
Task Coarsening Through Polyhedral Compilation
for a Macro-Dataflow Programming Model

Alina Sbirlea, Louis-Noël Pouchet, Vivek Sarkar

Rice University
Ohio State University

January 19, 2014

IMPACT’15
Amsterdam

Overview: IMPACT’15

DFGR and HC

Task%Coarsening%Through%Polyhedral%Compila5on%%
for%a%Macro9Dataflow%Programming%Model%

IMPACT
2015

Alina Sbirlea1, Louis-Noel Pouchet2, Vivek Sarkar1 1Rice University, 2Ohio State University

Textual DFGR Constructs
•  Item collection declarations

!  [int* item1]; [float* item2];

•  Step collection declarations
!  (step1 : a, b) @CPU=val1, GPU=val2, FPGA=val3;

•  Step prescriptions
!  (step1 : i, j) :: (step2 : i+1, j*j);

•  Step I/O relations
!  (step2: bar(i, j), j) -> (step1 : i, j);
!  [item1: i-1, j-1] -> (step1 : i, j+1);
!  (step1 : i, j) -> [item1 : i, j], [item2 : i+1, j];

•  Ranges and Regions
!  [item1 : {i-1,i+1},{j-1,j+1} -> (step1 : i, j);
!  <region1 : i, j> { 1 <= i, i <= M, 1 <= j, j <= N };
!  env::(step1 : region1);
!  <region2(p, q) : i, j> { p-1 <= i, i <= p+1, q-1 <= j, j <= q+1 };
!  (step1 : i, j) -> [item2 : region2(i,j)];

•  Environment
!  env :: (step1 : region1);
!  env -> [item1 : region1]; [item2 : region1] -> env;

DFGR
!  Has two components:

!  Textual component:
!  high-level view for domain experts

!  IR component:
!  automatic generation from higher-level programming

systems
!  Uses current software and compilers:

!  Habanero-C provides a parallel task language with
extensions for OpenCL code generation

!  OCR for a distributed execution
!  TLDM generation for FPGAs

!  Proposes the use optimizations at the IR level.
!  See DFM’14 publication by Sbirlea, Pouchet and Sarkar

DFGR regions as iteration spaces:
 a hierarchy of concepts

!  Ranges: model rectangles, suited for simple regular
computations

!  Simple polyhedron: affine inequalities; powerful static analysis
& transformations

!  Union of Z-polyhedra: generalization of polyhedra, analyzable
using modern polyhedral compilation frameworks

!  Union of arbitrary sets: most general; includes uninterpreted
functions (foo(i))

DFGR: Data-Flow Graph Representation

Key Features
!  Steps are functional
!  Item collections implement Dynamic Single Assignment form
!  Data type in collections can be arbitrary (w/ serializers)
!  Dependence between steps with step-to-step dependence or via

data dependence
!  Use tags as unique identifiers for step instances and items in

collections
!  Tag values may be known only at runtime or at compile-time
!  Natively represent task-level, pipeline and stream parallelism

Smith-Waterman example

simple approach that is an access A[i][j] in the original code is ac-
cessed as At[i/T][j/T][i%T][j%T] after 2D data tiling of size T in
each dimension. The first two components relate to the tile index, the
last two to the access within the tile.

However care must be taken to translate “global” tile indices (e.g.,
i/T,j/T) to “local” tile indices: in DFGR only the data tiles accessed
by a step instance are communicated and accessible by that step in-
stance. Returning to the example at the beginning of this section, 4 tiles
are given as input for each of the two arrays. To generate the actual final
access function we offset the tile indices so as for the local tile indices to
lie within the rectangular bounding box of the data tile indices accessed
by the step, e.g., At[i/T-ioff][j/T-joff][i%T][j%T] is generated
for the intra-step accesses where At[2][2] is being constructed from the
function arguments. The offset expressions are computed from the num-
ber of tiles in each dimension being passed to the macro-step instance.
For convenience purpose, we declare a local array At[2][2] inside the
macro-step function which is filled using a C code generated by scan-
ning the polyhedral data spaces computed above.

5.4 Discussions

Distributed computing. DFGR programs can be executed on the
Habanero-C runtime, which allows both shared-memory as well as dis-
tributed memory execution. The DFGR graph provides all dataflow in-
formation between steps, and communications can be easily generated
by simply using MPI calls for the puts and gets into item collections,
making distributed memory execution seamless for the user (albeit ig-
noring here performance issues, of course). Maintaining dynamic single
assignment requires for distributed memory codes the “merge” func-
tions discussed above to actually implement an update of the data tiles.
Indeed, in such approach a single data tile may end up being replicated
to multiple locations, and a proper merge of the data must be performed
before data written to a tile is read by any of its consumer, in a manner
similar to ghost copy updates.

OMP code generation. While we limit in the present work to using
the DFGR runtime, one may observe how straightforward it is to gen-
erate OpenMP code from DFGR in the proposed framework. Indeed,
we simply need to take the C code generated by CLooG to implement
a translation from DFGR to OpenMP/doall-based code. As future work
we will study the potential of such translation for shared-memory sys-
tems, comparing its performance to the DFGR runtime.

6. CASE STUDY: SMITH-WATERMAN
The Smith-Waterman dynamic programming algorithm is a central

method to determine sequence alignment, and is (or variants of it) used
in numerous genetics software. We use it as a case study to illustrate,
starting from a basic sequential C code, the programming flow to map
this application using DFGR. The sequential code for Smith-Waterman
is shown in Listing 2,and the DFGR file is shown in Listing 3.

Listing 2: Sequential Smith-Waterman code.
A[0][0] = corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) \{

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

\}

The environment will start all computation steps and it will read one
item resulting from the computation (the bottom right corner, the se-
quence alignment cost in Smith-Waterman).

Listing 3: DFGR for Smith-Waterman.
<int A>;
(corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
env::(corner:0,0);
env::(top:0,{1 .. NW});
env::(left:{1 .. NH},0);
env::(center:{1 .. NH},{1 .. NW});
[A:NH,NW] -> env;

The DFGR generated using our framework after data and task coars-
ening is shown in Listing 4. The main aspects to notice are the creation
of different steps renamed to “newStmtNo”, the introduction of addi-
tional dependences for these steps (e.g. newStmt2 is the step operating
on the left border of the matrix, but since this computation is tiled, it
requires information from the above tile, hence the (-1,0) dependence),
and the use of regions.

Listing 4: Tiled DFGR generated for Smith-Waterman.
<int** A >;
(newStmt1 : c1, c2) -> [A : c1, c2];
[A : c1, c2-1] -> (newStmt3 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2] -> (newStmt2 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2], [A : c1, c2-1], [A : c1-1, c2-1] ->

(newStmt4 : c1, c2) -> [A : c1, c2];
< regnewStmt2 : c1> { max(1,0)<= c1 <= floord(NH, 32) };
< regnewStmt3 : c2> { 1<=c2<=floord(NW, 32) };
< regnewStmt4 : c1, c2> { max(1,0)<= c1 <= floord(NH, 32);

1<= c2 <= floord(NW, 32) };
env :: (newStmt1 : 0, 0);
env :: (newStmt2 : regnewStmt2(c1), 0);
env :: (newStmt3 : 0, regnewStmt3(c2));
env :: (newStmt4 : regnewStmt4(c1, c2));

Performance Reports. The results presented in the next section
were obtained on an Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores.
We compare the sequential execution with a parallel tiled implemen-
tation, looking at various tile size. The performance of the “naive”
code, that is without tiling, is shown as t = 1 that is a tile size of 1.
We notice that the overhead introduced by the runtime used (based on
work-stealing) significantly inhibits performance for very fine-grained
execution, something exarcerbated for t = 1.

We have run the Smith-Waterman algorithm for two small data sets:
400 and 800 in size, to illustrate the impracticality of the fine-grain ver-
sion corresponding to Lst. 3 The results are presented in Figure 1. We
mention that we use this experiment to highlight the overhead of the
runtime used; these results are performed for small data sets, all exe-
cution times are very small, and the sequential execution is comparable
with the parallel one for tile sizes larger than 10.

Further, we run the Smith-Waterman algorithm for larger/meaning-
ful datasets, to evaluate the scalability of the tiled code. The results
are presented in Figure 2. First, we see that the one-threaded execu-
tion exhibits a slowdown compared to the sequential execution (that is,
running the C code in Lst. 2, which is to be expected due to runtime
overheads. Second, we see that the algorithm scales very well for tile
sizes larger than a certain threshold (e.g. 100 elements for an input of
50000⇥50000). Third, we notice that as the dataset increase, the perfor-
mance obtained gets closer to a linear speedup. The speedup obtained
for the best tilesize is 9.4⇥ for sequences of length 10000 and 12.2⇥
for length 50000.

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [7], delivering
excellent performance improvements over base LabView codes. There

simple approach that is an access A[i][j] in the original code is ac-
cessed as At[i/T][j/T][i%T][j%T] after 2D data tiling of size T in
each dimension. The first two components relate to the tile index, the
last two to the access within the tile.

However care must be taken to translate “global” tile indices (e.g.,
i/T,j/T) to “local” tile indices: in DFGR only the data tiles accessed
by a step instance are communicated and accessible by that step in-
stance. Returning to the example at the beginning of this section, 4 tiles
are given as input for each of the two arrays. To generate the actual final
access function we offset the tile indices so as for the local tile indices to
lie within the rectangular bounding box of the data tile indices accessed
by the step, e.g., At[i/T-ioff][j/T-joff][i%T][j%T] is generated
for the intra-step accesses where At[2][2] is being constructed from the
function arguments. The offset expressions are computed from the num-
ber of tiles in each dimension being passed to the macro-step instance.
For convenience purpose, we declare a local array At[2][2] inside the
macro-step function which is filled using a C code generated by scan-
ning the polyhedral data spaces computed above.

5.4 Discussions

Distributed computing. DFGR programs can be executed on the
Habanero-C runtime, which allows both shared-memory as well as dis-
tributed memory execution. The DFGR graph provides all dataflow in-
formation between steps, and communications can be easily generated
by simply using MPI calls for the puts and gets into item collections,
making distributed memory execution seamless for the user (albeit ig-
noring here performance issues, of course). Maintaining dynamic single
assignment requires for distributed memory codes the “merge” func-
tions discussed above to actually implement an update of the data tiles.
Indeed, in such approach a single data tile may end up being replicated
to multiple locations, and a proper merge of the data must be performed
before data written to a tile is read by any of its consumer, in a manner
similar to ghost copy updates.

OMP code generation. While we limit in the present work to using
the DFGR runtime, one may observe how straightforward it is to gen-
erate OpenMP code from DFGR in the proposed framework. Indeed,
we simply need to take the C code generated by CLooG to implement
a translation from DFGR to OpenMP/doall-based code. As future work
we will study the potential of such translation for shared-memory sys-
tems, comparing its performance to the DFGR runtime.

6. CASE STUDY: SMITH-WATERMAN
The Smith-Waterman dynamic programming algorithm is a central

method to determine sequence alignment, and is (or variants of it) used
in numerous genetics software. We use it as a case study to illustrate,
starting from a basic sequential C code, the programming flow to map
this application using DFGR. The sequential code for Smith-Waterman
is shown in Listing 2,and the DFGR file is shown in Listing 3.

Listing 2: Sequential Smith-Waterman code.
A[0][0] = corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) \{

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

\}

The environment will start all computation steps and it will read one
item resulting from the computation (the bottom right corner, the se-
quence alignment cost in Smith-Waterman).

Listing 3: DFGR for Smith-Waterman.
<int A>;
(corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
env::(corner:0,0);
env::(top:0,{1 .. NW});
env::(left:{1 .. NH},0);
env::(center:{1 .. NH},{1 .. NW});
[A:NH,NW] -> env;

The DFGR generated using our framework after data and task coars-
ening is shown in Listing 4. The main aspects to notice are the creation
of different steps renamed to “newStmtNo”, the introduction of addi-
tional dependences for these steps (e.g. newStmt2 is the step operating
on the left border of the matrix, but since this computation is tiled, it
requires information from the above tile, hence the (-1,0) dependence),
and the use of regions.

Listing 4: Tiled DFGR generated for Smith-Waterman.
<int** A >;
(newStmt1 : c1, c2) -> [A : c1, c2];
[A : c1, c2-1] -> (newStmt3 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2] -> (newStmt2 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2], [A : c1, c2-1], [A : c1-1, c2-1] ->

(newStmt4 : c1, c2) -> [A : c1, c2];
< regnewStmt2 : c1> { max(1,0)<= c1 <= floord(NH, 32) };
< regnewStmt3 : c2> { 1<=c2<=floord(NW, 32) };
< regnewStmt4 : c1, c2> { max(1,0)<= c1 <= floord(NH, 32);

1<= c2 <= floord(NW, 32) };
env :: (newStmt1 : 0, 0);
env :: (newStmt2 : regnewStmt2(c1), 0);
env :: (newStmt3 : 0, regnewStmt3(c2));
env :: (newStmt4 : regnewStmt4(c1, c2));

Performance Reports. The results presented in the next section
were obtained on an Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores.
We compare the sequential execution with a parallel tiled implemen-
tation, looking at various tile size. The performance of the “naive”
code, that is without tiling, is shown as t = 1 that is a tile size of 1.
We notice that the overhead introduced by the runtime used (based on
work-stealing) significantly inhibits performance for very fine-grained
execution, something exarcerbated for t = 1.

We have run the Smith-Waterman algorithm for two small data sets:
400 and 800 in size, to illustrate the impracticality of the fine-grain ver-
sion corresponding to Lst. 3 The results are presented in Figure 1. We
mention that we use this experiment to highlight the overhead of the
runtime used; these results are performed for small data sets, all exe-
cution times are very small, and the sequential execution is comparable
with the parallel one for tile sizes larger than 10.

Further, we run the Smith-Waterman algorithm for larger/meaning-
ful datasets, to evaluate the scalability of the tiled code. The results
are presented in Figure 2. First, we see that the one-threaded execu-
tion exhibits a slowdown compared to the sequential execution (that is,
running the C code in Lst. 2, which is to be expected due to runtime
overheads. Second, we see that the algorithm scales very well for tile
sizes larger than a certain threshold (e.g. 100 elements for an input of
50000⇥50000). Third, we notice that as the dataset increase, the perfor-
mance obtained gets closer to a linear speedup. The speedup obtained
for the best tilesize is 9.4⇥ for sequences of length 10000 and 12.2⇥
for length 50000.

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [7], delivering
excellent performance improvements over base LabView codes. There

First, the C code structure is generated simply by taking the CLooG
AST of the associated inner-most inter-tile loop: this code exactly scans
a tile body, and therefore can be used as-is. Second, accesses are up-
dated from the original data space to the tiled data space. We use a
simple approach that is an access A[i][j] in the original code is ac-
cessed as At[i/T][j/T][i%T][j%T] after 2D data tiling of size T in
each dimension. The first two components relate to the tile index, the
last two to the access within the tile.

However care must be taken to translate “global” tile indices (e.g.,
i/T,j/T) to “local” tile indices: in DFGR only the data tiles accessed
by a step instance are communicated and accessible by that step in-
stance. Returning to the example at the beginning of this section, 4 tiles
are given as input for each of the two arrays. To generate the actual final
access function we offset the tile indices so as for the local tile indices to
lie within the rectangular bounding box of the data tile indices accessed
by the step, e.g., At[i/T-ioff][j/T-joff][i%T][j%T] is generated
for the intra-step accesses where At[2][2] is being constructed from the
function arguments. The offset expressions are computed from the num-
ber of tiles in each dimension being passed to the macro-step instance.
For convenience purpose, we declare a local array At[2][2] inside the
macro-step function which is filled using a C code generated by scan-
ning the polyhedral data spaces computed above.

5.4 Discussions

Distributed computing. DFGR programs can be executed on the
Habanero-C runtime, which allows both shared-memory as well as dis-
tributed memory execution. The DFGR graph provides all dataflow in-
formation between steps, and communications can be easily generated
by simply using MPI calls for the puts and gets into item collections,
making distributed memory execution seamless for the user (albeit ig-
noring here performance issues, of course). Maintaining dynamic single
assignment requires for distributed memory codes the “merge” func-
tions discussed above to actually implement an update of the data tiles.
Indeed, in such approach a single data tile may end up being replicated
to multiple locations, and a proper merge of the data must be performed
before data written to a tile is read by any of its consumer, in a manner
similar to ghost copy updates.

OMP code generation. While we limit in the present work to using
the DFGR runtime, one may observe how straightforward it is to gen-
erate OpenMP code from DFGR in the proposed framework. Indeed,
we simply need to take the C code generated by CLooG to implement
a translation from DFGR to OpenMP/doall-based code. As future work
we will study the potential of such translation for shared-memory sys-
tems, comparing its performance to the DFGR runtime.

6. CASE STUDY: SMITH-WATERMAN
The Smith-Waterman dynamic programming algorithm is a central

method to determine sequence alignment, and is (or variants of it) used
in numerous genetics software. We use it as a case study to illustrate,
starting from a basic sequential C code, the programming flow to map
this application using DFGR. The sequential code for Smith-Waterman
is shown in Listing 2,and the DFGR file is shown in Listing 3.

Listing 2: Sequential Smith-Waterman code.
A[0][0] = corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) \{

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

\}

The environment will start all computation steps and it will read one
item resulting from the computation (the bottom right corner, the se-
quence alignment cost in Smith-Waterman).

Listing 3: DFGR for Smith-Waterman.
<int A>;
(corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
env::(corner:0,0);
env::(top:0,{1 .. NW});
env::(left:{1 .. NH},0);
env::(center:{1 .. NH},{1 .. NW});
[A:NH,NW] -> env;

The DFGR generated using our framework after data and task coars-
ening is shown in Listing 4. The main aspects to notice are the creation
of different steps renamed to “newStmtNo”, the introduction of addi-
tional dependences for these steps (e.g. newStmt2 is the step operating
on the left border of the matrix, but since this computation is tiled, it
requires information from the above tile, hence the (-1,0) dependence),
and the use of regions.

Listing 4: Tiled DFGR generated for Smith-Waterman.
<int** A >;
(newStmt1 : c1, c2) -> [A : c1, c2];
[A : c1, c2-1] -> (newStmt3 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2] -> (newStmt2 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2], [A : c1, c2-1], [A : c1-1, c2-1] ->

(newStmt4 : c1, c2) -> [A : c1, c2];
< regnewStmt2 : c1> { max(1,0)<= c1 <= floord(NH, 32) };
< regnewStmt3 : c2> { 1<=c2<=floord(NW, 32) };
< regnewStmt4 : c1, c2> { max(1,0)<= c1 <= floord(NH, 32);

1<= c2 <= floord(NW, 32) };
env :: (newStmt1 : 0, 0);
env :: (newStmt2 : regnewStmt2 , 0);
env :: (newStmt3 : 0, regnewStmt3);
env :: (newStmt4 : regnewStmt4);

Performance Reports. The results presented in the next section
were obtained on an Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores.
We compare the sequential execution with a parallel tiled implemen-
tation, looking at various tile size. The performance of the “naive”
code, that is without tiling, is shown as t = 1 that is a tile size of 1.
We notice that the overhead introduced by the runtime used (based on
work-stealing) significantly inhibits performance for very fine-grained
execution, something exarcerbated for t = 1.

We have run the Smith-Waterman algorithm for two small data sets:
400 and 800 in size, to illustrate the impracticality of the fine-grain ver-
sion corresponding to Lst. 3 The results are presented in Figure 1. We
mention that we use this experiment to highlight the overhead of the
runtime used; these results are performed for small data sets, all exe-
cution times are very small, and the sequential execution is comparable
with the parallel one for tile sizes larger than 10.

Further, we run the Smith-Waterman algorithm for larger/meaning-
ful datasets, to evaluate the scalability of the tiled code. The results
are presented in Figure 2. First, we see that the one-threaded execu-
tion exhibits a slowdown compared to the sequential execution (that is,
running the C code in Lst. 2, which is to be expected due to runtime
overheads. Second, we see that the algorithm scales very well for tile
sizes larger than a certain threshold (e.g. 100 elements for an input of
50000⇥50000). Third, we notice that as the dataset increase, the perfor-
mance obtained gets closer to a linear speedup. The speedup obtained
for the best tilesize is 9.4⇥ for sequences of length 10000 and 12.2⇥
for length 50000.

C code

Transformed DFGR Input DFGR

Dependences

III. DFGR LANGUAGE SPECIFICATION

A. Core Features for Macro-Dataflow Modeling

DFGR is a graph representation that contains two main
components: steps, that represent pieces of computation; and
items, that represent pieces of data read and written by steps.
The user describes an application by writing a graph (in textual
form or using an API to create the graph) that captures the
relation between data items and steps. In order to model
explicitly all the dynamic instances of each step as well as
all items during the execution of the application modeled, both
steps and items are grouped into collections within which they
have unique identifiers called tags. In order to guarantee the
graph is deterministic and free of data races, all data in item
collections must follow the dynamic single assignment rule,
that is an item in a collection is never written more than once.

An item collection is a group of data items having the same
type. Each item in the collection can be uniquely identified by
its tag, thus an item collection is a set of (tag, value) pairs.
Items can be written to a collection by the environment and
also by other steps. Similarly, items can be read by steps and
by the environment once the graph execution has finished.
Item collections are declared in the textual representation using
brackets: [int* A] declares a collection of items which are
pointers to integers. Using a pass-by-value mechanism, any
type, including structures and arrays, can be used for items.

The human-friendly modeling of all data elements being
read and/or written by a step instance is achieved by relating
the tags of item collections with tags associated to step
instances. For instance [A : i] models tag i of collection
A. Then [A : i-1] -> (S : i) -> [A : i] models that
instance i of S will read element i-1 of collection A, and
produce element i. In DFGR there are multiple ways to
describe tags, as discussed in Sec. III-C. In its most general
form the user can write [A : foo(...)] to describe a tag
value, where foo is a call to some pure function possibly
requiring run-time evaluation to compute its value.

A step collection is a group of instances of the same
step. The unique identifier (tag) of a step instance can carry
semantics used by the step implementation itself, for instance
the tag can behave like a surrounding loop iterator. Steps
can be started by the environment which is in charge of
initializing and starting the graph, and also by other steps.
Depending on the model’s implementation, it can adhere to
the strict preconditions model, where steps will not execute
until all its input data is made available; steps can execute
eagerly and block or rollback when data is not available; or
have a flexible approach through the flexible preconditions
model [18]. Steps are written using parentheses: (S). DFGR
uses arrows to express reads and writes: [A]->(S) and double
colon to express the creation of new steps: (S1)::(S2). When
using tags, the notation (S : i) models instance i of step S,
and env::(S : {1..42}) models that the environment env
will prescribe at start 42 instances of S, that is i will range
from 1 to 42. The modeling of data and control dependences
between step instances is achieved through the modeling of the
data read/written by a step instance, and also using an explicit
step-to-step (e.g., point-to-point) synchronization construct.
For instance (S1 : i) -> (S2 : i) models that instance i
of step S2 will not start until instance i of step S1 completed.

B. Example: Smith-Waterman in DFGR

In this section we take the Smith-Waterman sequence align-
ment algorithm and show the steps needed to write an appli-
cation in DFGR. The DFGR representation can originate from
hand-written user code, from tools analyzing dependences in
sequential programs or from other graph representations.

Writing a DFGR representation implies that the user must
reason about the computation that exists within the graph, the
data read and written and how this information flows from one
step to another. In Figure 1, we give a visual representation
of the computation performed on a matrix in the Smith-
Waterman algorithm. We identify 4 kind of steps: a single step
(S) computing the top-left matrix corner, and a set of steps
computing the top row (T), left column (L) and the center
(C) of the matrix. The arrows mark the flow of data, e.g. the
information from step (S) is read by three other steps (T),(L)
and (C), while each step (T) provides input to another instance
of step (T) and 2 instances of step (C). In this example it
becomes clear the need to group steps into collections and
use unique identifiers to differentiate between instances of the
same step. Let us assume that we are using a NH ⇥ NW
matrix. Then, there are (NH-1) ⇥ (NW-1) center steps, where
each can be identified by a unique tag (i,j), with 1iNH and
1jNW. From Figure 1 we can also infer data dependences,
e.g., all center steps read 3 items and write a single item.
Using the tuple (i,j) as the unique tag identifer, we can say
that each step (C:i,j) reads items [A:i-1,j-1], [A:i-1,j], [A:i,j-1]
and writes [A:i,j].

Fig. 1: Smith-Waterman: The computation steps are grouped
in a matrix structure based on their unique identifiers (i,j) and
the items they write [A:i,j]. Arrows show data dependences for
each step.

Alternatively, a graph representation can originate from
automatic analysis of a sequential code such as in Listing 1.
In this code snippet we abstracted the actual computation
performed by each step with a function call. Note that from
this code we can also infer the dependences specified before, in
particular what items each step reads and writes and a unique
identifier for each step. As it is required to use the dynamic
single assignment form for DFGR, if the input code is not in
DSA form already a promotion to DSA must be performed
during the translation to DFGR.

The DFGR file for Smith-Waterman in shown Listing 2.
The first line of code declares an item collection, where each
item is of type int. The next four lines of code specify for each
of the 4 steps what items are read and written, using the unique
tags for both steps and items. The final four lines specify what
the environment needs to produce for the graph to start, and
what it needs to emit after completion of the graph (output
data). The environment will start all computation steps and it

Transforming DFGR graphs for task+data coarsening

!  Support the subset of DFGR programs without non-
affine expressions, uninterpreted functions, nor data-
dependent get/puts (e.g., [A : [B : i]])

!  Conversion to polyhedral representation (SCopLib)
!  Create iteration domains by propagating the tag

functions in step prescriptions
!  Create access functions directly from item tag functions
!  No schedule created

!  Extract dependence polyhedra: DSA form ensures only
flow dependences: no need for any schedule to
determine which instance is the producer or consumer
for RAW

DFGR to Polyhedra Polyhedra to Polyhedra Polyhedra to DFGR
!  Transformation objective for DFGR on CPU: increase

task granularity to have less tasks computing on more
data and reduce communication.

!  Use iteration space tiling on the polyhedral
representation with the PLuTo algorithm [Bondhugula et
al,2008]

!  Input is polyhedral representation + dependence
polyhedra, run PLuTo as-is and obtain a schedule for
the transformed program as well as tiled iteration
domains

!  Generate C code implementing the tiled schedule
using CLooG [Bastoul,2004]

!  New DFGR tasks are created for each tile body
generated

!  Dependence between tiles are modeled by describing
the data flowing between tiles (read/written)

!  Data flow of the transformed program extracted by
polyhedral analysis, after updating also the data
layout with tiling of data in item collections

!  DSA on data tiles may not be preserved but the
transformed code is still DSA: use “fake” item
collections to make the DFGR graph DSA if multiple
tags write to the same tile

(a) Input sequence sizes: 400⇥400. (b) Input sequence sizes: 800⇥800.

Figure 1: Smith-Waterman execution for small input sets

(a) Input sequences: 10k⇥10k. (b) Input sequences: 50k⇥50k.

Figure 2: Smith-Waterman execution for large input sets

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [?], delivering
excellent performance improvements over base LabView codes. There
are several key differences with the present work. First and foremost,
DFGR goes beyond pure dataflow and in contrast to LabView for in-
stance has explicit tag functions, step prescription constructs, or oper-
ates on a dynamic single assignment form. PolyGlot focuses on copy-
avoidance support, an optimization that is not relevant for DFGR (in-
stead getcounts are used in DFGR to control memory consumption).
Also, PolyGlot does not consider data layout changes, in contrast to our
work which combines data tiling with iteration tiling.

Vasilache et al. perform automatic generation of event-driven, tuple-
space based programs for task-oriented execution models from a se-
quential C specification using the R-Stream compiler [?]. This work
bears the most resemblance to ours, as the macro-dataflow concepts
supported by their approach is analogous to CnC, from which DFGR is
itself derived. However in the present work we focus on the class of all
DFGR programs with affine dataflow relationship between steps, with-
out requiring any information on the original program schedule. In ad-
dition, we are not aware of any data tiling transformation implemented
in their framework.

DFGR has its roots in Intel’s Concurrent Collections (CnC) [?, ?].
The CnC model was extended [?] to enable accurate definition of de-
pendences at a high level, in a textual graph specification, removing the
need to make a user familiar with a particular API. In this work we use
the Habanero-C language to express parallelism. Other data-flow mod-
els take a similar approach of using either a threading library, such as
pthreads used in TFlux [?], or a task library, such as TBB used in Intel’s
CnC, or a parallel language such as Cilk used in Nabbit [?]. As with
Cilk, Habanero-C relies on a work-stealing scheduler [?], which, when
used with arbitrary task graphs can overload the machine.

8. CONCLUSION
Focusing on DFGR, a macro-dataflow graph representation, we have

presented an optimization framework based on the polyhedral model
to achieve task- and data coarsening of affine DFGR programs. These
compile-time transformations of both the data and operations enable
significant programmability improvements by allowing the user to to
express fine-grain dataflow relations, without the performance penalty.

As future work we will use this work as the basis for the development
of other DFGR transformation techniques using the polyhedral model,
this includes (1) extending this framework to non-affine DFGR graphs;
(2) supporting distributed-memory execution using the HabaneroC run-
time; and (3) storage optimizations by generating tuning annotations of
the DFGR graph.

(a) Input sequence sizes: 400⇥400. (b) Input sequence sizes: 800⇥800.

Figure 1: Smith-Waterman execution for small input sets

(a) Input sequences: 10k⇥10k. (b) Input sequences: 50k⇥50k.

Figure 2: Smith-Waterman execution for large input sets

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [?], delivering
excellent performance improvements over base LabView codes. There
are several key differences with the present work. First and foremost,
DFGR goes beyond pure dataflow and in contrast to LabView for in-
stance has explicit tag functions, step prescription constructs, or oper-
ates on a dynamic single assignment form. PolyGlot focuses on copy-
avoidance support, an optimization that is not relevant for DFGR (in-
stead getcounts are used in DFGR to control memory consumption).
Also, PolyGlot does not consider data layout changes, in contrast to our
work which combines data tiling with iteration tiling.

Vasilache et al. perform automatic generation of event-driven, tuple-
space based programs for task-oriented execution models from a se-
quential C specification using the R-Stream compiler [?]. This work
bears the most resemblance to ours, as the macro-dataflow concepts
supported by their approach is analogous to CnC, from which DFGR is
itself derived. However in the present work we focus on the class of all
DFGR programs with affine dataflow relationship between steps, with-
out requiring any information on the original program schedule. In ad-
dition, we are not aware of any data tiling transformation implemented
in their framework.

DFGR has its roots in Intel’s Concurrent Collections (CnC) [?, ?].
The CnC model was extended [?] to enable accurate definition of de-
pendences at a high level, in a textual graph specification, removing the
need to make a user familiar with a particular API. In this work we use
the Habanero-C language to express parallelism. Other data-flow mod-
els take a similar approach of using either a threading library, such as
pthreads used in TFlux [?], or a task library, such as TBB used in Intel’s
CnC, or a parallel language such as Cilk used in Nabbit [?]. As with
Cilk, Habanero-C relies on a work-stealing scheduler [?], which, when
used with arbitrary task graphs can overload the machine.

8. CONCLUSION
Focusing on DFGR, a macro-dataflow graph representation, we have

presented an optimization framework based on the polyhedral model
to achieve task- and data coarsening of affine DFGR programs. These
compile-time transformations of both the data and operations enable
significant programmability improvements by allowing the user to to
express fine-grain dataflow relations, without the performance penalty.

As future work we will use this work as the basis for the development
of other DFGR transformation techniques using the polyhedral model,
this includes (1) extending this framework to non-affine DFGR graphs;
(2) supporting distributed-memory execution using the HabaneroC run-
time; and (3) storage optimizations by generating tuning annotations of
the DFGR graph.

Performance results on 16-core Intel E7330 @ 2.4 GHz

Rice/OSU 2

Overview: IMPACT’15

Poster

Task	 Coarsening	 Through	 Polyhedral	 Compila5on	 	
for	 a	 Macro-‐Dataflow	 Programming	 Model	

IMPACT
2015

Alina Sbirlea1, Louis-Noel Pouchet2, Vivek Sarkar1 1Rice University, 2Ohio State University

Textual DFGR Constructs
•  Item collection declarations

§  [int* item1]; [float* item2];

•  Step collection declarations
§  (step1 : a, b) @CPU=val1, GPU=val2, FPGA=val3;

•  Step prescriptions
§  (step1 : i, j) :: (step2 : i+1, j*j);

•  Step I/O relations
§  (step2: bar(i, j), j) -> (step1 : i, j);
§  [item1: i-1, j-1] -> (step1 : i, j+1);
§  (step1 : i, j) -> [item1 : i, j], [item2 : i+1, j];

•  Ranges and Regions
§  [item1 : {i-1,i+1},{j-1,j+1} -> (step1 : i, j);
§  <region1 : i, j> { 1 <= i, i <= M, 1 <= j, j <= N };
§  env::(step1 : region1);
§  <region2(p, q) : i, j> { p-1 <= i, i <= p+1, q-1 <= j, j <= q+1 };
§  (step1 : i, j) -> [item2 : region2(i,j)];

•  Environment
§  env :: (step1 : region1);
§  env -> [item1 : region1]; [item2 : region1] -> env;

DFGR
§  Has two components:

§  Textual component:
§  high-level view for domain experts

§  IR component:
§  automatic generation from higher-level programming

systems
§  Uses current software and compilers:

§  Habanero-C provides a parallel task language with
extensions for OpenCL code generation

§  OCR for a distributed execution
§  TLDM generation for FPGAs

§  Proposes the use optimizations at the IR level.
§  See DFM’14 publication by Sbirlea, Pouchet and Sarkar

DFGR regions as iteration spaces:
 a hierarchy of concepts

§  Ranges: model rectangles, suited for simple regular
computations

§  Simple polyhedron: affine inequalities; powerful static analysis
& transformations

§  Union of Z-polyhedra: generalization of polyhedra, analyzable
using modern polyhedral compilation frameworks

§  Union of arbitrary sets: most general; includes uninterpreted
functions (foo(i))

DFGR: Data-Flow Graph Representation

Key Features
§  Steps are functional
§  Item collections implement Dynamic Single Assignment form
§  Data type in collections can be arbitrary (w/ serializers)
§  Dependence between steps with step-to-step dependence or via

data dependence
§  Use tags as unique identifiers for step instances and items in

collections
§  Tag values may be known only at runtime or at compile-time
§  Natively represent task-level, pipeline and stream parallelism

Smith-Waterman example

simple approach that is an access A[i][j] in the original code is ac-
cessed as At[i/T][j/T][i%T][j%T] after 2D data tiling of size T in
each dimension. The first two components relate to the tile index, the
last two to the access within the tile.

However care must be taken to translate “global” tile indices (e.g.,
i/T,j/T) to “local” tile indices: in DFGR only the data tiles accessed
by a step instance are communicated and accessible by that step in-
stance. Returning to the example at the beginning of this section, 4 tiles
are given as input for each of the two arrays. To generate the actual final
access function we offset the tile indices so as for the local tile indices to
lie within the rectangular bounding box of the data tile indices accessed
by the step, e.g., At[i/T-ioff][j/T-joff][i%T][j%T] is generated
for the intra-step accesses where At[2][2] is being constructed from the
function arguments. The offset expressions are computed from the num-
ber of tiles in each dimension being passed to the macro-step instance.
For convenience purpose, we declare a local array At[2][2] inside the
macro-step function which is filled using a C code generated by scan-
ning the polyhedral data spaces computed above.

5.4 Discussions

Distributed computing. DFGR programs can be executed on the
Habanero-C runtime, which allows both shared-memory as well as dis-
tributed memory execution. The DFGR graph provides all dataflow in-
formation between steps, and communications can be easily generated
by simply using MPI calls for the puts and gets into item collections,
making distributed memory execution seamless for the user (albeit ig-
noring here performance issues, of course). Maintaining dynamic single
assignment requires for distributed memory codes the “merge” func-
tions discussed above to actually implement an update of the data tiles.
Indeed, in such approach a single data tile may end up being replicated
to multiple locations, and a proper merge of the data must be performed
before data written to a tile is read by any of its consumer, in a manner
similar to ghost copy updates.

OMP code generation. While we limit in the present work to using
the DFGR runtime, one may observe how straightforward it is to gen-
erate OpenMP code from DFGR in the proposed framework. Indeed,
we simply need to take the C code generated by CLooG to implement
a translation from DFGR to OpenMP/doall-based code. As future work
we will study the potential of such translation for shared-memory sys-
tems, comparing its performance to the DFGR runtime.

6. CASE STUDY: SMITH-WATERMAN
The Smith-Waterman dynamic programming algorithm is a central

method to determine sequence alignment, and is (or variants of it) used
in numerous genetics software. We use it as a case study to illustrate,
starting from a basic sequential C code, the programming flow to map
this application using DFGR. The sequential code for Smith-Waterman
is shown in Listing 2,and the DFGR file is shown in Listing 3.

Listing 2: Sequential Smith-Waterman code.
A[0][0] = corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) \{

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

\}

The environment will start all computation steps and it will read one
item resulting from the computation (the bottom right corner, the se-
quence alignment cost in Smith-Waterman).

Listing 3: DFGR for Smith-Waterman.
<int A>;
(corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
env::(corner:0,0);
env::(top:0,{1 .. NW});
env::(left:{1 .. NH},0);
env::(center:{1 .. NH},{1 .. NW});
[A:NH,NW] -> env;

The DFGR generated using our framework after data and task coars-
ening is shown in Listing 4. The main aspects to notice are the creation
of different steps renamed to “newStmtNo”, the introduction of addi-
tional dependences for these steps (e.g. newStmt2 is the step operating
on the left border of the matrix, but since this computation is tiled, it
requires information from the above tile, hence the (-1,0) dependence),
and the use of regions.

Listing 4: Tiled DFGR generated for Smith-Waterman.
<int** A >;
(newStmt1 : c1, c2) -> [A : c1, c2];
[A : c1, c2-1] -> (newStmt3 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2] -> (newStmt2 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2], [A : c1, c2-1], [A : c1-1, c2-1] ->

(newStmt4 : c1, c2) -> [A : c1, c2];
< regnewStmt2 : c1> { max(1,0)<= c1 <= floord(NH, 32) };
< regnewStmt3 : c2> { 1<=c2<=floord(NW, 32) };
< regnewStmt4 : c1, c2> { max(1,0)<= c1 <= floord(NH, 32);

1<= c2 <= floord(NW, 32) };
env :: (newStmt1 : 0, 0);
env :: (newStmt2 : regnewStmt2(c1), 0);
env :: (newStmt3 : 0, regnewStmt3(c2));
env :: (newStmt4 : regnewStmt4(c1, c2));

Performance Reports. The results presented in the next section
were obtained on an Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores.
We compare the sequential execution with a parallel tiled implemen-
tation, looking at various tile size. The performance of the “naive”
code, that is without tiling, is shown as t = 1 that is a tile size of 1.
We notice that the overhead introduced by the runtime used (based on
work-stealing) significantly inhibits performance for very fine-grained
execution, something exarcerbated for t = 1.

We have run the Smith-Waterman algorithm for two small data sets:
400 and 800 in size, to illustrate the impracticality of the fine-grain ver-
sion corresponding to Lst. 3 The results are presented in Figure 1. We
mention that we use this experiment to highlight the overhead of the
runtime used; these results are performed for small data sets, all exe-
cution times are very small, and the sequential execution is comparable
with the parallel one for tile sizes larger than 10.

Further, we run the Smith-Waterman algorithm for larger/meaning-
ful datasets, to evaluate the scalability of the tiled code. The results
are presented in Figure 2. First, we see that the one-threaded execu-
tion exhibits a slowdown compared to the sequential execution (that is,
running the C code in Lst. 2, which is to be expected due to runtime
overheads. Second, we see that the algorithm scales very well for tile
sizes larger than a certain threshold (e.g. 100 elements for an input of
50000⇥50000). Third, we notice that as the dataset increase, the perfor-
mance obtained gets closer to a linear speedup. The speedup obtained
for the best tilesize is 9.4⇥ for sequences of length 10000 and 12.2⇥
for length 50000.

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [7], delivering
excellent performance improvements over base LabView codes. There

simple approach that is an access A[i][j] in the original code is ac-
cessed as At[i/T][j/T][i%T][j%T] after 2D data tiling of size T in
each dimension. The first two components relate to the tile index, the
last two to the access within the tile.

However care must be taken to translate “global” tile indices (e.g.,
i/T,j/T) to “local” tile indices: in DFGR only the data tiles accessed
by a step instance are communicated and accessible by that step in-
stance. Returning to the example at the beginning of this section, 4 tiles
are given as input for each of the two arrays. To generate the actual final
access function we offset the tile indices so as for the local tile indices to
lie within the rectangular bounding box of the data tile indices accessed
by the step, e.g., At[i/T-ioff][j/T-joff][i%T][j%T] is generated
for the intra-step accesses where At[2][2] is being constructed from the
function arguments. The offset expressions are computed from the num-
ber of tiles in each dimension being passed to the macro-step instance.
For convenience purpose, we declare a local array At[2][2] inside the
macro-step function which is filled using a C code generated by scan-
ning the polyhedral data spaces computed above.

5.4 Discussions

Distributed computing. DFGR programs can be executed on the
Habanero-C runtime, which allows both shared-memory as well as dis-
tributed memory execution. The DFGR graph provides all dataflow in-
formation between steps, and communications can be easily generated
by simply using MPI calls for the puts and gets into item collections,
making distributed memory execution seamless for the user (albeit ig-
noring here performance issues, of course). Maintaining dynamic single
assignment requires for distributed memory codes the “merge” func-
tions discussed above to actually implement an update of the data tiles.
Indeed, in such approach a single data tile may end up being replicated
to multiple locations, and a proper merge of the data must be performed
before data written to a tile is read by any of its consumer, in a manner
similar to ghost copy updates.

OMP code generation. While we limit in the present work to using
the DFGR runtime, one may observe how straightforward it is to gen-
erate OpenMP code from DFGR in the proposed framework. Indeed,
we simply need to take the C code generated by CLooG to implement
a translation from DFGR to OpenMP/doall-based code. As future work
we will study the potential of such translation for shared-memory sys-
tems, comparing its performance to the DFGR runtime.

6. CASE STUDY: SMITH-WATERMAN
The Smith-Waterman dynamic programming algorithm is a central

method to determine sequence alignment, and is (or variants of it) used
in numerous genetics software. We use it as a case study to illustrate,
starting from a basic sequential C code, the programming flow to map
this application using DFGR. The sequential code for Smith-Waterman
is shown in Listing 2,and the DFGR file is shown in Listing 3.

Listing 2: Sequential Smith-Waterman code.
A[0][0] = corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) \{

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

\}

The environment will start all computation steps and it will read one
item resulting from the computation (the bottom right corner, the se-
quence alignment cost in Smith-Waterman).

Listing 3: DFGR for Smith-Waterman.
<int A>;
(corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
env::(corner:0,0);
env::(top:0,{1 .. NW});
env::(left:{1 .. NH},0);
env::(center:{1 .. NH},{1 .. NW});
[A:NH,NW] -> env;

The DFGR generated using our framework after data and task coars-
ening is shown in Listing 4. The main aspects to notice are the creation
of different steps renamed to “newStmtNo”, the introduction of addi-
tional dependences for these steps (e.g. newStmt2 is the step operating
on the left border of the matrix, but since this computation is tiled, it
requires information from the above tile, hence the (-1,0) dependence),
and the use of regions.

Listing 4: Tiled DFGR generated for Smith-Waterman.
<int** A >;
(newStmt1 : c1, c2) -> [A : c1, c2];
[A : c1, c2-1] -> (newStmt3 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2] -> (newStmt2 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2], [A : c1, c2-1], [A : c1-1, c2-1] ->

(newStmt4 : c1, c2) -> [A : c1, c2];
< regnewStmt2 : c1> { max(1,0)<= c1 <= floord(NH, 32) };
< regnewStmt3 : c2> { 1<=c2<=floord(NW, 32) };
< regnewStmt4 : c1, c2> { max(1,0)<= c1 <= floord(NH, 32);

1<= c2 <= floord(NW, 32) };
env :: (newStmt1 : 0, 0);
env :: (newStmt2 : regnewStmt2(c1), 0);
env :: (newStmt3 : 0, regnewStmt3(c2));
env :: (newStmt4 : regnewStmt4(c1, c2));

Performance Reports. The results presented in the next section
were obtained on an Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores.
We compare the sequential execution with a parallel tiled implemen-
tation, looking at various tile size. The performance of the “naive”
code, that is without tiling, is shown as t = 1 that is a tile size of 1.
We notice that the overhead introduced by the runtime used (based on
work-stealing) significantly inhibits performance for very fine-grained
execution, something exarcerbated for t = 1.

We have run the Smith-Waterman algorithm for two small data sets:
400 and 800 in size, to illustrate the impracticality of the fine-grain ver-
sion corresponding to Lst. 3 The results are presented in Figure 1. We
mention that we use this experiment to highlight the overhead of the
runtime used; these results are performed for small data sets, all exe-
cution times are very small, and the sequential execution is comparable
with the parallel one for tile sizes larger than 10.

Further, we run the Smith-Waterman algorithm for larger/meaning-
ful datasets, to evaluate the scalability of the tiled code. The results
are presented in Figure 2. First, we see that the one-threaded execu-
tion exhibits a slowdown compared to the sequential execution (that is,
running the C code in Lst. 2, which is to be expected due to runtime
overheads. Second, we see that the algorithm scales very well for tile
sizes larger than a certain threshold (e.g. 100 elements for an input of
50000⇥50000). Third, we notice that as the dataset increase, the perfor-
mance obtained gets closer to a linear speedup. The speedup obtained
for the best tilesize is 9.4⇥ for sequences of length 10000 and 12.2⇥
for length 50000.

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [7], delivering
excellent performance improvements over base LabView codes. There

First, the C code structure is generated simply by taking the CLooG
AST of the associated inner-most inter-tile loop: this code exactly scans
a tile body, and therefore can be used as-is. Second, accesses are up-
dated from the original data space to the tiled data space. We use a
simple approach that is an access A[i][j] in the original code is ac-
cessed as At[i/T][j/T][i%T][j%T] after 2D data tiling of size T in
each dimension. The first two components relate to the tile index, the
last two to the access within the tile.

However care must be taken to translate “global” tile indices (e.g.,
i/T,j/T) to “local” tile indices: in DFGR only the data tiles accessed
by a step instance are communicated and accessible by that step in-
stance. Returning to the example at the beginning of this section, 4 tiles
are given as input for each of the two arrays. To generate the actual final
access function we offset the tile indices so as for the local tile indices to
lie within the rectangular bounding box of the data tile indices accessed
by the step, e.g., At[i/T-ioff][j/T-joff][i%T][j%T] is generated
for the intra-step accesses where At[2][2] is being constructed from the
function arguments. The offset expressions are computed from the num-
ber of tiles in each dimension being passed to the macro-step instance.
For convenience purpose, we declare a local array At[2][2] inside the
macro-step function which is filled using a C code generated by scan-
ning the polyhedral data spaces computed above.

5.4 Discussions

Distributed computing. DFGR programs can be executed on the
Habanero-C runtime, which allows both shared-memory as well as dis-
tributed memory execution. The DFGR graph provides all dataflow in-
formation between steps, and communications can be easily generated
by simply using MPI calls for the puts and gets into item collections,
making distributed memory execution seamless for the user (albeit ig-
noring here performance issues, of course). Maintaining dynamic single
assignment requires for distributed memory codes the “merge” func-
tions discussed above to actually implement an update of the data tiles.
Indeed, in such approach a single data tile may end up being replicated
to multiple locations, and a proper merge of the data must be performed
before data written to a tile is read by any of its consumer, in a manner
similar to ghost copy updates.

OMP code generation. While we limit in the present work to using
the DFGR runtime, one may observe how straightforward it is to gen-
erate OpenMP code from DFGR in the proposed framework. Indeed,
we simply need to take the C code generated by CLooG to implement
a translation from DFGR to OpenMP/doall-based code. As future work
we will study the potential of such translation for shared-memory sys-
tems, comparing its performance to the DFGR runtime.

6. CASE STUDY: SMITH-WATERMAN
The Smith-Waterman dynamic programming algorithm is a central

method to determine sequence alignment, and is (or variants of it) used
in numerous genetics software. We use it as a case study to illustrate,
starting from a basic sequential C code, the programming flow to map
this application using DFGR. The sequential code for Smith-Waterman
is shown in Listing 2,and the DFGR file is shown in Listing 3.

Listing 2: Sequential Smith-Waterman code.
A[0][0] = corner();
for(j=1; j<NW; j++)

A[0][j] = top(j);
for(i=1; i<NH; i++) \{

A[i][0] = left(i);
for(j=1; j<NW; j++)

A[i][j] = center(i, j, A[i-1][j-1],
A[i-1][j],A[i][j-1];

\}

The environment will start all computation steps and it will read one
item resulting from the computation (the bottom right corner, the se-
quence alignment cost in Smith-Waterman).

Listing 3: DFGR for Smith-Waterman.
<int A>;
(corner:i,j) -> [A:i,j];
[A:i,j-1] -> (top:i,j) -> [A:i,j];
[A:i-1,j] -> (left:i,j) -> [A:i,j];
[A:i-1,j-1], [A:i-1,j], [A:i,j-1] ->

-> (center:i,j) -> [A:i,j];
env::(corner:0,0);
env::(top:0,{1 .. NW});
env::(left:{1 .. NH},0);
env::(center:{1 .. NH},{1 .. NW});
[A:NH,NW] -> env;

The DFGR generated using our framework after data and task coars-
ening is shown in Listing 4. The main aspects to notice are the creation
of different steps renamed to “newStmtNo”, the introduction of addi-
tional dependences for these steps (e.g. newStmt2 is the step operating
on the left border of the matrix, but since this computation is tiled, it
requires information from the above tile, hence the (-1,0) dependence),
and the use of regions.

Listing 4: Tiled DFGR generated for Smith-Waterman.
<int** A >;
(newStmt1 : c1, c2) -> [A : c1, c2];
[A : c1, c2-1] -> (newStmt3 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2] -> (newStmt2 : c1, c2) -> [A : c1, c2];
[A : c1-1, c2], [A : c1, c2-1], [A : c1-1, c2-1] ->

(newStmt4 : c1, c2) -> [A : c1, c2];
< regnewStmt2 : c1> { max(1,0)<= c1 <= floord(NH, 32) };
< regnewStmt3 : c2> { 1<=c2<=floord(NW, 32) };
< regnewStmt4 : c1, c2> { max(1,0)<= c1 <= floord(NH, 32);

1<= c2 <= floord(NW, 32) };
env :: (newStmt1 : 0, 0);
env :: (newStmt2 : regnewStmt2 , 0);
env :: (newStmt3 : 0, regnewStmt3);
env :: (newStmt4 : regnewStmt4);

Performance Reports. The results presented in the next section
were obtained on an Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores.
We compare the sequential execution with a parallel tiled implemen-
tation, looking at various tile size. The performance of the “naive”
code, that is without tiling, is shown as t = 1 that is a tile size of 1.
We notice that the overhead introduced by the runtime used (based on
work-stealing) significantly inhibits performance for very fine-grained
execution, something exarcerbated for t = 1.

We have run the Smith-Waterman algorithm for two small data sets:
400 and 800 in size, to illustrate the impracticality of the fine-grain ver-
sion corresponding to Lst. 3 The results are presented in Figure 1. We
mention that we use this experiment to highlight the overhead of the
runtime used; these results are performed for small data sets, all exe-
cution times are very small, and the sequential execution is comparable
with the parallel one for tile sizes larger than 10.

Further, we run the Smith-Waterman algorithm for larger/meaning-
ful datasets, to evaluate the scalability of the tiled code. The results
are presented in Figure 2. First, we see that the one-threaded execu-
tion exhibits a slowdown compared to the sequential execution (that is,
running the C code in Lst. 2, which is to be expected due to runtime
overheads. Second, we see that the algorithm scales very well for tile
sizes larger than a certain threshold (e.g. 100 elements for an input of
50000⇥50000). Third, we notice that as the dataset increase, the perfor-
mance obtained gets closer to a linear speedup. The speedup obtained
for the best tilesize is 9.4⇥ for sequences of length 10000 and 12.2⇥
for length 50000.

C code

Transformed DFGR Input DFGR

Dependences

III. DFGR LANGUAGE SPECIFICATION

A. Core Features for Macro-Dataflow Modeling

DFGR is a graph representation that contains two main
components: steps, that represent pieces of computation; and
items, that represent pieces of data read and written by steps.
The user describes an application by writing a graph (in textual
form or using an API to create the graph) that captures the
relation between data items and steps. In order to model
explicitly all the dynamic instances of each step as well as
all items during the execution of the application modeled, both
steps and items are grouped into collections within which they
have unique identifiers called tags. In order to guarantee the
graph is deterministic and free of data races, all data in item
collections must follow the dynamic single assignment rule,
that is an item in a collection is never written more than once.

An item collection is a group of data items having the same
type. Each item in the collection can be uniquely identified by
its tag, thus an item collection is a set of (tag, value) pairs.
Items can be written to a collection by the environment and
also by other steps. Similarly, items can be read by steps and
by the environment once the graph execution has finished.
Item collections are declared in the textual representation using
brackets: [int* A] declares a collection of items which are
pointers to integers. Using a pass-by-value mechanism, any
type, including structures and arrays, can be used for items.

The human-friendly modeling of all data elements being
read and/or written by a step instance is achieved by relating
the tags of item collections with tags associated to step
instances. For instance [A : i] models tag i of collection
A. Then [A : i-1] -> (S : i) -> [A : i] models that
instance i of S will read element i-1 of collection A, and
produce element i. In DFGR there are multiple ways to
describe tags, as discussed in Sec. III-C. In its most general
form the user can write [A : foo(...)] to describe a tag
value, where foo is a call to some pure function possibly
requiring run-time evaluation to compute its value.

A step collection is a group of instances of the same
step. The unique identifier (tag) of a step instance can carry
semantics used by the step implementation itself, for instance
the tag can behave like a surrounding loop iterator. Steps
can be started by the environment which is in charge of
initializing and starting the graph, and also by other steps.
Depending on the model’s implementation, it can adhere to
the strict preconditions model, where steps will not execute
until all its input data is made available; steps can execute
eagerly and block or rollback when data is not available; or
have a flexible approach through the flexible preconditions
model [18]. Steps are written using parentheses: (S). DFGR
uses arrows to express reads and writes: [A]->(S) and double
colon to express the creation of new steps: (S1)::(S2). When
using tags, the notation (S : i) models instance i of step S,
and env::(S : {1..42}) models that the environment env
will prescribe at start 42 instances of S, that is i will range
from 1 to 42. The modeling of data and control dependences
between step instances is achieved through the modeling of the
data read/written by a step instance, and also using an explicit
step-to-step (e.g., point-to-point) synchronization construct.
For instance (S1 : i) -> (S2 : i) models that instance i
of step S2 will not start until instance i of step S1 completed.

B. Example: Smith-Waterman in DFGR

In this section we take the Smith-Waterman sequence align-
ment algorithm and show the steps needed to write an appli-
cation in DFGR. The DFGR representation can originate from
hand-written user code, from tools analyzing dependences in
sequential programs or from other graph representations.

Writing a DFGR representation implies that the user must
reason about the computation that exists within the graph, the
data read and written and how this information flows from one
step to another. In Figure 1, we give a visual representation
of the computation performed on a matrix in the Smith-
Waterman algorithm. We identify 4 kind of steps: a single step
(S) computing the top-left matrix corner, and a set of steps
computing the top row (T), left column (L) and the center
(C) of the matrix. The arrows mark the flow of data, e.g. the
information from step (S) is read by three other steps (T),(L)
and (C), while each step (T) provides input to another instance
of step (T) and 2 instances of step (C). In this example it
becomes clear the need to group steps into collections and
use unique identifiers to differentiate between instances of the
same step. Let us assume that we are using a NH ⇥ NW
matrix. Then, there are (NH-1) ⇥ (NW-1) center steps, where
each can be identified by a unique tag (i,j), with 1iNH and
1jNW. From Figure 1 we can also infer data dependences,
e.g., all center steps read 3 items and write a single item.
Using the tuple (i,j) as the unique tag identifer, we can say
that each step (C:i,j) reads items [A:i-1,j-1], [A:i-1,j], [A:i,j-1]
and writes [A:i,j].

Fig. 1: Smith-Waterman: The computation steps are grouped
in a matrix structure based on their unique identifiers (i,j) and
the items they write [A:i,j]. Arrows show data dependences for
each step.

Alternatively, a graph representation can originate from
automatic analysis of a sequential code such as in Listing 1.
In this code snippet we abstracted the actual computation
performed by each step with a function call. Note that from
this code we can also infer the dependences specified before, in
particular what items each step reads and writes and a unique
identifier for each step. As it is required to use the dynamic
single assignment form for DFGR, if the input code is not in
DSA form already a promotion to DSA must be performed
during the translation to DFGR.

The DFGR file for Smith-Waterman in shown Listing 2.
The first line of code declares an item collection, where each
item is of type int. The next four lines of code specify for each
of the 4 steps what items are read and written, using the unique
tags for both steps and items. The final four lines specify what
the environment needs to produce for the graph to start, and
what it needs to emit after completion of the graph (output
data). The environment will start all computation steps and it

Transforming DFGR graphs for task+data coarsening

§  Support the subset of DFGR programs without non-
affine expressions, uninterpreted functions, nor data-
dependent get/puts (e.g., [A : [B : i]])

§  Conversion to polyhedral representation (SCopLib)
§  Create iteration domains by propagating the tag

functions in step prescriptions
§  Create access functions directly from item tag functions
§  No schedule created

§  Extract dependence polyhedra: DSA form ensures only
flow dependences: no need for any schedule to
determine which instance is the producer or consumer
for RAW

DFGR to Polyhedra Polyhedra to Polyhedra Polyhedra to DFGR
§  Transformation objective for DFGR on CPU: increase

task granularity to have less tasks computing on more
data and reduce communication.

§  Use iteration space tiling on the polyhedral
representation with the PLuTo algorithm [Bondhugula et
al,2008]

§  Input is polyhedral representation + dependence
polyhedra, run PLuTo as-is and obtain a schedule for
the transformed program as well as tiled iteration
domains

§  Generate C code implementing the tiled schedule
using CLooG [Bastoul,2004]

§  New DFGR tasks are created for each tile body
generated

§  Dependence between tiles are modeled by describing
the data flowing between tiles (read/written)

§  Data flow of the transformed program extracted by
polyhedral analysis, after updating also the data
layout with tiling of data in item collections

§  DSA on data tiles may not be preserved but the
transformed code is still DSA: use “fake” item
collections to make the DFGR graph DSA if multiple
tags write to the same tile

(a) Input sequence sizes: 400⇥400. (b) Input sequence sizes: 800⇥800.

Figure 1: Smith-Waterman execution for small input sets

(a) Input sequences: 10k⇥10k. (b) Input sequences: 50k⇥50k.

Figure 2: Smith-Waterman execution for large input sets

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [?], delivering
excellent performance improvements over base LabView codes. There
are several key differences with the present work. First and foremost,
DFGR goes beyond pure dataflow and in contrast to LabView for in-
stance has explicit tag functions, step prescription constructs, or oper-
ates on a dynamic single assignment form. PolyGlot focuses on copy-
avoidance support, an optimization that is not relevant for DFGR (in-
stead getcounts are used in DFGR to control memory consumption).
Also, PolyGlot does not consider data layout changes, in contrast to our
work which combines data tiling with iteration tiling.

Vasilache et al. perform automatic generation of event-driven, tuple-
space based programs for task-oriented execution models from a se-
quential C specification using the R-Stream compiler [?]. This work
bears the most resemblance to ours, as the macro-dataflow concepts
supported by their approach is analogous to CnC, from which DFGR is
itself derived. However in the present work we focus on the class of all
DFGR programs with affine dataflow relationship between steps, with-
out requiring any information on the original program schedule. In ad-
dition, we are not aware of any data tiling transformation implemented
in their framework.

DFGR has its roots in Intel’s Concurrent Collections (CnC) [?, ?].
The CnC model was extended [?] to enable accurate definition of de-
pendences at a high level, in a textual graph specification, removing the
need to make a user familiar with a particular API. In this work we use
the Habanero-C language to express parallelism. Other data-flow mod-
els take a similar approach of using either a threading library, such as
pthreads used in TFlux [?], or a task library, such as TBB used in Intel’s
CnC, or a parallel language such as Cilk used in Nabbit [?]. As with
Cilk, Habanero-C relies on a work-stealing scheduler [?], which, when
used with arbitrary task graphs can overload the machine.

8. CONCLUSION
Focusing on DFGR, a macro-dataflow graph representation, we have

presented an optimization framework based on the polyhedral model
to achieve task- and data coarsening of affine DFGR programs. These
compile-time transformations of both the data and operations enable
significant programmability improvements by allowing the user to to
express fine-grain dataflow relations, without the performance penalty.

As future work we will use this work as the basis for the development
of other DFGR transformation techniques using the polyhedral model,
this includes (1) extending this framework to non-affine DFGR graphs;
(2) supporting distributed-memory execution using the HabaneroC run-
time; and (3) storage optimizations by generating tuning annotations of
the DFGR graph.

(a) Input sequence sizes: 400⇥400. (b) Input sequence sizes: 800⇥800.

Figure 1: Smith-Waterman execution for small input sets

(a) Input sequences: 10k⇥10k. (b) Input sequences: 50k⇥50k.

Figure 2: Smith-Waterman execution for large input sets

7. RELATED WORK
PolyGlot is the first end-to-end polyhedral-based framework for op-

timizing pure dataflow programs using polyhedral tiling [?], delivering
excellent performance improvements over base LabView codes. There
are several key differences with the present work. First and foremost,
DFGR goes beyond pure dataflow and in contrast to LabView for in-
stance has explicit tag functions, step prescription constructs, or oper-
ates on a dynamic single assignment form. PolyGlot focuses on copy-
avoidance support, an optimization that is not relevant for DFGR (in-
stead getcounts are used in DFGR to control memory consumption).
Also, PolyGlot does not consider data layout changes, in contrast to our
work which combines data tiling with iteration tiling.

Vasilache et al. perform automatic generation of event-driven, tuple-
space based programs for task-oriented execution models from a se-
quential C specification using the R-Stream compiler [?]. This work
bears the most resemblance to ours, as the macro-dataflow concepts
supported by their approach is analogous to CnC, from which DFGR is
itself derived. However in the present work we focus on the class of all
DFGR programs with affine dataflow relationship between steps, with-
out requiring any information on the original program schedule. In ad-
dition, we are not aware of any data tiling transformation implemented
in their framework.

DFGR has its roots in Intel’s Concurrent Collections (CnC) [?, ?].
The CnC model was extended [?] to enable accurate definition of de-
pendences at a high level, in a textual graph specification, removing the
need to make a user familiar with a particular API. In this work we use
the Habanero-C language to express parallelism. Other data-flow mod-
els take a similar approach of using either a threading library, such as
pthreads used in TFlux [?], or a task library, such as TBB used in Intel’s
CnC, or a parallel language such as Cilk used in Nabbit [?]. As with
Cilk, Habanero-C relies on a work-stealing scheduler [?], which, when
used with arbitrary task graphs can overload the machine.

8. CONCLUSION
Focusing on DFGR, a macro-dataflow graph representation, we have

presented an optimization framework based on the polyhedral model
to achieve task- and data coarsening of affine DFGR programs. These
compile-time transformations of both the data and operations enable
significant programmability improvements by allowing the user to to
express fine-grain dataflow relations, without the performance penalty.

As future work we will use this work as the basis for the development
of other DFGR transformation techniques using the polyhedral model,
this includes (1) extending this framework to non-affine DFGR graphs;
(2) supporting distributed-memory execution using the HabaneroC run-
time; and (3) storage optimizations by generating tuning annotations of
the DFGR graph.

Performance results on 16-core Intel E7330 @ 2.4 GHz

Rice/OSU 3

	Overview

