

o Cycles	  data	  dep.	  graph	  ==	  “rays”	  in	  the	  CDAG	  
o Generalized	  geom.	  inequality	  allows	  different	  
dimensional	  orthogonal	  projec#ons	  
§ Parametric	  exponents	  in	  inequality:	  sum	  of	  
weighted	  ranks	  of	  projected	  subspaces	  
must	  exceed	  rank	  of	  full	  itera#on	  space	  

§ solve	  a	  linear	  program	  to	  find	  op#mal	  
weights	  

§ =>	  asympto#c	  parametric	  I/O	  lower	  bound	  
for	  affine	  program	  

Background

Loomis-Whitney Inequality

E ⇢ Rd an open subset in the euclidian d-space
f1(E), . . . ,fd(E) its projections on the coordinates hyperplanes

Then,

|E|
d

’
j=1

|fj(E)|1/(d�1)

Application to a 2d-case example (d = 2):

|P| |Pi|⇥ |Pj|.

for(i=0;i<N;i++)
for(j=0;j<N;j++)
if (i <> j) force(i)
+= f(mass(i),mass(j),pos(i),pos(j));

max(|Pi| , |Pj|) |Pi [Pj| |In(P)| 2S
=) |P| 4S2
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Background

Brascamp-Lieb inequality

Generalizes Loomis-Whitney – allows more general linear maps, not
necessarily all mapping onto spaces of the same dimension.
Further generalized by Bennett et al.

|E|
d
’
j=1

|fj(E)|1/(d�1)  |E|
m
’
j=1

|fj(E)|sj s.t., 8i, 1  Âm
j=1 sidi,j

where,
(s1, . . . ,sm) 2 [0,1]m

fj : Rd ! Rdj are orthogonal projections
di,j : dim(fj(span(�!ei ))) – where �!ei , i-th canonical vector.

Example: f1 : (i, j,k)! (i) and f2 : (i, j,k)! (j,k)

We get D =

0

@
1 0
0 1
0 1

1

A

Which leads to |E| |f1(E)|s1 ⇥ |f2(E)|s2 s.t., 1  s1 ^1  s2
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