Integer Set Coalescing

Sven Verdoolaege

INRIA and KU Leuven

January 19, 2015

Outline

- Introduction and Motivation
 - Polyhedal Model
 - The need for coalescing
 - Traditional "Coalescing"
- Coalescing in is1
 - Rational Cases
 - Constraints adjacent to inequality
 - Constraints adjacent to equality
 - Wrapping
 - Existentially Quantified Variables
- Conclusions

Outline

- Introduction and Motivation
 - Polyhedal Model
 - The need for coalescing
 - Traditional "Coalescing"
- Coalescing in is1
 - Rational Cases
 - Constraints adjacent to inequality
 - Constraints adjacent to equality
 - Wrapping
 - Existentially Quantified Variables
- Conclusions

Polyhedral Model

```
R: h(A[2]);
   for (int i = 0; i < 2; ++i)
        for (int j = 0; j < 2; ++j)
S:        A[i + j] = f(i, j);
   for (int k = 0; k < 2; ++k)
T:        g(A[k], A[0]);</pre>
```

Polyhedral Model

```
R: h(A[2]);
   for (int i = 0; i < 2; ++i)
        for (int j = 0; j < 2; ++j)
S:        A[i + j] = f(i, j);
   for (int k = 0; k < 2; ++k)
T:        g(A[k], A[0]);</pre>
```

Instance set (set of statement instances)

```
I = \{R(); S(0,0); S(0,1); S(1,0); S(1,1); T(0); T(1)\}\
```

Polyhedral Model

```
R: h(A[2]);
   for (int i = 0; i < 2; ++i)
        for (int j = 0; j < 2; ++j)
S:        A[i + j] = f(i, j);
   for (int k = 0; k < 2; ++k)
T:        g(A[k], A[0]);</pre>
```

Instance set (set of statement instances)

```
I = \{R(); S(0,0); S(0,1); S(1,0); S(1,1); T(0); T(1)\}
= \{R(); S(i,j) : 0 \le i < 2 \land 0 \le j < 2; T(k) : 0 \le k < 2\}
```

Equivalent Representations

```
extensive \{S(0,0); S(0,1); S(1,0); S(1,1)\}
= \{S(i,j): (i = 0 \land j = 0) \lor (i = 0 \land j = 1) \lor (i = 1 \land j = 0) \lor (i = 1 \land j = 1)\}
intensive \{S(i,j): 0 \le i < 2 \land 0 \le j < 2\}
```

Equivalent Representations

```
extensive \{S(0,0); S(0,1); S(1,0); S(1,1)\}
= \{S(i,j): (i = 0 \land j = 0) \lor (i = 0 \land j = 1) \lor (i = 1 \land j = 0) \lor (i = 1 \land j = 1)\}
intensive \{S(i,j): 0 \le i < 2 \land 0 \le j < 2\}
alternative \{S(i,j): (i = 0 \land 0 \le j < 2) \lor (i = 1 \land 0 \le j < 2)\}
```

Equivalent Representations

```
extensive \{S(0,0); S(0,1); S(1,0); S(1,1)\}\ = \{S(i,j): (i=0 \land j=0) \lor (i=0 \land j=1) \lor (i=1 \land j=0) \lor (i=1 \land j=1)\} intensive \{S(i,j): 0 \le i < 2 \land 0 \le j < 2\} alternative \{S(i,j): (i=0 \land 0 \le j < 2) \lor (i=1 \land 0 \le j < 2)\}
```

In general, representation with fewer disjuncts is preferred

- (usually) occupies less memory
- operations can be performed more efficiently
- the outcome of some operations depends on chosen representation
 - transitive closure approximation
 - AST generation
- ⇒ coalescing: replace representation by one with fewer disjuncts

Effect on AST Generation — guide

Without coalescing input

```
\{S1(i) \rightarrow (i) : (1 \le i \le N \land i \le 2M) \lor (1 \le i \le N \land i \ge M);

S2(i) \rightarrow (i) : (N+1 \le i \le 2N)\}

for (int c0 = 1; c0 <= min(2 * M, N); c0 += 1)

S1(c0);

for (int c0 = max(1, 2 * M + 1); c0 <= N; c0 += 1)

S1(c0);

for (int c0 = N + 1; c0 <= 2 * N; c0 += 1)

S2(c0);
```

Effect on AST Generation — guide

```
Without coalescing input
```

```
\{S1(i) \rightarrow (i) : (1 \le i \le N \land i \le 2M) \lor (1 \le i \le N \land i \ge M);
S2(i) \rightarrow (i) : (N+1 \le i \le 2N)\}

for (int c0 = 1; c0 <= min(2 * M, N); c0 += 1)
S1(c0);

for (int c0 = max(1, 2 * M + 1); c0 <= N; c0 += 1)
S1(c0);

for (int c0 = N + 1; c0 <= 2 * N; c0 += 1)
S2(c0);
```

After coalescing input

$$\{S1(i) \rightarrow (i) : 1 \le i \le N; S2(i) \rightarrow (i) : (N+1 \le i \le 2N)\}$$

for (int c0 = 1; c0 <= N; c0 += 1)

 $S1(c0);$

for (int c0 = N + 1; c0 <= 2 * N; c0 += 1)

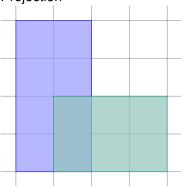
 $S2(c0);$

Effect on AST Generation — cholesky

 \Rightarrow demo

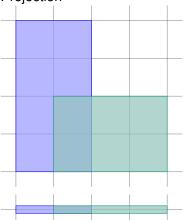
Several operations on integer sets may introduce coalescing opportunities

Projection

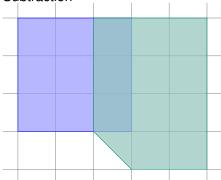


Several operations on integer sets may introduce coalescing opportunities

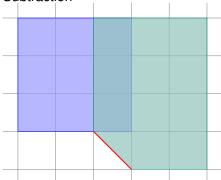
Projection



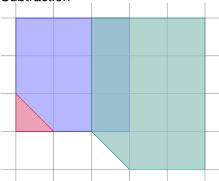
- Projection
- Subtraction



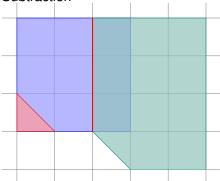
- Projection
- Subtraction



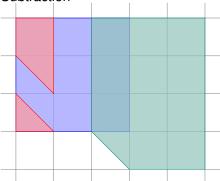
- Projection
- Subtraction



- Projection
- Subtraction



- Projection
- Subtraction

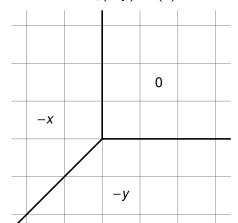


- Projection
- Subtraction
- Parametric integer programming

$$\min\{(x,y)\to(z):z\geq 0 \land x+z\geq 0 \land y+z\geq 0\}$$

- Projection
- Subtraction
- Parametric integer programming

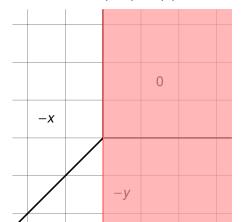
$$\min\{(x,y)\to(z):z\geq 0 \land x+z\geq 0 \land y+z\geq 0\}$$



Causes of Splintering Several operations on integer sets may introduce coalescing opportunities

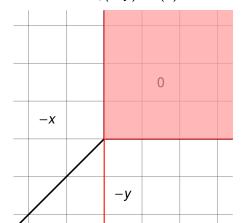
- Projection
- Subtraction
- Parametric integer programming

$$\min\{(x,y)\to(z):z\geq 0\land x+z\geq 0\land y+z\geq 0\}$$



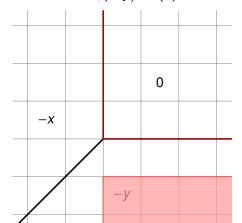
- Projection
- Subtraction
- Parametric integer programming

$$\min\{(x,y)\to(z):z\geq 0 \land x+z\geq 0 \land y+z\geq 0\}$$



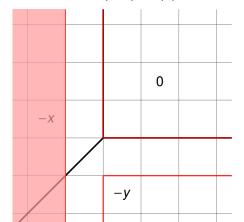
- Projection
- Subtraction
- Parametric integer programming

$$\min\{(x,y)\to(z):z\geq 0 \land x+z\geq 0 \land y+z\geq 0\}$$



- Projection
- Subtraction
- Parametric integer programming

$$\min\{(x,y)\to(z):z\geq 0\land x+z\geq 0\land y+z\geq 0\}$$



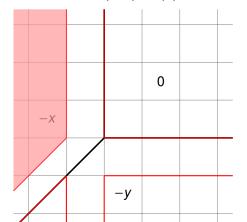
Several operations on integer sets may introduce coalescing opportunities

 $\min\{(x,y)\to(z):z\geq 0 \land x+z\geq 0 \land y+z\geq 0\}$

- Projection
- Subtraction
- Parametric integer programming

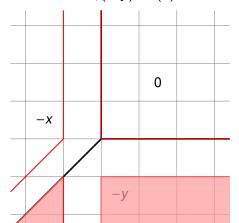
- Projection
- Subtraction
- Parametric integer programming

$$\min\{(x,y)\to(z):z\geq 0\land x+z\geq 0\land y+z\geq 0\}$$

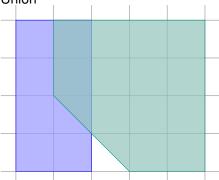


- Projection
- Subtraction
- Parametric integer programming

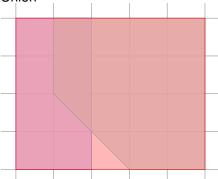
$$\min\{(x,y)\to(z):z\geq 0 \land x+z\geq 0 \land y+z\geq 0\}$$



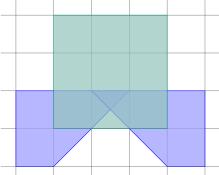
- Projection
- Subtraction
- Parametric integer programming



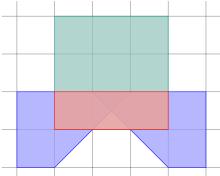
- Projection
- Subtraction
- Parametric integer programming



- Projection
- Subtraction
- Parametric integer programming
- Union
- Intersection



- Projection
- Subtraction
- Parametric integer programming
- Union
- Intersection



Traditional "Coalescing"

- Compute convex hull H of S
- Remove integer elements not in S from H ⇒ H \ (H \ S)

Traditional "Coalescing"

- Compute convex hull H of S
- Remove integer elements not in S from H ⇒ H \ (H \ S)

Traditional "Coalescing"

- Compute convex hull H of S
- Remove integer elements not in S from H ⇒ H \ (H \ S)

- Compute convex hull H of S
- Remove integer elements not in S from H ⇒ H \ (H \ S)

Traditional "Coalescing"

Traditional method (e.g., in CLooG with original PolyLib backend)

- Compute convex hull H of S
- Remove integer elements not in S from H
 ⇒ H \ (H \ S)

Issues:

- Convex hull may have exponential number of constraints
 We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
 - ⇒ mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
 - ⇒ in is1, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

Traditional "Coalescing"

Traditional method (e.g., in CLooG with original PolyLib backend)

- Compute convex hull H of S
- Remove integer elements not in S from H ⇒ H \ (H \ S)

Issues:

- Convex hull may have exponential number of constraints
 We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
 - ⇒ mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
 - ⇒ in is1, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

Effect on AST Generation — covariance

With isl coalescing (in this case same result as no coalescing)

```
for (long c1 = n >= 1 ? ((n - 1) % 32) - n - 31 : 0;
    c1 <= (n >= 1 ? n - 1 : 0); c1 += 32) {
    /* .. */
}
```

With convex hull based "coalescing"

```
for (long c1 = 32 * floord(-1073741839 * n -
     32749125633, 68719476720) - 1073741792; c1 <=
    floord(715827882 * n + 357913941, 1431655765) +
    1073741823; c1 += 32) {
    /* .. */
}</pre>
```

Traditional "Coalescing"

Traditional method (e.g., in CLooG with original PolyLib backend)

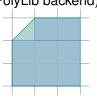
- Compute convex hull H of S
- Remove integer elements not in S from H ⇒ H \ (H \ S)

Issues:

- Convex hull may have exponential number of constraints
 We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
 - ⇒ mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
 - ⇒ in is1, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

Traditional method (e.g., in CLooG with original PolyLib backend)

- Compute convex hull H of S
- Remove integer elements not in S from H
 ⇒ H \ (H \ S)



Issues:

- Convex hull may have exponential number of constraints
 We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
 - ⇒ mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
 - ⇒ in is1, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

AST Generation Times

Generation times on is1 AST generation test cases

isl coalescing	16.0s
no coalescing	16.3s
convex hull (FM)	24m00s
convex hull (wrapping)	6m40s

Note: is1 may not have the most efficient convex hull implementation However, double description based implementations are costly too

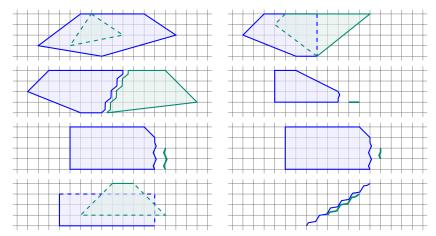
Outline

- Introduction and Motivation
 - Polyhedal Model
 - The need for coalescing
 - Traditional "Coalescing"
- Coalescing in is1
 - Rational Cases
 - Constraints adjacent to inequality
 - Constraints adjacent to equality
 - Wrapping
 - Existentially Quantified Variables
- Conclusions

Coalescing in isl

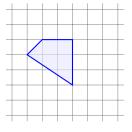
Coalescing in isl

- never increases the total number of constraints
- based on solving LP problems with same dimension as input set
- recognizes a set of patterns



Given two disjuncts A and B

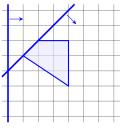
For each affine constraint $t(\mathbf{x}) \ge 0$ of A, determine its effect on B



Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \ge 0$ of A, determine its effect on B

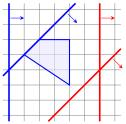
• min $t(\mathbf{x}) > -1$ over B \Rightarrow valid constraint



Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \geq 0$ of A, determine its effect on B

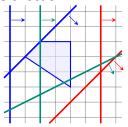
- min $t(\mathbf{x}) > -1$ over B \Rightarrow valid constraint
- max t(x) < 0 over B⇒separating constraint



Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \ge 0$ of A, determine its effect on B

- min t(x) > −1 over B
 ⇒valid constraint
- max t(x) < 0 over B⇒separating constraint



 otherwise (attains both positive and negative values over B)
 ⇒cut constraint

- All constraints of A are valid for B
 - \Rightarrow drop B

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B
- Neither A nor B have separating constraints and all cut constraints of A are valid for the cut facets of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B
- Neither A nor B have separating constraints and all cut constraints of A are valid for the cut facets of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B
- Neither A nor B have separating constraints and all cut constraints of A are valid for the cut facets of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B
- Neither A nor B have separating constraints and all cut constraints of A are valid for the cut facets of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B
- Neither A nor B have separating constraints and all cut constraints of A are valid for the cut facets of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

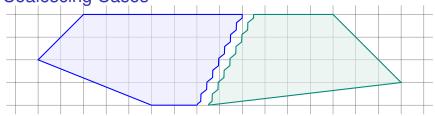
Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

- All constraints of A are valid for B
 - \Rightarrow drop B
- Neither A nor B have separating constraints and all cut constraints of A are valid for the cut facets of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$



Constraint $t(\mathbf{x}) \geq 0$

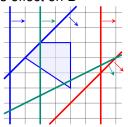
• valid: $\min t(\mathbf{x}) > -1$

• separate: $\max t(\mathbf{x}) < 0$

Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \ge 0$ of A, determine its effect on B

- min t(x) > −1 over B
 ⇒valid constraint
- max t(x) < 0 over B
 ⇒separating constraint

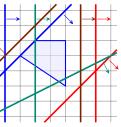


 otherwise (attains both positive and negative values over B)
 ⇒cut constraint

Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \ge 0$ of A, determine its effect on B

- min t(x) > −1 over B
 ⇒valid constraint
- max t(x) < 0 over B
 ⇒separating constraint
 special cases:
 - ► t = -u 1 with $u(\mathbf{x}) \ge 0$ a constraints of B⇒ constraint is adjacent to an inequality of B



 otherwise (attains both positive and negative values over B)
 ⇒cut constraint

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$

Coalescing in isl



- single pair of adjacent inequalities (other constraints valid)
 - ⇒ replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

- single pair of adjacent inequalities (other constraints valid)
 - ⇒ replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

A has single inequality adjacent to inequality of B (other constraints of A are valid) Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

January 19, 2015

Coalescing in is1

A has single inequality adjacent to inequality of B (other constraints of A are valid)
 Result of replacing t(x) ≥ 0 by

Hesult of replacing $t(\mathbf{x}) \ge 0$ by $t(\mathbf{x}) \le -1$ and adding valid constraints of B is a subset of B

 \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

- A has single inequality adjacent to inequality of B (other constraints of A are valid)
 Result of replacing t(x) ≥ 0 by
 - $t(\mathbf{x}) \le -1$ and adding valid constraints of B is a subset of B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

Constraint $t(\mathbf{x}) \geq 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

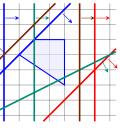
Constraint $t(\mathbf{x}) \ge 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \geq 0$ of A, determine its effect on B

- min $t(\mathbf{x}) > -1$ over B ⇒valid constraint
- max t(x) < 0 over B ⇒separating constraint special cases:
 - ► t = -u 1 with $u(\mathbf{x}) \ge 0$ a constraints of B ⇒ constraint is adjacent to an inequality of B

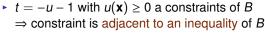


 otherwise (attains both positive and negative values over B) ⇒cut constraint

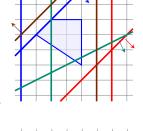
Given two disjuncts A and B

For each affine constraint $t(\mathbf{x}) \geq 0$ of A, determine its effect on B

- min $t(\mathbf{x}) > -1$ over B ⇒valid constraint
- max t(x) < 0 over B ⇒separating constraint special cases:



- $t(\mathbf{x}) = -1 \text{ over } B$ \Rightarrow constraint is adjacent to an equality of B
- otherwise (attains both positive and negative values over B)



Constraint $t(\mathbf{x}) \ge 0$

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1

cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Result of replacing $t(\mathbf{x}) \ge 0$ by $t(\mathbf{x}) \le -1$ is a subset of B

 \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Result of replacing $t(\mathbf{x}) \ge 0$ by $t(\mathbf{x}) \le -1$ is a subset of B

 \Rightarrow replace $A \cup B$ by set bounded by all valid constraints

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise

A has single inequality adjacent to equality of B (other constraints of A are valid)

Result of replacing $t(\mathbf{x}) \ge 0$ by $t(\mathbf{x}) \le -1$ is a subset of B

⇒ replace A ∪ B by set bounded by all valid constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:
 - t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

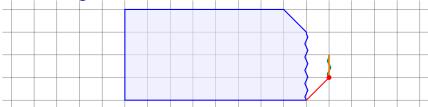
- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of *B* (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include *A*

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise



 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of *B* (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include *A*

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

 A has single inequality adjacent to equality of B (other constraints of A are valid)

Non-valid constraints of *B* (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include *A*

⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:
 - t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise



- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

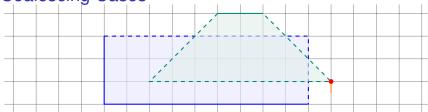
- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

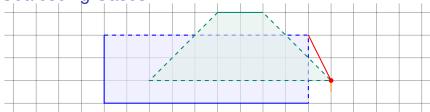
- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise



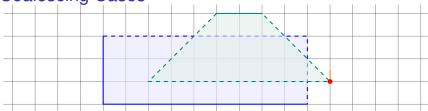
- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise



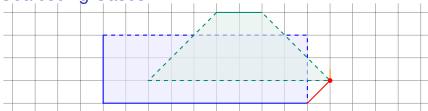
- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise



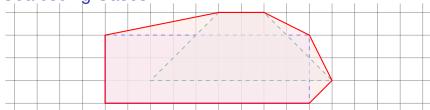
- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise



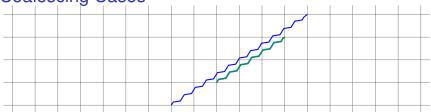
- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

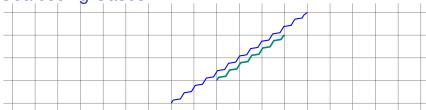


- B extends beyond A by at most one and all cut constraints of B can be wrapped around shifted facet of A to include A
 - ⇒ replace A ∪ B by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality:t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise



- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality: t = -1
- cut: otherwise

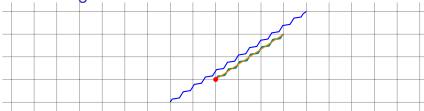


Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

Non-valid constraints of *A* (except

- $t(\mathbf{x}) \ge 0$) can be wrapped around
- $t(\mathbf{x}) \leq 0$ to include B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints and all wrapped constraints

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise



Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

Non-valid constraints of A (except $t(\mathbf{x}) \ge 0$) can be wrapped around

- $t(\mathbf{x}) \leq 0$ to include B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints and all wrapped constraints

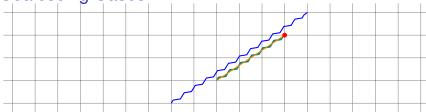
- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise

Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

Non-valid constraints of A (except

- $t(\mathbf{x}) \ge 0$) can be wrapped around $t(\mathbf{x}) \le 0$ to include B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints and all wrapped constraints

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise

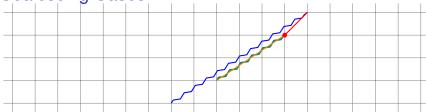


Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

Non-valid constraints of A (except $t(\mathbf{x}) \ge 0$) can be wrapped around

- $t(\mathbf{x}) \leq 0$ to include B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise

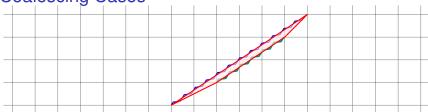


Non-valid constraints of B (except $t(\mathbf{x}) \le -1$) can be wrapped around $t(\mathbf{x}) \ge -1$ to include A

Non-valid constraints of A (except $t(\mathbf{x}) \ge 0$) can be wrapped around

- $t(\mathbf{x}) \leq 0$ four be wrap $t(\mathbf{x}) \leq 0$ to include B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints and all wrapped constraints

- valid: $\min t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u 1
 - ▶ adjacent to equality:
 t = -1
- cut: otherwise



Non-valid constraints of B (except $t(\mathbf{x}) \leq -1$) can be wrapped around $t(\mathbf{x}) \geq -1$ to include A Non-valid constraints of A (except

 $t(\mathbf{x}) \geq 0$) can be wrapped around

- $t(\mathbf{x}) \leq 0$ to include B
 - \Rightarrow replace $A \cup B$ by set bounded by all valid constraints and all wrapped constraints

- valid: min $t(\mathbf{x}) > -1$
- separate: $\max t(\mathbf{x}) < 0$
 - adjacent to inequality: t = -u - 1
 - adjacent to equality: t = -1
- cut: otherwise

Existentially Quantified Variables and Equalities

- Quantifier elimination in is1 replaces existentially quantified variables by integer divisions of affine expressions in other variables
- These integer divisions are sorted prior to coalescing
- A and B have same number of integer divisions/existentials \Rightarrow try all cases
- integer divisions of A form subset of those of B (after exploiting equalities of B) \Rightarrow check if B is a subset of A
- integer divisions of B form subset of those of A and equalities of B simplify away the integer divisions of A not in B \Rightarrow introduce integer divisions in B and try all cases

Conclusions January 19, 2015 26 / 27

Outline

- Introduction and Motivation
 - Polyhedal Model
 - The need for coalescing
 - Traditional "Coalescing"
- Coalescing in is1
 - Rational Cases
 - Constraints adjacent to inequality
 - Constraints adjacent to equality
 - Wrapping
 - Existentially Quantified Variables
- Conclusions

Conclusions January 19, 2015 27 / 27

Conclusions

 it is important to keep the number of disjuncts in a set representation as low as (reasonably) possible

- coalescing in is1
 - never increases the total number of constraints
 - based on solving LP problems with same dimension as the original set
 - recognizes a set of patterns