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Computational vs. Data Movement Complexity  
for (i=1; i<N-1; i++) 
  for (j=1;j<N-1; j++) 
    A[i][j] = A[i][j-1] + A[i-1][j]; 

for(it = 1; it<N−1; it +=B) 
  for(jt = 1; jt<N−1; jt +=B) 
    for(i = it; i < min(it+B, N−1); i++) 
      for(j = jt; j < min(jt+B, N−1); j++)  
        A[i][j] = A[i−1][j] + A[i][j−1]; 

Untiled version  
Comp. complexity: (N-1)2 Ops 

Tiled Version 
Comp. complexity: (N-1)2 Ops 

◆  Data movement cost different for 
two versions 

◆  Also depends on cache size 

Question: Can we achieve lower 
cache misses than this tiled version? 
How can we know when to stop, i.e. 
further improvement is not possible? 
 

Question: What is the lowest 
achievable data movement cost 
among all possible equivalent 
versions of the computation? 
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Modeling Data Movement Complexity: CDAG  
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.
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Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in
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◆  CDAG abstraction: 

§  Vertiex = operation, edges = data dep.  
◆  2-level memory hierarchy with S fast 

mem locs. & infinite slow mem. locs. 
§  To compute a vertex, predecessor 

vertices must hold values in fast mem. 
§  Limited fast memory => computed values 

may need to be temporarily stored in slow 
memory and reloaded 

◆  Inherent data movement complexity 
of CDAG: Minimal #loads+#stores 
among all possible valid schedules 
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Minimum possible data movement cost? 
   No known effective solution to problem 

Develop upper bounds on min-cost 

Develop lower bounds on min-cost 



Prior Work on Lower Bounds Modeling 
        S-partition (Hong&Kung) 

§  Association between schedule and 
special kind of graph partition of CDAG 

§  Reason about valid 2S-partitions of 
graph instead of all valid schedules  

§  (+) Generality 
§  (-) Manual CDAG-specific reasoning 

=> challenge to automate 

Our work: Static analysis using geometric reasoning to 
automate lower bounds for affine codes with CDAG model  

                   Geometric Inequality 

§  Association between iteration space and 
data foot-print; use geometric inequality 

§  Christ et al. (2013): Automation, based on 
generalized geometric inequality (Holder-
Brascamp-Lieb) 

§  (+) Automated bounds, e.g., O(N3/sqrt(S)) 
for NxN matrix-mult  

§  (-) Restricted computational model:  1) 
probs. multi-statement programs; 2) 
weakness of bound: ignore deps. 

Load 
Load 
Load 

Load 

Load 
Load 
Load 

Store 

Store 
Store 

Store 

FLOP 

FLOP 

FLOP 
FLOP 
FLOP 

FLOP 

FLOP 
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Lower Bounds: Recent Developments 

Theory & Models 

Tools Applications 

1)  Alternate lower bounds 
approach (graph min-cut 
based) 

2)  Modeling vertical + 
horizontal data movement 
bounds for scalable parallel 
systems     [SPAA ‘14] 

 

1)  Automated lower bounds for 
arbitrary explicit CDAGs 

2)   Automated parametric 
lower bounds for affine 
programs 

 [HiPEAC poster; POPL ’15] 

1) Comparative analysis of 
algorithms via lower bounds 
2) Assessment of compiler 
effectiveness  
3) Algorithm/architecture co-
design space exploration  
[HiPEAC Paper, Session 12] 


