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Figure 1: Directly Manipulating Visualized Polyhedra: (a) Skewing; (b) Reordering and Fusion; (c) Index-Set Splitting.

ABSTRACT
Manual program parallelization and optimization may be
necessary to reach a decent portion of the target architec-
ture’s peak performance when automatic tools fail at choos-
ing the best strategy. While a broad range of languages and
libraries provide convenient ways to express parallelism, the
difficult, time consuming and error-prone parallelism identi-
fication and extraction task is mostly left under the program-
mer’s responsibility. To address this issue, we introduce a
visualization-based approach to ease parallelism extraction
and expression that leverages polyhedral compilation tech-
nologies. Our interactive tool, Clint, maps direct manip-
ulation of the visual representation to polyhedral program
transformations with real-time semantics preservation feed-
back. We conducted two user studies showing that Clint’s
visualization can be accurately understood by both experts
and non-expert programmers, and that the parallelism can
be extracted better from Clint’s representation than from
the source code in many cases.

1. INTRODUCTION
The massive adoption of modern and heterogeneous par-

allel architectures requires adequate solutions to support the
creation and debugging of programs that efficiently exploit
the full power of available parallel resources. Tremendous
effort was made towards simplification of parallel program-
ming by creating dedicated programming models, libraries
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or languages that express parallelism with high-level con-
structs. However, identifying parallelism remains a challeng-
ing task, especially when a deep data dependence analysis
is required before parallelizing a sequential program.

The polyhedral model [8] has proven to be useful for loop-
level parallelization or vectorization. Its unique instance-
wise dependence analysis and transformation expressiveness
makes it possible to apply aggresive program restructur-
ing while preserving the original semantics. However, au-
tomatic polyhedral compiler techniques for loop-level paral-
lelism extraction [5, 18] operate as heuristics-driven black-
boxes that provide limited help and feedback to program-
mers when the computed transformation does not suit their
needs. Semi-automatic tools based on directive scripts [6,
13, 9] offer more flexibility and control for program trans-
formation, but they also require significant expertise from
the end user. In this paper, we report on an interdisci-
plinary research project (Human-Computer Interaction and
Optimizing Compilation) that aims to design and evaluate
a new way to interact with a polyhedral framework through
direct manipulation of visualizations.

Due to the geometric nature of its algebraic structures,
the polyhedral model has a direct visual representation that
is extensively used to describe program transformations in
the literature. We have thus designed an interactive version
of this visualization that allows to perform loop transforma-
tions, such as shifting, fusion or index-set splitting, through
direct manipulation. This visualization is integrated into the
interactive tool Clint1 (Fig. 1) and features projections of
the multidimensional loop nests containing individual itera-
tions and dependences between them. Clint maps graphical
manipulation of these objects to the corresponding polyhe-
dral transformations and provides precise and direct feed-
back on semantics preservation during the manipulation.

1Note: Clint will be demonstrated at the workshop. All vi-
sualizations in this paper are generated with Clint. A version
of the tool with limited polyhedral backend was presented
at the VL/HCC symposium in 2014 [26].
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Visualization is updated automatically whenever the source
code is modified, while the transformed code may be gener-
ated on demand. Overall, our goal with Clint is not design-
ing just an “interface” but consistent “interaction” between
the programmer and the program restructuring engine [3].

In the following section, we present our visualization and
the related interaction techniques. Section 3 details the sup-
port provided by the polyhedral framework to enable inter-
active manipulation. We report on the results of empirical
evaluation of Clint in Section 4. Related work is discussed
in Section 5, and conclusions are drawn in Section 6.

2. INTERACTIVE VISUAL FRONTEND

2.1 Design Rationale
Clint leverages the geometric nature of the polyhedral

model by presenting statement instances and dependences
in a scatterplot-like visualization. This approach is similar
to the one commonly used in the polyhedral compilation
community to illustrate iteration domains. However, it goes
beyond these common static visualizations by allowing the
direct manipulation [11] of the graphical objects in order to
restructure the program. Each action performed by the user
is mapped to a sequence of program transformations that,
if applied, would change the original program structure so
that its new visualization would corresponds to the one ob-
tained after the direct manipulation. Furthermore, the set of
possible interactive manipulations is based on the geometry-
related vocabulary of classical loop transformations, such as
skewing or shifting, providing the user with an intuition on
the effect of the transformation.

The design of Clint is motivated by the needs for (1) a
single and consistent interface for polyhedral program trans-
formation and dependency analysis; (2) easier exploration
of alternative loop transformations; and (3) reduced manual
code and directive script editing. It relies on the polyhe-
dral framework, but is not bound to any particular directive
set or programming language as long as they may be ex-
pressed in the polyhedral model. It seamlessly combines loop
transformations to allow for reasoning about execution or-
der and dependences rather than loop structure and branch
conditions. Finally, the interactive visual approach reduces
parallelism extraction to visual pattern recognition [21] and
code transformation to geometrical manipulations, giving
non-expert programmers a way to manage the complexity
of the underlying model [17].

2.2 Structure of the Visualization
One Statement Occurrence – The main structure of our
visualization is a polygon that contains points on the integer
lattice. Each point corresponds to an execution of a particu-
lar statement in the iteration of a loop nest, which is a state-
ment instance in the polyhedral model. These points are
linked by arrows to denote dependences between iterations.
In Fig. 2(left), this polygon is displayed in the coordinate
system where axes correspond to loop iteration variables.
The polygon shape delimits loop iteration bounds.
Multiple Statement Occurrences – A transformation
may result in a case where executions of a statement are
distributed to multiple different loops. We then assume that
this statement has multiple occurrences. Clint uses color
coding scheme to match occurrences of the same statement
both in the visualization and in the source code (see Fig. 3).

Multiple Coordinate Systems – Each coordinate system
is at most two-dimensional and represents two nested loops.
Statement occurrences that are enclosed in both loops are
displayed in the same coordinate system but with optional
slight displacement to discern them (see Fig. 3). Statement
occurrences enclosed only in the outer loop share one axis of
the coordinate system, forming a pile (see Fig. 1(left)). Fi-
nally, statement occurrences not sharing loops are displayed
as a sequence of piles (see Fig. 1(right)). This structure rep-
resents the lexical ordering of the statement and loops in the
source code and conveys their overall execution order.
Multiple Projections – The overall visualization is a set
of two-dimensional projections, where loops that are not
matched to the axes are ignored, and the program blocks
containing statements are arranged according to their lex-
icographic order. For a single statement occurrence, they
may be ordered in a scatterplot matrix as in Fig. 4. The
points are displayed with different intensity of shade depend-
ing on how many multidimensional instances were projected
on this point. We motivate this choice of two-dimensional
projections by easier direct manipulation with a standard
2D input device (e.g. mouse) [3] as well as maintaining the
consistency of the visualization for any dimensionality.
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for (i = 0; i < 4; i++)
  for (j = 0; j < 4; j++)
    z[i+j] += x[i] * y[j];

#pragma omp parallel for \
 private(j)
for (i = 0; i < 7; i++)
  for (j = max(0,i-3); 
       j <= min(3,i); j++)
    z[i] += x[i-j] * y[j];

Figure 2: Performing a skew transformation to parallelize
polynomial multiplication loop by deforming the polygon.
The code is automatically transformed from its original form
(left) to the skewed one (right).

2.3 Direct Manipulation to Restructure Loops
This visualization affords direct manipulation of its com-

ponents. Depending on the strategy of restructuring to en-
able parallelism, points or groups of points can be dragged
outside of their container polygon thus creating a new one
(see Fig. 1(c)) in order to isolate irregular dependences or it-
eration groups that require strict execution order. Polygons
can also be dragged within (Fig. 3) or between coordinate
systems (Fig. 1(b,c)) to adjust the execution order between
statements in the loop nest or move them to another loop
nest. They can be reshaped so that the loop iterations are
executed in a different order: for example, skewing prevents
uniform dependences from spanning between iterations of
the outer loop (see Fig. 2).

Coordinate systems within a pile or entire piles can be
reordered by a dragging operation, as if they represented a
list. This enables generalized reordering of statements and
loops in the program and allows to analyze the overall data
flow in order to find coarser-grain parallelism.

These manipulations can also be composed: for example,
a group of points may be detached, dragged to another co-
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for (i = 0; i < 3; i++)
  for (j = 0; j < 3; j++) {
    A[i][j] = 1/2 * (A[i][j]
            + A[i][j+1]);
    B[i][j] += A[i-1][j];
  }

for (j = 0; j < 4; j++)
  B[0][j] += A[(0)-1][j];
#pragma omp parallel for \
 private(j)
for (i = 1; i < 4; i++)
  for (j = 0; j < 4; j++) {
    A[i-1][j] = 1/2 * 
    (A[i-1][j] + A[i-1][j+1]);
    B[i][j] += A[i-1][j];
  }
for (j = 0; j < 4; j++)
  A[3][j] = 1/2 * A([3][j]
          + A[3][j+1]); 

Figure 3: Manipulation for shift Transformation: the darker
polygon is dragged right so that dependence arrows become
vertical without spanning between different iterations on i.
On the right, the visualization is decoupled from the code
structure, and both statements can still be manipulated as
if they were not split between two loops.

ordinate system and placed in a particular position during
a single manipulation. After each action is performed, “le-
gality” and “parallelism” feedback is provided: dependence
arrows turn red and become thicker if the corresponding de-
pendence is violated, and the axis becomes thicker and green
if the corresponding loop may be executed in parallel (Fig. 3,
right). This allows the user to resolve dependences by fol-
lowing visual intuition, e.g. by aligning all dependency ar-
rows in parallel to each other, and thus to reveal parallelism
without editing the source code or compiler directives.

In the case of a visualization with multiple projections, the
selection of statement instance points has to be performed
one by one in each projection, or by using a rubber band
rectangle technique. The overall multidimensional selection
is thus the intersection of constraints imposed by each sep-
arate two-dimensional selection. If there are no selected
points in a projection, it is discarded, as it would result in an
overall empty selection. Clint also handles parametric con-
trol flow conditions by providing identical visualizations and
manipulation techniques for parameter values. It infers the
parameters used in the selection and transformations and
prefers parametric transformations in case of ambiguity.

In Clint we keep the visualization consistent with the orig-
inal program structure unless the user explicitly applies the
transformations to the code. This allows the manipulation
of multiple disparate statement occurrences as a whole, for
example in case of the partial loop fusion shown in Fig. 3.

Direct manipulation interfaces feature three promising ca-
pabilities for semi-automatic code restructuring. First, se-
lection of transformation target – a particular iteration, group
of iterations, statement or loop – is done directly on the
graphical object, while in the code or polyhedral representa-
tion it may require additional identification methods relying
on, e.g., lexicographic ordering of statements and inequa-
tions for iteration grouping. Second, transformation com-
position is as easy as sequencing graphical actions on the
persistent visualization components with immediate feed-
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for (i = 0; i < 4; i++)
  for (j = 0; j <= i; j++)
    for (k = 0; k <= i; k++)
      Stmt(i, j, k);
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Figure 4: Multidimensional iteration domains are shown as
two-dimensional projections in a scatter-plot matrix.

back, even in cases where the underlying program structure
evolves quickly. Finally, transformation refinement is possi-
ble thanks to editable transformation history view.

2.4 Clint Interface

Figure 5: Clint interface includes: (1) interactive visualiza-
tion, (2) editable history view, and (3) source code editor.

Clint combines three editable and synchronized represen-
tations: (1) the interactive visualization described above; (2)
a navigable and editable transformation history view; and
(3) the source code editor as shown in Fig. 5. A consistent
color scheme is used between the views to match code state-
ments to the visualization and to the history entries that
affected these statements. User’s manipulations are imme-
diately appended to the history view using a special syntax
to express high-level loop transformations [22]. The user
can then navigate through the history by selecting an entry,
which will update the visualization to the corresponding pre-
vious state. Entries may be edited as long as the syntax is
respected (the system provides real-time feedback on syntax
correctness and transformation legality). As the target code
tends to become complex and unreadable after several ma-
nipulations, the user has the choice to update it or not in
order to reflect the state of the visualization. Finally, when
the code is edited, the visualization is updated, thus making
Clint a dynamic visualizer for polyhedral code.

3. POLYHEDRAL BACKEND
The support for visualizing transformed instance sets and

dependencies, for checking the legality of the complete trans-
formation sequence, for marking axes as parallel and for ul-
timately generating the code that implements the transfor-

3



mation sequence is provided by a specific polyhedral frame-
work. The overall architecture of Clint’s framework is de-
picted in Fig. 6. Clint relies on well-known polyhedral com-
piler building blocks to achieve specific parts of the work.
Clan [2] raises a C program to its polyhedral representation
counterpart, Candl [2] achieves the data dependence analy-
sis and the parallelism detection, and CLooG [1] generates a
C+OpenMP code that implements a given transformation.
A key aspect of these tools with respect to Clint’s purpose is
that they support the “unions of relations” polyhedral rep-
resentation as recalled in Section 3.1. Clint also relies on
two dedicated building blocks: Clay [2], which provides a
high-level transformation formalism based on the unions of
relations representation (Section 3.2); and a specific support
to build the visualization and to translate user’s actions to
Clay ’s formalism (Section 3.3).

Clint

CLooG

Clan

Candl

Clay

isl

source code

transformations

dependence

points

polyhedra

source code

direct manipulation

visual feedback

source code

source code

Figure 6: Clint Software Architecture and Interaction Loop:
The user interacts only with Clint by entering the code and
manipulating the visual representation. The system returns
immediate feedback in the same interface and generates the
transformed code on-demand.

3.1 Union of Relations Representation
Our work is based on a state-of-the art union of relations

abstraction [12]. A union of relations is a piece-wise map-
ping from input dimensions to output dimensions according
to affine constraints. We use this abstraction to represent all
relevant components of an input program [2], and we con-
sider only programs that can be abstracted in such a way.
The relevant components include, for each statement, the
statement’s iteration domain, its scheduling and the list of
its memory accesses.

The iteration domain of a statement captures the control
structures surrounding it and abstracts all dynamic execu-
tions, or instances, of that statement. It is represented with
a degenerate relation without input dimensions and where
output dimensions correspond to the statement’s iteration
space. Disjunctions in control conditions result in the itera-
tion domain being represented as a union of relations.

The scheduling of a statement expresses the ordering of its
instances with respect to each other and with respect to in-
stances of other statements. It is represented with a relation
where input dimensions correspond to the original iteration
space and where output dimensions correspond to the tar-
get multidimensional execution time. Each component of
a union of scheduling relations may include constraints to
limit the applicability of that scheduling component to spe-
cific parts of the original iteration space. A given iteration
may have multiple mappings from multiple scheduling com-
ponents (as a result, it will be duplicated in the final code).

A memory access relation abstracts accesses to a given
variable or to indexed elements of a given array in a given

statement. It is represented as a relation where input di-
mensions correspond to the original iteration space and out-
put dimensions are the array dimensions. Approximations
of memory accesses, e.g., when array indices are not affine
expressions, may be represented as a union of relations.

3.2 High-Level Transformations

Supporting the direct manipulation of the polyhedral rep-
resentation of a program requires a transformation mecha-
nism with specific properties. First, it must be possible to
precisely and independently select and transform any subset
of a given iteration domain, or a complete iteration domain,
or a group of iteration domains (selection challenge). Next,
it must be possible to check at any moment the legality of the
current state of the transformation and to allow illegal inter-
mediate states while the user is designing the optimization
(composition challenge). Finally, the user should be able to
replay and to refine its optimization (refinement challenge).

Our solution to meet these requirements is a new high-
level transformation formalism. Each user action is trans-
lated to a high-level directive which in turn modifies the
scheduling relations. This new formalism, named after its
implementation Clay, generalizes previous approaches that
build high-level transformation directives on top of a poly-
hedral engine such as UTF [13], URUK [9] or CHiLL [6] by
being based on the more general union of relations abstrac-
tion discussed in Section 3.1 and by strongly taking advan-
tage of it. Clay and its dozen of directives corresponding
to extended versions of classical loop transformations (re-
ordering, shifting, interchange, fusion, splitting, index set
splitting, strip-mining, grain, reversal, skewing, tiling etc.),
are detailed by Bastoul in [2].

Clay addresses the selection challenge thanks to a spe-
cific structure of the scheduling relation, an extension to
unions of relations of the so-called “2d+1” scheduling rela-
tion structure where odd dimensions are constant and rep-
resent the lexical order of statements at a given loop depth.
The vector of such constants, named β-vector for consis-
tency with URUK’s formalism, is unique for each union of
relations component and is guaranteed to remain unique by
the formalism. Combined with the ability to apply index-
set splitting as an additional scheduling relation constraint
if a subset of a given iteration domain is involved, any se-
lection corresponds to a set of β-vectors or β-vector prefixes
and the desired transformation can be applied only to each
scheduling component that has one of them.

The composition challenge is met because the formalism
only modifies the scheduling relations, even for transforma-
tions that would require iteration domain alterations or du-
plications in previous approaches, such as tiling or index-set
splitting. As a result, it is not necessary to apply interme-
diate dependence graph updates, as in URUK, or to enforce
each step is legal, as in CHiLL, to ensure the legality of
the complete transformation sequence. Because all iteration
domains are immutable in Clay ’s formalism, only the final
scheduling has to be checked for dependence violations.

Finally, Clay meets the refinement challenge because the
sequence of user actions translates to a list of directives: it is
thus possible to undo, save, replay or refine. The user may
keep the original code along with the transformation script
made with Clint to achieve a clear decoupling between the
program and its optimization.
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3.3 Visualization Support
Scheduled Iteration Domains and Dependences – To
convey information about the original or transformed execu-
tion order of statement instances, we use scheduled iteration
domain visualizations. They are built separately for each
scheduling relation component of each statement. First, we
set parameters to (user-)defined constant values in order to
generate a finite visualization. Next, we remove special β-
vector dimensions (see Section 3.2). Then we apply the Gen-
eralized Change of Basis to the iteration domain with respect
to the scheduling relation component to get a scheduled it-
eration domain part [14, 1]. Finally, we rely on isl [20] to
enumerate points in this domain to be displayed. In the
same way, we use Candl [2] to compute instance-wise data
dependence sets restricted to displayed statement instances
only and to expose them. We also perform a violated de-
pendence analysis generalized to union of relations in order
to highlight violated dependences [19, 2].
Coordinate Systems and Piles – Special β-vector dimen-
sions are not considered for scheduled iteration domain visu-
alizations but are used to organize them into polygon stacks
and coordinate systems piles instead. Two scheduled itera-
tion domain visualizations share their first n coordinates if
the first n components of their β-vectors are the same. For a
projection on the iteration space dimensions n and m where
n < m, the visualizations are stacked in one coordinate sys-
tem if they share m β-vector components, while coordinate
systems are arranged in piles for visualizations sharing only
n β-vector components.
Instance-Wise Selection – To operate on an arbitrary set
of selected points, a polyhedron containing these points must
be defined first. As an initial approximation, we compute a
convex hull for these points and construct a set of all integer
points within it. Then, we compute a set of difference be-
tween convex hull points and selected points. If it is empty,
the convex hull is used, otherwise we check if the remaining
points fit a multidimensional linear function. In this case,
the function is used as a constraint with an existentially
quantified dimension instead of the constant to complete the
convex hull, otherwise we discard the transformation until
the selection is updated. Although discarding several irregu-
lar selection cases, this algorithm offers reasonable trade-off
between performance and typical case coverage.

4. EVALUATION OF CLINT
We conducted two controlled experiments to evaluate Clint ’s

design and assess its benefits over manual parallelization
methods. In the first experiment, we focused on the visual
representation and in the second we compared its direct ma-
nipulation approach with manual code transformation.

4.1 Exp. 1: Suitability of the Visualization
In this experiment, we assess the suitability of our vi-

sual representation of program statements in the polyhedral
model. Although similar visualizations have been already
used for descriptive or pedagogical purposes, there is no em-
pirical evidence of their appropriateness for conveying pro-
gram structures. In order to inform the design of Clint, we
are testing whether programmers with different expertise in
parallel programming and optimizing transformations are
able to deduce the corresponding code from a visualization
and vice versa, at several levels of difficulty.

Participants – We recruited 16 participants – 12 male, 4
female, aged 18-53 – from our organizations. All of them
have experience in imperative programming with C-like lan-
guages and previous knowledge of the polyhedral model. Six
participants already used iteration domain visualizations in
their work and were thus considered as experts.
Procedure – The experiment is a [3 × 2] between-subject
design with two factors:

• Task: (i) writing a code snippet which corresponds
to the given visualization using a C-like programming
language, which had loops and branches with affine
conditions (VC ); (ii) drawing an iteration domain vi-
sualization given the corresponding code (CV ).

• Difficulty: problems may be (i) two-dimensional with
constant bounds (Simple); (ii) multi-dimensional with
constant bounds (Medium); (iii) two-dimensional with
branches and mutually dependent bounds (Hard).

In order to avoid learning effect and to ensure consistent dif-
ficulty over tasks, participants were divided in two groups
with the same number of experts. Group 1 was asked to
perform the visualization to code task (VC ), and group 2
the code to visualization task (CV ). The order of task dif-
ficulty was counterbalanced across participants. Both tasks
were performed on paper, with squared graph paper for the
CV condition. Participants were presented with the visual-
ization and did two practice tasks at the beginning of the
session. They were instructed to perform the tasks as ac-
curately as possible without time limit and were allowed to
withdraw from a task. Expected solutions were shown at the
end of the experiment. Each session lasted about 20 min.
Data Collection – For each trial, we measured Comple-

tion Time, Error and Abandon rates. The errors were split
in two categories: type I, the shape of the resulting polyhe-
dron was drawn correctly, but linear sizes or position were
wrong; type II, the shape of the polyhedron was incorrect.
Codes describing the same iteration domain were considered
equivalent (e.g. i <= 4 and i < 5). We also videotaped
participants activity and collected the materials they pro-
duced. After they completed the study, participants were
asked about their strategies to accomplish the task as well
as any suggestion on the visualization.

4.1.1 Results
We did not observe any significant learning effect and we

discarded the trials in which the participants produced syn-
tactically incorrect or not static control code.
Completion Time – We found a statistically significant
effect of Difficulty with all difficulty levels being differ-
ent (Easy = 114.3s, Medium = 235.8s and Hard = 437.9s).
We also found a significant Expert×Difficulty interaction,
which is explained by better performance of experts for the
Hard tasks (319s vs 556s, see Fig. 7).
Errors – Participants performed the tasks with very low
error rates (VC = 8.3%, CV = 4.1%). We observed only
two withdrawals during a trial, both from non-experts, and
after a significant amount of time. For the type of errors,
some non-experts were not able to propose code for some
hard tasks, while experts mostly made type I errors for some
medium tasks (Fig. 8). However, it is hard to conclude on
the causes of errors with such low error rates.
Qualitative Data – Participants’ feedback also allowed us
to improve the visualization since some of them noticed that
overlapping statements and visual axis sharing could be in-
terpreted ambiguously. Half of them also stated that the
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Figure 7: Completion time increases with task difficulty
but is lower for experts.(Error bars show 95% confidence intervals)
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Visualization to code Code to visualization
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N = Non expert     E = expert

Figure 8: Percentage of errors and withdrawal: experts were
slightly more successful than non-experts, but failed at sim-
pler tasks. Only non-experts abandoned tasks. The overall
error rate is less than 10% for each task.

visualization significantly helps to understand the program
structure, 31% that it rather helps and 19% that it does not
change their level of understanding, but does not harm.

Overall, these results suggest that both experts and non-
experts programmers were able to reliably map our visu-
alization to the corresponding code, most of them stating
that it has potential in assisting them in understanding pro-
grams. While the task they performed in this study does not
belong to the program parallelization process, it shows that
the scheduled iteration domain visualization is an efficient
representation of static control parts of the program.

4.2 Exp. 2: Benefits of Direct Manipulation
In this second experiment, we compare Clint with com-

mon manual code transformation. Beyond the preliminary
assessment of its efficiency, we are also interested in its ac-
ceptability by expert programmers who are more used to
text-based interfaces. Participants who already took part
in the first experiment were asked to perform some paral-
lelization tasks at several levels of difficulty and in three
conditions: source code (the baseline), Clint without source
code, and Clint, the latter assessing participants’ preference
between direct manipulation and source code editing. Our
hypotheses are that Clint can improve programmers accu-
racy and efficiency when parallelizing code, but also that
the direct manipulation approach is likely to change their
strategy when they address a parallelization problem.
Participants – Eight participants took part in this experi-
ment (5 male, 3 female, aged 23-47). All of them had partic-
ipated in the first experiment, and were thus familiar with
the polyhedral model and our visualization.
Apparatus – The experiment was conducted with a specific
version of our Clint prototype, implemented in C++, on
a 15” MacBook Pro. Participants were interacting with a
keyboard and a mouse. The language used was a subset of

an imperative language with C-like syntax.
Procedure – The task consists in transforming a loop-based
program so that the maximum number of loops becomes
parallelizable, i. e. without any dependences that prevent
parallel execution. Participants were asked to transform the
program, but not to write the actual parallel code in order
to avoid bias from individual expertise in using a particular
parallel language. The experiment is a [3×3] within-subject
design with two factors:

• Technique: (i) code editing (Code); (ii) direct manip-
ulation without code (Viz ); (iii) full interface, with
direct manipulation and source code editing (Clint).

• Difficulty: (i) two-dimensional case with at most two
transformations (Simple); (ii) two- or three-dimensional
case with rectangular boundaries and at most three
transformations (Medium); (iii) two- or three-dimens-
ional case with non-trivial boundaries and at least two
transformations (Hard).

Trials were grouped in three blocks by Technique. The Code
and Viz blocks were presented first in counterbalanced or-
der across participants. Clint was always presented last, in
order to assess participants’ preference in using code editing
or direct manipulation. In each block, participants were pre-
sented with one task of each difficulty level in random order
(tasks were different from one block to another). The tasks
were drawn from real-world program examples and simpli-
fied (see Appendix B). Trials were not limited in time and
participants were asked to explicitly end the trial when they
thought to be done, whether they succeed or not. Prior to
the experiment, participants were instructed about source
code transformations and the corresponding direct manip-
ulation techniques. They also practiced 4 trials of medium
difficulty for each technique and were allowed to perform two
“recall” practice trials before each Technique block. Each
session lasted about 60 minutes and participants answered
a short questionnaire at the end.
Data Collection – For each trial, we measured: (i) the
overall trial Completion Time; and (ii) Transform Time, the
amount of time from the start to the first change in the pro-
gram structure (code edited or visualization manipulated).
We recorded both final and intermediate transformations to
the program.

4.2.1 Results
We did not observe any significant ordering effect of Tech-

nique or Difficulty on Completion Time and Success Rate.
Because this experiment was conducted with a small sample,
we opted not to conduct any statistical analysis.
Accuracy and Efficiency – Fig. 9a shows the Success

Rate, defined as the percentage of trials where all possi-
ble loops became parallelizable, for each Technique and in
each Difficulty condition. Despite large variability, it sug-
gests that participants were in general more successful to
find the expected transformations with direct manipulation
than with code editing for Easy and Medium tasks (about
90% success rate vs 40%). For the Hard condition how-
ever, Success Rates are very similar (around 25%). Fig. 9b
also suggests that participants often performed faster and
that Completion Time is likely to be more consistent over
participants with the direct manipulation interface (smaller
standard error).
Strategy and exploration – In terms of strategy, the ra-
tio of tasks were participants at least tried to perform a
transformation is of 76% with Code, against 94% for Viz.
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Figure 9: (a) Success Rate is higher with Clint for Easy
and Medium tasks, but similar to Code for Hard tasks. (b)
Average Completion Time is often lower with the Viz tech-
nique, especially when tasks were successfully performed.
(error bars show 1 standard error from the mean)

Additionally, we observed that the time it took to partic-
ipants to start modifying the program is of 135s on aver-
age with Code against 13s with direct manipulation. We
also computed the ratio Transform Time/Completion Time

as a measure of “engagement” of the participants (a lower
value meaning that the participant started to transform the
program faster). As shown in Fig. 10, this ratio increases
with difficulty for Code, but drastically decreases for Viz.
It suggests that participants were more likely to adopt an
exploratory strategy for hard transformation problems with
the interactive visualization than with code editing.
Code editing or direct manipulation? – For the Clint
condition, we observed that all the participants used the in-
teractive visualization and that only three of them edited
the code during the first 30s of two trials on average before
switching to the visual interface (12% of all the trials). In
the post-experiment interview, these participants explained
that they were trying out the code-visualization mapping or
changing the code for the sake of analysis. We found Suc-

cess Rate and Completion Time to be very similar to those
with only the visualization. Qualitatively, we observed that
several participants were examining the original and trans-
formed source code, but not editing or selecting it. These
results suggest that most users would prefer using the vi-
sual interface to perform transformations, but still need the
source code view to have a link with conventional program
editing approach.

4.3 Discussion
Although conducted with a small number of participants

and on targeted tasks, this preliminary study gives interest-
ing insights into the appropriateness of Clint ’s direct ma-
nipulation approach for program parallelization. First, in
terms of performance and accuracy, it suggests that the in-
teractive approach could help programmers to accurately
extract parallelism and apply transformations faster than
with standard tools. However, we only compared Clint with
manual code editing as a baseline, and we did not con-
sider automatic/semi-automatic approaches (e.g. Pluto [5]
or Clay [2]) that could also assist users in managing the com-
plexity of parallelization tasks. We can expect Clint to be a
good complementary approach anyway, since it builds upon
these tools in order to give more control to the programmer.

We also observed that Clint effectively changed program-
mers strategy. It allows them to explore and manipulate
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Figure 10: Ratio of first change time to completion time.
The change in trend between different techniques can be
caused by an improved problem understanding and favori-
sation of exploring different transformations. (error bars show

1 standard error from the mean)

programs structure from the very beginning of the task,
thanks to its visual affordances and transformation undoa-
bility. Clint may also favor attention switch from syntactical
constructs like loops to dependences in data flow. We believe
that this “active” exploration approach could help program-
mers to better learn some typical solutions to given situa-
tions, to recognize those situations thanks to visual patterns,
and to reuse the gathered knowledge in new situations [21].
This would however require deeper investigations and long-
term field studies on the usage of Clint.

Our preliminary tests and studies of Clint revealed good
acceptance by expert programmers, who are known to be
reluctant to use visual programming tools. We believe that
the way Clint allows direct manipulation of the concepts
that programmers use for parallelization favors its accep-
tance: instead of hiding its underlying complex model, Clint
“reveals” it and helps to manage its complexity [17].

5. RELATED WORK
Visual Representations for Polyhedral Model – Scatt-
erplot-like projections of loop iteration domains are exten-
sively used in the literature on the polyhedral model. Pop-
ular polyhedral libraries provide interface to generate visu-
alizations, such as VisualPolylib component for PolyLib [16]
and islplot2 for isl [20]. LooPo [10] visualizes dependences in
iteration domains before and after automatic parallelization
while 3D iteration space visualizer [24] allows to mark de-
sired dimension parallel to start automatic transformation
search. Tulipse [23] integrates visual dependency analysis
into the Eclipse IDE. These tools allow to interact only with
the visualization while Clint translates manipulations back
to the polyhedral representation and ultimately transforms
the code to match the visualization.
Semi-Automatic Polyhedral Program Transforma-
tions – A handful of polyhedral frameworks provide a semi-
automatic approach to program restructuring based on di-
rective scripts implementing classical loop transformations,
UTF being arguably the first of them [13]. URUK en-
ables the composition of a complex sequence of transforma-
tions decoupled from any syntactic form of the program [9].
CHiLL enforces legality of each transformation in a sequence
by intermediate dependence checks [6]. AlphaZ allows to
redistribute data in the memory [25]. We propose an alter-
native formalism, Clay, that builds on unions of relations to

2http://tobig.github.io/islplot/
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provide high composition capabilities. We rely on it to con-
vert visual actions to mapping relations without having user
to input the textual form of the transformation sequence.

6. CONCLUSION
Clint brings intuition in loop parallelization by visualizing

iterations with real-time feedback on data dependences, and
enables program restructuring through graphical actions. It
addresses challenges of semi-automatic approaches to loop
transformations such as transformation composition and re-
finement or target selection. The results of our preliminary
studies provided empirical evidence that the visualization
approach is efficient and reliable, and confirmed the benefits
of direct manipulation for the efficient exploration of possi-
bilities for program parallelization. We believe our approach
to be a promising first step towards better parallelization
tools that leverage the power of analytical models by giving
more control and expressiveness to programmers.

Our studies also revealed several possible improvements to
Clint as well as new research directions: (1) enrich the edi-
tor with smooth transition between the original and trans-
formed code and the visualization using advanced animation
techniques [7]; (2) use three-dimensional transforms to re-
veal hidden or overlapping points and dependences; (3) pro-
vide dynamic visual feedback on the transformation legality
and interactive guidance through manipulation restriction-
s/enhancements (e.g. pseudo-haptic feedback [15] or seman-
tic pointing [4]); (4) investigate scaling of this approach to
represent data flow in programs and expose coarser-grain
parallelism; and (5) investigate the use of interactive visual-
ization for learning parallelization and the polyhedral model.
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APPENDIX
A. USE CASE

In this Appendix, we give more details about Clint ’s in-
teractive approach through a step-by-step scenario based on
a larger example with several multidimensional loop nests.
This example taken from our preliminary study illustrates
both the benefits and the limitations of the approach. The
code of this example (see Fig. 11(right)) was adapted from
an ad-hoc physical process simulation program developed
in one of our institutions. This adaptation involved refor-
matting and variable renaming for the sake of brevity. We
also modified the branch condition to fit the restriction of
the Clan polyhedral raising tool, and added scop/endscop

compiler pragmas around the loop nests to target this spe-
cific part of the code (automatic SCoP extraction is possible
via Clan, but requires to choose a specific SCoP to interact
with). The code preforms an operation similar to a triangu-
lar decomposition of a matrix with a subsequent search for
the index of a row with particular properties.

The baseline for the parallelization task uses Pluto 0.11.1
automatic optimizer called with parallelization objective as
polycc -parallelize. The generated code was compiled us-
ing GCC 4.9 with level 3 optimization enabled, and with
OpenMP 4.0 on a x86 64 Linux machine with an Intel i5
T2405S quad-core processor. For the constant parameter
value n = 1000, the execution of the original code took
86 msec on average out of 5 consecutive executions, while
the Pluto-generated version took 80 msec on average. We
used PolyBench infrastructure for benchmarking this code.

A typical parallelization of this code with our interactive
approach may be done as follows:

1 - Program Fragment Loading: The interactive ses-
sion starts when the user loads a code file with Clint. Since
it contains a manually marked static control part, it uses
Clan to extract polyhedra from the selected loop nests and
displays the corresponding visualization (see Fig. 11(left)).
Despite many dependency arrows, the user can visualize the
structure of the loop nests projected on the two outer di-
mensions as well as the distribution of the statements in the
loops. Since Clint builds upon the mathematical represen-
tations of lattice polyhedra, the visualization is read from
the bottom to the top (following the conventional direction
of the vertical axis). However, this can also be configured to
match the top-to-bottom order of statements in the code. As
described in the paper, statements sharing a loop in the code
share an axis in the visualization, e.g. all the statements
of the outer loop on j are displayed in the leftmost verti-
cal pile. Statements sharing two loops are displayed in the
same two-dimensional coordinate system and may overlap,
e.g. the top left coordinate system in the Fig. 11. Depending
on the configuration of the visualization, the polygons rep-
resenting statements may perfectly overlap (as in Fig. 11)
or be slightly displaced with respect to each other as de-
scribed in the section 2.2 of the paper. Finally, a crossing
arrow sign is displayed between coordinate systems to no-
tify that multiple dependency lines are connecting the cor-
responding loops, preventing visual cluttering. Conversely,
the dependency lines within a coordinate system are always
fully drawn, which can drastically reduce the readability of
the polygon visualization for certain statements.

2 - Direct Manipulation Restructuring (shift): Af-
ter the visualization is displayed, the user can check if all of

the nested statements in two loops on j and i are involved
in the dependences. To that end, she uses the displaced vi-
sualization mode (see section 2.2 in the paper) in order to
select each particular polygon representing statement, and
to drag them on the right side so that they do not over-
lap anymore (see Fig. 12). This direct manipulation results
in two shift transformations being applied to the code, es-
sentially breaking the initial internal loop nest into three
different loops. As this operation significantly restructured
the code, the user set up the code view to display the origi-
nal version along the visualization, while the transformation
sequence is preserved.

3 - Code Editing: The user observes that all statements
instances in this loop nest are connected by dependences to
multiple other instances of the same statement, and that
they are also involved into into dependences between state-
ments. She notices the homogeneity of the dependence ar-
rows across different statement instances and supposes that
each statement instance depends on all other instances of the
same statement, which corresponds to a scalar dependence
To check this hypothesis, she manually modifies the source
code by introducing an array subscript to the only scalar
used in the last statement (Fig. 13(right)). Clint automati-
cally reapplies the transformation sequence to the new code
and, as the transformation is applicable without errors, it
regenerates the visualization to match the generated code.
The visualization is then automatically updated to match
the new source code.

4 - Direct Manipulation Restructuring (shift/undo):
The user then notices that scalar expansion indeed removed
most of the dependences between the instances of this state-
ment, leaving only those of the loop on j for a fixed i iter-
ation (see Fig. 13(left) with horizontal lines). These depen-
dences reflect the reuse of L[i][j] and L[j][j] in the last
statement. The user drags the polygons back to their orig-
inal positions thus performing another group of shift trans-
formations, effectively undoing the previous ones. Although
this transformation is not guaranteed to achieve paralleliza-
tion, it allows a better understanding of the code, with a
better visual representation of the non-scalar dependences
that might prevent parallelization.

This step illustrates the benefits of the real-time visual
feedback and the implicit undoability of the transformations
for a parallelization task. It also reveals some of the limi-
tations of the approach and possible improvements: (1) if
the scalar dependences were automatically detected by the
polyhedral back-end, it would make it possible to display
them without making the visualizations more complex; addi-
tional instruments for data layout manipulation would allow
to perform scalar expansion or privatization for such loops
when necessary; (2) although the second group of shift trans-
formations is reciprocal to the first one, both are added to
the transformation history and reapplied each time needed,
thus introducing syntactic changes from the code generator
(i.e. [i+n-n] indexing expressions).

5 - Code Editing: The user then decides to expand
scalars in all statements by following the same principle.
When she edits the code to expand the scalars s and m,
since they are only used within one outer loop iteration, she
“clears” the visualization of the scalar dependences which
makes it easier to address the actual parallelization task
(see Fig. 14(left)). In this example, the expansion can be
replaced by scalar privatization to reduce the memory foot-
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Figure 11: Example code and visualization

print. This modification by itself renders the inner loop on
i parallelizable, and the corresponding code is generated as
highlighted by the arrow in Fig. 14. Furthermore the depen-
dences in the second loop nest do not split anymore between
different iterations of the loop, which suggest the loop may
be parallelizable. Clint emphasizes this change by actually
displaying the parallel dependence arrows between coordi-
nate systems in the vertical pile. However the last statement
reuses the scalar t which can not be expanded, preventing
the parallelization.

Figure 12: Interactive shift transformation used to explore
dependences between statement in the loops, the code is
freezed in the original version during transformation

6 - Direct Manipulation Restructuring (splitting):
The user then decides to grab the polygon corresponding to
the last statement and put it to the right, creating a new
pile of coordinate systems (Fig. 15(left)). This operation
corresponds to the loop splitting transformation. Thanks to
the scalar expansion on the previous steps, the statement
that was put in a separate loop uses have all input data
generated by the previous loop nest and stored in memory.
The transformation is this legal since no dependences are vi-
olated (as depicted by black crossing arrows between piles)

and the semantics is preserved. The outer loop of the sec-
ond loop nest became parallel and the corresponding code
is generated (Fig. 15(right)).

7 - Code Generation: The resulting code now looks suf-
ficiently parallelized and the user decides to benchmark its
execution. She saves the generated code to the file and uses
his standard procedure to compile and execute the program.

The newly generated code, with OpenMP pragmas, now
takes only 17 msec to execute in the same setup as before
and outperforms the result obtained by the automatic par-
allelizer. We did not specifically tried to optimize cache use
with this example, but manual data manipulations may have
resulted in an additional speedup.

Overall, this example demonstrates the possibilities of the
interactive approach to polyhedral transformations imple-
mented in Clint, with both its benefits and limitations. In
particular, some work is still required to manage programs of
increasing complexity in an interactive way, but we advocate
for an approach combining semi-automatic and controllable
polyhedral tools with advanced interactive visualizations as
a way to achieve better program performance. Even in cases
of a significant visual load, important information may be
extracted from the visualization such as frequent dependence
patterns. A successful visual approach may not only help ex-
plaining and using the polyhedral model, but to improve the
polyhedral tools and frameworks themselves.

B. EXPERIMENTAL DATA

B.1 Suitability of the Visualization
Scatterplot-like visualizations are widely adopted in the

literature on polyhedral model. Most of them use color and
shape-coded dots to represent statement instances and ar-
rows to represent dependences between them with multiple
variations depending on the particular tool or task. In Clint
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Figure 13: Manual code modification and automatic visualization update

Figure 14: All scalars are expanded by manual code editing

we decided to use color-coded polygons in order to visually
represent statements while keeping conventional use of dots
and arrows. This choice allows to manipulate statements di-
rectly without having to select a set of statement instances
subject to transformation.

Code Fragment Sources: Since no empirical evidence
existed to support this kind of visualizations, we conducted
a controlled experiment to evaluate it. In order to evaluate
the expressiveness and the suitability of the visualization
approach in the first experiment, we used a set of automat-
ically generated possibly multidimensional loop nests. The
code generation was done by a Python script in two steps:
first, loop structure was generated to satisfy the difficulty
condition; then a statement or group of statements without
dependences was introduced into each loop nest. We de-
cided not to introduce the dependences in the visualization
in order to focus on the notion of statements and statement
instances as well as on the relation between nested loops
and axes. The difficulty was determined as a function of the
number of nested loops and the number of non-constant loop
boundaries. Before running the measured experiment, we
observed that non-constant loop bounds are more difficult
to handle in both tasks. We also discarded 5-dimensional
and more loop nests: with constant boundaries, they can be

treated similarly to the three-dimensional, while with non-
constant mutually dependent variables physical execution of
the task would take unreasonable amount of time for the ex-
periment. A set of 24 code fragments, 8 of each difficulty,
was chosen for the experiment. They were manually veri-
fied for correctness by the experimenters and compiled with
GCC 4.8 compiler for syntax check. We chose not to use
PolyBench or any other examples from the literature on the
polyhedral model since several participants of our studies
were familiar with the relevant literature on the polyhedral
model in general and with the PolyBench codes in particular
thus biasing the results.

A visual representation for each code fragment used was
generated by an early prototype of Clint. It was verified to
match the code fragment manually by the experimenter.

In the Fig. 16, we provide examples of the code fragments
and respective visualizations used for this experiment.

Particularities of the Prototype: After the experi-
ment, we asked participants to comment on their choices in
the visual representations designed on paper and incorpo-
rated some of them in the final version of the visualization.
The visualization used at this prototype differs from a more
recent versions in an inverted vertical axis that matched
the order of statements in the code and the absence of dis-
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Figure 15: The last statement is split from the loop to allow parallel execution, the code is updated

placement between dots that represent instances of different
statements. Although both changes are related to interac-
tion: axis direction may be switched and displacement may
be turned on and off as the program run, their configura-
bility was found quite important by multiple participants.
This experiment also gave as feedback on the limitations of
the visualization techniques related to the large numbers of
statements or deeply nested loops.

B.2 Benefits of Direct Manipulation
Sources of Code Fragments: For the evaluation of the

interactive part that allowed us to gather insights about the
benefits of the direct manipulation, we created a set of 20
programs of varying levels of difficulty following the same
reasoning as before. The program fragments were created
as combinations of loop nest structure and code statements
with dependences. In order to find such code statements,
we ran Clan polyhedral extractor on several computational
programs and libraries, including Overture 3 partial differ-
ential equation solver framework and matrix manipulation
library, PETSc 4 scientific computation library and multiple
smaller ad-hoc physics numerical simulation programs. We
ran Candl to analyze dependences in the extracted static
control parts of the programs and removed those fragments
that did not have or had a very large number of depen-
dences. From the remaining set of program parts, we arbi-
trarily chose several static control parts and analyzed them
manually. For each such part, we generated a visualization
with Clint and tried to create a sequence of transformation
that would enable parallelization. We further focused on the
program parts coming from the specific computation-related
parts of these code bases relying on the fact that parallel ver-
sions of the same computational operations may have been

3http://overtureframework.org/
4http://www.mcs.anl.gov/petsc/

developed. For a selected subset of static control parts, we
removed all statements that were not related to the com-
putation and dependences, we also inlined short functions.
These sequences of statements were then put into different
loop structures with more or less trivial loop bounds and
branching conditions. The resulting codes were thus based
in the real-world programs, but were not the carbon copies
of existing code.

Avoiding Task Recognition: Using this approach, we
wanted to reduce the complexity of the code and focus our
study on the interaction with loop-based program parts ame-
nable to the polyhedral model. We also intended to dimin-
ish the possibility of a code fragment being recognized by
the user and completely rewritten to a parallel version. Al-
though frequent in the real setting, this situation should be
studied separately from the evaluation of the interactive ap-
proach. In the post-experiment questionnaire, we asked par-
ticipants if they had recognized the operation performed by
the code fragment (for example LU matrix decomposition)
and if so, did they use prior knowledge about parallel version
of this operation. Several participants recognized the gen-
eral type, for example “matrix manipulation” but were not
able to tell which operation is was. Thus no participants re-
lied on the previous knowledge of the parallel version of the
operation, but some of them mentioned“general approaches”
for loop parallelization. For example, one expert participant
said he mechanically applied skewing transformation when
he encountered a statement with array access indexed by a
sum of iterators (like Z[i + j] *= A[i] * B[j]).

In the Fig. 17, we demonstrate examples of the code frag-
ments and respective visualizations used as for the paral-
lelization task.
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for ( i = 2 ; i < 9 ; i++)
for ( j = 0 ; j < 5 ; j++) {

i f ( i < 6) S1 ( ) ;
i f ( i > 3) S2 ( ) ;

}

(a) easy case: two statements partially overlap in a 2d shared loop nest with constant boundaries

for ( i = 0 ; i < 6 ; i++)
for ( j = 0 ; j < 5 ; j++) {

i f ( i < 5)
i f ( j < 4)

for (k = 0 ; k < 3 ; k++)
S1 ( i , j , k ) ;

i f ( i > 0)
i f ( j > 1)

S2 ( i , j ) ;
}

(b) medium case: two statements partially overlap in a 3d shared loop nest with constant boundaries

for ( i = 0 ; i <= 3; i++)
for ( j = 1 ; j <= 2∗ i ; j++)

i f (2∗ i + j >= 1)
S( i , j ) ;

(c) hard case: one statement in a 2d loop nest and with non-constant boundaries depending on the outer loop variables

Figure 16: Examples of scatterplot-like visualizations (left) and code fragments (right) used in the Suitability of the Visual-
ization experiment.
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for ( i = 0 ; i < N + 1; i++)
for ( j = −i ; j < i ; j++)

i f ( i + j − N − 1 <= 0)
z [2∗ i + 3∗ j ] +=

A[ i ] [ j ] ∗ B[ i ] [ i ] ∗ m[ j ] ;

Skew the statement right to make the dependence lines ver-
tical in order to parallelize the outer loop. Such transforma-
tion is legal given that the += operation is associative. The
inner loop is directly parallelizable without transformation,
but no participant made this observation with parallelization
feedback turned off.

(a) easy case: one statement featuring parallelism in the inner loop that may be kept as is or transformed to expose
parallelism in the outer loop

for ( i = 0 ; i < 5 ; i++) {
for ( j = 0 ; j < 2 ; j++)

A[ i ] [ j ] = i n i t ( i , j ) ;
i f ( i > 0)

for ( j = 2 ; j < N; j++)
A[ i − 1 ] [ j − 2 ] += func (P[ i ] [ j ] ) ;

}

Shift the first statement right one time (equivalent to re-
placing i with i - 1 including in loop boundaries) and down
two times (equivalent to replacing j with j - 2), then fuse
internal loops and parallelize.

(b) medium case: two statements in different loops that require three transformations to parallelize

for ( i = 0 ; i < N ; i++)
for ( j = i + 1 ; j < N; j++) {

s [ i ] = 0 ;
for (k = 0 ; k < i ; k++)

s [ i ] += L [ i ] [ k ] ∗ L [ j ] [ k ] ;
L [ j ] [ k ] = L [ i ] [ i ] ∗ A[ j ] [ i ] − s [ i ] ;

}

Expand s over two outer loops then split the third statement
out of these loops. The first loop nest becomes paralleliz-
able. This case offers a tradeoff between memory usage and
performance in case of parallel execution since size of s will
grow significantly. Another possible outcome of this trade off
would be to privatize s in the second loop, which does not
make the loop parallelizable. The innermost loop may be
transformed to a parallel reduction, but existing polyhedral
tools do not support such operations.

(c) hard case: three statements in a 3D loop nest with numerous dependences that require data layout adjustments

Figure 17: Examples of Clint prototype interactive visualizations used in the Benefits of the Direct Manipulation experiment
along with the corresponding code fragments and solution suggestions.

14


	Introduction
	Interactive Visual Frontend
	Design Rationale
	Structure of the Visualization
	Direct Manipulation to Restructure Loops
	Clint Interface

	Polyhedral backend
	Union of Relations Representation
	High-Level Transformations
	Visualization Support

	Evaluation of Clint
	Exp. 1: Suitability of the Visualization
	Results

	Exp. 2: Benefits of Direct Manipulation
	Results

	Discussion

	Related Work
	Conclusion
	References
	Use case
	Experimental data
	Suitability of the Visualization
	Benefits of Direct Manipulation


