
On Recovering Multi-Dimensional Arrays in Polly

Tobias Grosser
ETH Zürich

tobias.grosser@inf.ethz.ch

Sebastian Pop
Samsung Austin R&D Center

sebpop@gmail.com
J. Ramanujam

Louisiana State University
ram@cct.lsu.edu

P. Sadayappan
The Ohio State University

sadayappan.1@osu.edu

ABSTRACT
Although many programs use multi-dimensional arrays, the
multi-dimensional view of data is often not directly visible
in the internal representation used by LLVM. In many situa-
tions, the only information available is an array base pointer
and a single dimensional offset. For problems with paramet-
ric size, this offset is usually a multivariate polynomial that
cannot be analyzed with integer linear programming (ILP)
solvers and consequently impedes the computation of precise
data dependences.

In this paper, we present an approach to recover the multi-
dimensional nature of accesses to arrays of parametric size.
In case of insufficient static information, the developed algo-
rithm produces the necessary run-time conditions to validate
the recovered multi-dimensional form. The access descrip-
tion obtained significantly simplifies the dependence checks,
making previously polynomial dependence problems precisely
solvable by a linear solver. Our approach has been evalu-
ated using a number of benchmarks from polybench (C99),
boost::ublas (C++) and Julia.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processor – Compilers

Keywords
polyhedral analysis, linear memory layout, recovering multi-
dimensional arrays

1. INTRODUCTION
Dense multi-dimensional arrays are data structures com-

mon to many compute problems. To allow compilers to per-
form interesting optimizations, it is often necessary to un-
derstand the multi-dimensional nature of these arrays. Un-
fortunately, while multi-dimensional arrays are native con-
structs in C99, Fortran or Julia [1], this information is often
lost when translating such languages to a low-level com-
piler IR. In addition, many programming languages (e.g.,

IMPACT 2015
Fifth International Workshop on Polyhedral Compilation Techniques
Jan 19, 2015, Amsterdam, The Netherlands
In conjunction with HiPEAC 2015.

http://impact.gforge.inria.fr/impact2015

C90 and C++) do not natively support variable size multi-
dimensional arrays. In C90 or C++, users implement such
arrays by creating their own classes, templates or macros,
leaving the compiler without information about the multi-
dimensionality of these accesses. As a result, accesses to
such arrays are seen by the compiler as single-dimensional
accesses that directly correspond to how the array is laid
out in memory. We call this single-dimensional view the
linearized view of an array. The process of recoverign the
multi-dimensional view from the linearized view has been
referred to as delinearization in the literature.

Assuming the original index expressions are affine, the lin-
earized accesses can have different properties. For arrays of
constant size, linearized expressions will contain large inte-
ger coefficients (the array sizes). Despite the presence of
these coefficients the linearized access expression remains
affine. We illustrate this with a simple example in Listing 1.

As affine expressions can be precisely modeled with inte-
ger maps, data flow analysis based on integer maps (e.g., the
one provided by isl [10]) will yield optimal results. However,
in cases where the size of the array is parametric (Listing 2),
this is no longer true. The expressions we obtain by lineariz-
ing accesses to arrays of parametric size may now contain
multiplications between loop indexes and variables such as
m ∗ i. Performing dependence analysis on the “linearized”
view of an array is a complex problem not supported by
most existing dependence analysis tools.

void constantSize(float A[1024][4096]) {

for (int i = 0; i < 1024; i++)

for (int j = 0; j < 4096; j++)

A[i][j] = i + j;

// A[4096 i + j] = . . . is affine

}

Listing 1: Multi-dimensional array of constant size

void parametricSize(float A[n][m]) {

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

A[i][j] = i + j;

// A[m i + j] = . . . is polynomial

}

Listing 2: Multi-dimensional array of parametric size

We address this issue by presenting a new approach that
for several important cases can derive from a given set of
one dimensional multivariate polynomial array accesses an

1

http://impact.gforge.inria.fr/impact2015

equivalent multi-dimensional view in which all array index
expressions are affine. As existing data dependence anal-
yses can precisely analyze the resulting arrays, we obtain
precise data dependency information for kernels with such
polynomial index expressions. In this paper we present the
following contributions:

• An approch to recovering the multi-dimensional view
of arrays of parametric size; this approach also han-
dles cases where statically proving that recovering the
multi-dimensional view is impossible.

• Increased data dependence analysis precision provided
by our general approach which is useful beyond depen-
dence analysis.

2. MOTIVATING EXAMPLE
Listing 3 shows a simple gemm kernel implemented with

C99 variable length arrays. When compiling the code with
Clang and analyzing the access to A as it is represented by
the compiler’s intermediate representation, the scalar evolu-
tion analysis [7] of LLVM [4] derives an expression equivalent
to an access A[i * p + k]. Neither the original dimension-
ality nor the size of the individual dimensions is preserved.

void gemm(int n, int m, int p,

float A[n][p], float B[p][m],

float C[n][m]) {

L1: for (int i = 0; i < n; i++)

L2: for (int j = 0; j < m; j++)

L3: for (int k = 0; k < p; ++k)

C[i][j] += A[i][k] * B[k][j];

}

Listing 3: gemm in C99 using variable length arrays

To guide our approach to recovering the multi-dimensional
view, we take advantage of structural information provided
by the parametric array sizes. For multi-dimensional arrays
with affine access functions we observe that, after lineariz-
ing the accesses to such arrays, all parameters that appear
within products of loop induction variables and parameters
are derived from the sizes of the original array dimensions.
In the previous example the only such product is i ∗ p and
the contained parameter p directly corresponds to the inner
dimension of the array A. So we can guess that the origi-
nal array has been declared as A[][p] with access functions
A[i][k]. To verify our guess, we need to check that all pos-
sible uses of this access will remain within the bounds of our
assumed array shape. For the inner dimension this means
that ∀i, j, k, 0 ≤ i < n∧0 ≤ j < m∧0 ≤ k < p the condition
0 ≤ k < p holds. For the example above, this condition is
statically provable. No run-time check is necessary.

Listing 4 shows the very same gemm kernel, but this time
implemented with 2D arrays that use dedicated structures to
keep track of the array’s size, a style very similar to the im-
plementation of boost::ublas. If we now look at the access to
B, we get an expression B->Base[k * B->size1 + j]. The
iteration space constraints that hold are 0 ≤ i < C->size0∧
0 ≤ j < C->size1 ∧ 0 ≤ k < A->size1. Showing from
this information that for all possible values of j the ac-
cess to the inner dimension of B remains within bounds
is not possible. Instead we require a run-time condition
B->size1 ≥ C->size1 to avoid out of bounds accesses. Only

in case B is large enough, our approach models the ac-
tual run-time behavior correctly. Even though this example
looks rather contrived it is in fact a very realistic exam-
ple. Increasing modularity inspired for example by the new
C++11/C++14 standards very often yields situations where
relations between parameters are not obvious. Having the
facilities to still be able to perform useful optimization is be-
coming more and more important for optimizing compilers.

struct 2DArray {

size_t size0; size_t size1; float *Base;

}

#define ACCESS_2D(A, x, y) \

*(A->Base + (x) * A->size1 + (y))

#define SIZE0_2D(A) A->size0

#define SIZE1_2D(A) A->size1

void gemm(struct 2DArray *A, struct 2DArray *B,

struct 2DArray *C) {

L1: for (int i = 0; i < SIZE0_2D(C); i++)

L2: for (int j = 0; j < SIZE1_2D(C); j++)

L3: for (int k = 0; k < SIZE1_2D(A); ++k)

ACCESS_2D(C, i, j) +=

ACCESS_2D(A, i, k)

* ACCESS_2D(B, k, j);

}

Listing 4: gemm with manual multi-dimensional arrays

3. PROBLEM STATEMENT
Given a set of single dimensional memory accesses with

index expressions that are multivariate polynomials in terms
of loop iterators as well as symbolic program parameters and
a set of corresponding iteration domains, derive a multi-
dimensional view with linear index expressions.

The view consists of 1) a multi-dimensional array defini-
tion (including the number of array dimensions and sizes for
all but the outermost dimension), 2) for each original array
access, a corresponding multi-dimensional access.

We also pose a set of additional requirements on the view
we derive:

• (R1) The number of array dimensions is minimal.

• (R2) The array sizes are minimal.

• (R3) The new access functions are affine in loop pa-
rameters and program parameters.

• (R4) For each array access, the memory location di-
rectly obtained from the linearized subscript expres-
sion and the memory location obtained from the multi-
dimensional array after lowering it using the derived
array sizes and assuming a row-major array layout
are identical for all loop iterators within the iteration
space.

• (R5) The array subscript expressions for all but the
outermost dimension are, for all iterations within the
iteration space, within the bounds of the multi-dimensional
array.

For cases where the multi-dimensional view cannot be proven
correct statically, we derive a multi-dimensional view as dis-
cussed above and provide a set of conditions under which
this view is valid.

2

Conditions R1 and R2 are there to ensure that no un-
necessarily complicated array views are computed. R3 is
necessary to ensure that we can represent the resulting ac-
cess expressions as integer maps. R4 ensures that the multi-
dimensional form of the array has the same access character-
istics as the single dimensional array. R5 ensures together
with R4 that if we define a relation R between the elements
of the linearized and the multi-dimensional view of the lin-
earized array such that two elements are related iff they map
to the same data location, this relation is always bijective.
This property is important as it ensures that for each actual
memory location there is only a single data location in our
model, which again is necessary for the correct computation
of data dependences.

4. ARRAYS OF PARAMETRIC SIZE
In this section we present an algorithmic approach to de-

linearize a multivariate polynomial to a multi-dimensional
array of the shape A[P0][P1] . . . [Pn−1], Pi ∈ P with P re-
ferring to the set of program parameters. This means we
obtain array shapes with the size of each dimension being
defined by a single parameter and with multiple dimensions
possibly sharing the same parameter.

4.1 Basic algorithm
We first propose a basic algorithm consisting of the fol-

lowing four steps:

1. Collect possible array size parameters

2. Derive dimensionality and array size

3. Compute multi-dimensional access functions

4. Derive validity conditions

As a first step, we collect information about possible ar-
ray size parameters. To do this we expand the given poly-
nomial expression into a sum of products. From this sum,
we extract all terms that contain both a loop induction vari-
able and (possibly multiple) parameters. Those terms are
interesting as the presence of a term that multiplies a pa-
rameter with a loop induction variable makes the expression
non-affine. However, in case a parameter P is an array size
parameter, P may be removed from the index expressions
during delinearization such that the original expression is
turned into an access with affine subscript expressions. Con-
sequently, we guess that P defines the size of at least one
array dimension.

As the second step, we derive the dimensionality and the
size of the array. To do this we start from the terms obtained
in the previous step and assume all of them form products.
In case a term is not a product, we treat it as a product
with just a single factor. We remove from each term all
factors that are non-parametric. The resulting terms are
sorted according to the number of factors they have and we
check that the terms with less factors symbolically divide
the larger terms. In case this is true we assume the results
of these divisions are the array sizes.

As the third step, we extract the access functions of the
individual dimensions. For this we start with the original
polynomial expression and first divide it by the size of the
elements accessed. The resulting expression is then divided
by the assumed array sizes starting with the innermost size.

The remainder is the access function of the innermost di-
mension, the quotient is divided again by the size of the next
array dimension. The new remainder is the access function
of the second array dimension and the quotient is divided
further. If no more array sizes are available, the last quotient
becomes the access function of the outermost dimension.

As a last step, we derive the validity conditions. Up to this
step, the delinearization we propose is an educated guess. It
is only valid if ∀i ∈ [1, n − 1] : 0 ≤ fi(~i) < di holds, with n
being the number of array dimensions computed, di being
the size of dimension i and fi(~i) being the access function of
dimension i, which given a vector of loop induction variables
and program parameters derives a subscript expression. To
check if these conditions hold, we can simplify them taking
into account the range of the surrounding loop induction
variables. In simple cases this simplification yields >, which
means the delinearization has been statically proven correct.
In cases where this is not enough, the remaining conditions
need to be emitted as run-time checks.

We illustrate our delinearization algorithm using the ini-
tialization of a multi-dimensional subarray as an example.
The code shown in Listing 5 initializes a subarray of size
s0×s1×s2 located at offset o0×o1×o2 inside a larger array
of size n0 × n1 × n2.

void set_subarray(float A[],

unsigned o0, unsigned o1, unsigned o2,

unsigned s0, unsigned s1, unsigned s2,

unsigned n0, unsigned n1, unsigned n2) {

for (unsigned i = 0; i < s0; i++)

for (unsigned j = 0; j < s1; j++)

for (unsigned k = 0; k < s2; k++)

S: A[(n2 (n1 o0 + o1) + o2)

+ n1 n2 i + n2 j + k] = 1;

}

Listing 5: Initialization of subarray

To recover the multi-dimensional nature of the access in
statement S, we first expand the offset expression (n2(n1o0+
o1) + o2) + n1n2i+ n2j + k to a sum of products n2n1o0 +
n2o1 + o2 + n1n2i + n2j + k. Next, all products that in-
volve induction variables are extracted, induction variables
are removed and the products are sorted by the number of
factors. This yields the set {n1n2, n2}. As the smaller terms
in this set evenly divide the larger ones, we assume a multi-
dimensional array of shape A[][n1][n2].

We now use the new array shape to derive the individual
index expressions. We do this by symbolically dividing the
original offset expression by the size of the individual array
dimensions starting from the innermost dimension. As a first
step we divide by n2, which leaves us with a remainder o2+k,
the index expression we assume for the innermost dimension.
The quotient of the division is n1o0 + o1 + n1i + j. This
quotient is now divided by n1. The resulting remainder o1+j
allows us to derive A[?][j + o1][?] and the resulting quotient
o0 + i allows us to derive A[o0 + i][?][?]. The reconstructed
full array access is A[i+ o0][j + o1][k + o2].

As a last step, we check the correctness of our delineariza-
tion by forming the validity condition:

∀i, j, k : 0 ≤ i < s0 ∧ 0 ≤ j < s1 ∧ 0 ≤ k < s2 :

0 ≤ k + o2 < n2 ∧ 0 ≤ j + o1 < n1 ∧ 0 ≤ i+ o0

Using isl [10] we simplify this condition to o1 ≤ n1−s1∧o2 ≤

3

2 0 2 4 6 8 10 12
j

1

0

1

2

3

4

5

6

7

8

i

Figure 1: Subarray accesses for different parameter values

n2 − s2 exploiting the fact that all parameters are given as
unsigned types. As further simplifications are not possible
at compile time, the remaining conditions need to be verified
at run-time.

Figure 1 illustrates a two dimensional version of this ex-
ample highlighting two sets of parameter values, one that
satisfies the validity condition and one that does not. Both
examples work on a 2D data array A[n0][n1] with n0 =
8∧n1 = 9. The first set of parameter values is o0 = 1∧o1 =
3 ∧ s0 = 3 ∧ s1 = 6, which yields 3 ≤ 9 − 6 and evaluates
to >. The corresponding set of data elements (illustrated
in blue) are all within the bounds of the 2D array. How-
ever, of the accesses that correspond to the parameter val-
ues o0 = 5 ∧ o1 = 6 ∧ s0 = 3 ∧ s1 = 6 (red square) only the
left half is within the array bounds. The right half accesses
are out-of-bounds. In this case, the out-of-bounds accesses
access data-locations that correspond to the array elements
{A[i, j] : 4 ≤ i ≤ 6 ∧ 0 ≤ j ≤ 2} (red squares). This is
problematic, as e.g., the data stored to A[7][9] affects the
values read from A[6][0]. This relation is not visible in the
delinerized program, which means the corresponding data
dependences are not modeled and certain program transfor-
mations may be performed incorrectly. When checking our
validity conditions we see that o1 ≤ n1−s1 ⇒ 6 ≤ 9−6⇒ ⊥,
which correctly shows that for this set of parameters we can-
not rely on our delinearization.

4.2 Multiple array references
In case the kernel we analyze contains more than one ac-

cess to the same array (e.g., identified by its base pointer),
it is important to ensure that all accesses are delinerized us-
ing the same assumed array shape. Ensuring this requires
only a slight adjustment of our algorithm. In the case of
multiple arrays, we extract the terms from all arrays and
derive the assumed array size from the combined terms. Us-
ing this common array size, we can once again derive the
array accesses individually. The validity conditions are also
derived individually, but redundant conditions are removed
in a subsequent step.

In case data accesses reference different arrays, we group
the data accesses by the different arrays they access and an-
alyze each group individually assuming the absence of alias-
ing between accesses to different arrays. To generate the
run-time conditions we merge the constraints from the indi-
vidual arrays, remove redundant constraints and generate a
single run-time check to verify our analysis.

4.3 Subscripts containing size parameters
Listing 6 shows an example of multi-dimensional array

float A[][N][M];

for (i = 0; i < L; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

S1: A[i][j][k] = ...;

S2: A[1][1][1] = ...;

S3: A[0][0][M - 1] = ...;

S4: A[0][N - 1][0] = ...;

S5: A[0][N - 1][M - 1] = ...;

Listing 6: Array sizes in subscripts (multi-dimensional)

float A[];

for (i = 0; i < L; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

S1: A[i * N * M + j * M + k] = ...;

S2: A[N * M + M + 1] = ...;

S3: A[M - 1] = ...;

S4: A[N * M - M] = ...;

S5: A[N * M - 1] = ...;

Listing 7: Array sizes in subscripts (linearized)

accesses where the subscript expressions contain array size
parameters. In case these accesses are linearized, as illus-
trated in Listing 7, the algorithm presented in Section 4 de-
rives for an access A[0][0][M-1] with array size A[][N][M],
the access A[0][1][-1] as it associates multiples of M with
the second dimension. This delinearization is invalid, as the
subscript in the inner dimension becomes negative.

In general there is always a set of delinearizations that
differ in their derived subscript expressions, but which all
compute the same address expression. For the above ex-
ample, the accesses A[0][-1][2*M-1], A[0][0][M-1] and
A[0][1][-1] all compute the same address expression. In
fact, for a given two dimensional access and an arbitrary
k ∈ N the following holds:

A[f0][f1] with A[][s1]

= A[f0s1 + f1] with A[]

= A[(f0 − k)s1 + (ks1 + f1)] with A[]

= A[f0 − k][ks1 + f1] with A[][s1]

For d-dimensional accesses and any pair of neighboring di-
mensions (t, t+ 1), t ∈ [0, d− 2] the following equality holds
for all kt ∈ N:

&A[. . . , ft, ft+1, . . .] = &A[. . . , ft − kt, ktst+1 + ft+1, . . .]

This means there exists a set of values kt, t ∈ [0, d − 2]
which can be arbitrarily chosen to generate an infinite num-
ber of array accesses that all yield the same address ex-
pressions. However, for a specific set of loop iterators and
parameters not all kt values ensure in-bounds memory ac-
cesses. The question is how to find the right values of kt
that avoid out of bounds accesses? One idea is to look
at the loop bounds and to statically derive the right val-
ues of kt. This is possible as long as the range of the
subscript expression is known, but causes problems for ac-
cesses such as A[N * i + N + p] which might be modeled
as an access A[i + 1][p] to an array of shape A[][N] in
case 0 ≤ p < N holds, but which would better be mod-

4

eled as A[i][N + p] in case −N ≤ p < 0 holds. In general
it is not possible to derive an optimal value for k without
knowledge about the values p can take. In some cases (e.g.,
−10 ≤ p < N − 10) there is not even a single optimal value
for k. To still be able to model such cases we can create
a piecewise delinearization that chooses the correct value
of k depending on the values of the subscript expressions.
For the 2D case we could be tempted to use a mapping
(f0, f1) → (f0 + k,−ks1 + f1) | ∃k : ks1 ≤ f1 < (k + 1)s1,
which models all possible values of k. Unfortunately, the
product between k and s1 is non-affine and consequently
this map cannot be represented as an integer map. How-
ever, if we bound k such that k ∈ [kl, ku] with kl, ku being
known integer values, we can model this map with a finite
number of affine pieces.

(f0, f1)→

(f0 − kl, kls1 + f2) f1 < −kls1
...

(f0 − 1, s1 + f2) − s1 ≤ f1 < 0

(f0, f1) 0 ≤ f1 < s1

(f0 + 1,−s1 + f2) s1 ≤ f1 < 2s1
...

(f0 + ku,−kus1 + f2) kus1 ≤ f1
For d-dimensional accesses we now define a set of maps
Mt, t ∈ [0, d − 2], where a map Mt is an identity map with
dimension t and t + 1 modified to use a generalized ver-
sion of the above mapping. Each Mt approximates a map
(. . . , ft, ft+1, . . .)→ (. . . , ft + k,−k ∗ st+1 + ft+1, . . .) | ∃k :
kst+1 ≤ f1 < (k + 1)st+1 using a finite set of affine pieces.
Starting from the highest t, we apply all maps Mt one by
one to the delinearized (i.e., the multi-dimensional view) ac-
cesses. Using the original algorithm on the example given
in Listing 6 we obtain the following set of delinearized ac-
cesses: {S1(i, j, k) → A(i, j, k), S2() → A(1, 1, 1), S3() →
A(0, 1,−1), S4() → A(1,−1, 0), S5() → A(1, 0,−1)}. Af-
ter applying a set of maps Mt generated with values kt,l =
0, kt,u = 0 chosen to only cover two cases, one with no trans-
formation and one with a single multiple of the problem size
parameter added, we obtain the following delinearized ac-
cesses:

S1(i, j, k)→

A(i− 1, N + j − 1,M + k) k ≤ −1 ∧ j ≤ 0

A(i, j − 1,M + k) k ≤ −1 ∧ j ≥ 1

A(i− 1, N + j, k) k ≥ 0 ∧ j ≤ −1

A(i, j, k) k ≥ 0 ∧ j ≥ 0

S2()→ A(1, 1, 1), S3()→ A(0, 0,M − 1)

S4()→ A(0, N − 1, 0), S5()→ A(0, N − 1,M − 1)

S2, S3, S4 and S5 show directly the correct delineariza-
tion. The access function for S1 is now slightly more com-
plicated, but the three additional cases only apply under
conditions that are removed when simplifying the access un-
der the constraints implied by the iteration domain of S1.
After these simplifications we obtain for S1 the mapping
S1(i, j, k) → A(i, j, k). So the piecewise mappings have all
been statically reduced to maps with just a single piece.

4.4 Arrays of size A[][β1P1][β2P2]

In certain cases (e.g. resizing of images) we may have
array sizes of the form A[][β1P1][β2P2], Pi ∈ P, βi ∈ N.

Accesses to such arrays would be delinearized to an access
A[β1f0][β2f1][f2] into an array of size A[][P1][P2]. As f1 can
be in the range 0 ≤ f1 < β1P1, the expression β2f1 may not
fit into the new range. To address this we can find the gcd of
the values in each dimension and use it to adjust the array
sizes. Specifically, if all subscript expressions on a certain
dimension can be divided by a value x, we can divide all
of them by x and multiply the size of the next innermost
dimension by x. This transformation is always positive in
the sense that it only increases the chance that our delin-
earization will be correct. As it reduces the range of the
subscript expression, the subscript expression is more likely
to fit into the ranges implied by the array size. Similarly, as
we increase the size of the inner dimension the correspond-
ing subscript expressions on this dimension are also more
likely to fit in.

5. PARAMETER + CONSTANT
We look now at a specific case, where the shape of the

array is of the form A[P0 + α0] . . . [Pn−1 + αn−1] with ∀i ∈
[0, n − 1] : Pi ∈ P, αi ∈ N, with Pi being different for dif-
ferent values of i.1 As an example we show in Listing 8 a
simplified 3D stencil computation which computes the aver-
age over the elements in a diagonal stencil and which uses
a one element border around the actual data elements to
avoid the need for special boundary statements.

int In[Q+2][R+2][S+2];

int Out[Q+2][R+2][S+2];

for (int i = 1; i <= Q; i++)

for (int i = 1; i <= R; i++)

for (int i = 1; i <= S; i++)

Out[i][j][k] = 0.33f * (In[i][j][k]

+ In[i+1][j+1][k+1] + In[i-1][j-1][k-1]);

Listing 8: Dimensions of size Pi + αi (multi-dimensional)

int In[]; int Out[];

for (int i = 1; i <= Q; i++)

for (int i = 1; i <= R; i++)

for (int i = 1; i <= S; i++)

Out[i*R*S+2*i*S+2*i*R+4*i+j*S+j*2+k] =

0.33f *

(In[i*R*S+2*i*S+2*i*R+4*i+j*S+j*2+k]

+ In[7+2*j+k+2*R+3*S+j*S+

R*S+4*i+2*R*i+2*S*i+R*S*i]

+ In[-7+2*j+k-2*R-3*S+j*S-R*S

+4*i+2*R*i+2*S*i+R*S*i]);

Listing 9: Dimensions of size Pi + αi (linearized)

When when analysing the linearized access to Out, as vis-
ible in Listing 9, two problems become visible. First of all,
the previous algorithm fails to guess an array size, as the
terms R, S and RS all appear in products that contain
induction variables and our previous approach can conse-
quently not define an order on the parameters that allows
it to assign parameters to array dimensions. Assuming we
could still derive an array shape (e.g., Out[][R][S]) we ob-
tain from the remaining algorithm the access Out[i][2i + j]

1This does not include shapes such as A[][N+1][N+1]

5

[4 i + 2 j + k + 2 i R]. This delinearization is incor-
rect. As it has been derived according to the wrong array
size, it causes out-of-bound accesses and even fails to fully
eliminate non-affine terms in the subscript expressions. Be-
fore we now present a general approach that allows us to
delinearize polynomial expressions to d-dimensional array
shapes of the form A[P0 + α0] . . . [Pd−1 + αd−1], Pi ∈ P,
α ∈ N, we look at the two and three dimensional special
cases.

An access to a two dimensional array A[f0(~i)][f1(~i)] with
shape A[][P1 + α1] corresponds to the single dimensional

access A[f0(~i)(P1 + α1) + f1(~i)], which after expansion be-

comes A[f0(~i)P1 + f0(~i)α1 + f1(~i)]. However, it is unlikely
that this structure is preserved. The only structure that
can be assumed is a sum of terms g{1}(~i)P1 + g∅(~i) where
each term contains a different subset of the program pa-
rameters. In the general case we write this expression as∑

S∈℘([0,f−1])(gS(~i)
∏

s∈S Pi), where f is the number of pa-

rameters, ℘([0, f −1]) is the powerset of [0, f −1], the differ-

ent gS(~i) are expressions in loop induction variables, and
the different Ps are program parameters. To delinearize
this polynomial expression we need to recover from this
sum expressions f0(~i), f1(~i), α1 as a function of gx’s. As

f0(~i) is the only coefficient to P1, recovering the relation

f0(~i) = g{1}(~i) is easy. The second equality we can obtain

is g∅(~i) = f0(~i)α1 + f1(~i). With f0(~i) plugged in we ob-

tain g∅(~i) = g{1}(~i)α1 + f1(~i), which allows us to express

f1(~i) as a function of α1: f1(~i) = g∅(~i) − g{1}(~i)α1. For
different values of α1 we obtain different array sizes and
the corresponding delinerizations, which all are lowered to
the very same linearized function, perform the same mem-
ory accesses and consequently model the program behavior
correctly. However, depending on the iteration space bound-
aries only certain delinearizations ensure the absence of out
of bounds accesses. As boundary offsets are commonly small
and there is only one value α1 to verify, it is possible to scan
a certain number of α1 by either statically checking for valid
delinearizations or possibly even by generating run-time ver-
sioned code for different values of α1.

Looking at the three dimensional case, we observe that
an access A[f0(~i)][f1(~i)][f2(~i)] to an array of shape A[][P1 +
α1][P2+α2] has, after linearization and expansion, the form:

f0(~i)P1P2 + f0(~i)P1α2 + f0(~i)P2α1 + f0(~i)α1α2 +

f1(~i)P2 + f1(~i)α2 + f2(~i)

It corresponds to the polynomial expression:

g{1,2}(~i)P1P2 + g{1}(~i)P1 + g{2}(~i)P2 + g∅(~i)

From the single term that contains P1P2, the product of
all symbolic parameters defining the array sizes, we recover
f0(~i) = g{1,2}(~i). Assuming P1 is the outermost parameter,
we obtain the value of α2 from the single term that contains
P1, but not P2: g{1}(~i) = f0(~i)α2 ⇒ α2 = g{1}(~i)/f0(~i) =

g{1}(~i)/g{1,2}(~i). Looking at the P2 terms, we obtain the

relation g{2}(~i) = f0(~i)α1 + f1(~i). This allows us to derive

f1(~i) = g{2}(~i) − f0(~i)α1 = g{2}(~i) − g{1,2}(~i)α1. Again,
an expression containing α1 as a free variable. To obtain
f2(~i) we look at the terms without any parameters. Here

we have g∅(~i) = f0(~i)α1α2 + f1(~i)α2 + f2(~i) from which we

can derive f2(~i) = g∅(~i) − f0(~i)α1α2 − f1(~i)α2 = g∅(~i) −

f0(~i)α1α2 − (g{2}(~i) − f0(~i)α1)α2 = g∅(~i) − f0(~i)α1α2 −
g{2}(~i)α2 + f0(~i)α1α2 = g∅(~i) − g{2}(~i)α2. As α1 cancels

out, we can unambiguously derive f2(~i). We can conclude
that delinearizing to a three-dimensional array shape does
not introduce more freedom. Only α1 remains unknown and
different values may need to be explored.

Algorithm 1: Derive a delinearization

Data: A polynomial expression in function of induction
variables and parameters, a list of array size
parameters

Result: A set of values αk, k ∈ [1, d− 1], index
expressions fk, k ∈ [0, d− 1] and set of array
size parameters Pk, k ∈ [1, d− 1] or an error if
no delinearization found.

collect possible array sizes parameters;
foreach permutation of array sizes parameters do

derive f0;
alpha = derive alpha values;
if alpha 6= [] then

derive subscript expressions;
derive run-time condition;
if run-time condition is a contradiction then

continue;
else

return subscript expressions,
run-time-condition, array-sizes

return No delinearization found!

We now present with Algorithm 1 a general algorithm
to delinearize polynomial expressions to array shapes of ar-
bitrary dimensionality. We first collect the set of possible
array size parameters and then try for each order to find
a valid delinearization. To check if a valid delinearization
exists, we first compute f0(~i) and use it to try to derive a
set of consistent α values. If we succeed, we derive subscript
expressions and run-time conditions. In case the run-time
condition is not a contradiction, we assume we found a valid
delinearization and finish, otherwise we try the next permu-
tation. To obtain the set of possible array size parameters,
we take the expanded version of the polynomial expression
and look again for parameters that are multiplied with a
loop induction variable.

For the remaining analysis it is necessary to understand
the shape of the polynomial expression we are analyzing.
Specifically, that we can group it such that each term is the
product between a subset of the suspected array size param-
eters and an expression g?(~i) in loop indexes, non array size
parameters and integer constants:

g∅(~i)

+ g{1}(~i)P1 + g{2}(~i)P2 + · · ·+ g{d−1}(~i)Pd−1

+ g{1,2}(~i)P1P2 + g{1,3}(~i)P1P3 + · · ·+ g{2,3}(~i)P2P3 + . . .

+ g[1,d−1](~i)P1 . . . Pd−1

=
∑

K∈P([1,d−1])

(
gK(~i)

∏
k∈K

Pk

)

We now want to express the previous polynomial as a d-
dimensional access A[f0(~i)] . . . [fd−1(~i)] to an array of size
A[][P1 +α1] . . . [Pd−1 +αd−1]. To do so, we start by looking

6

at how such an array is linearized:

f0(~i)(P1 + α1)(P2 + α2) . . . (Pd−1 + αd−1)

+ f1(~i)(P2 + α2) . . . (Pd−1 + αd−1)

+ . . . + fd−2(~i)(Pd−1 + αd−1)

+ fd−1(~i)

=
∑

j∈[0,d−1]

(
fj(~i)

∏
k∈[j+1,d−1]

(Pk + αk)
)

and assume this linearized form yields the same access com-
putation as the one-dimensional expression we want to de-
linearize:∑

K∈P([1,d−1])

(
gK(~i)

∏
k∈K

Pk

)
=

∑
j∈[0,d−1]

(
fj(~i)

∏
k∈[j+1,d−1]

(Pk + αk)
)

=
∑

j∈[0,d−1]

∑
K∈P([j+1,d−1])

(
fj(~i)

∏
k∈K

Pk

∏
k∈[j+1,d−1]\K

αk

)
We now equate terms that contain the same set of parame-
ters and, assuming the parameters to be positive, drop the
common parameters on both sides. As a result, we obtain
the following relations ∀K ∈ P([1, d− 1]).

gK(~i) =
∑

j∈[0,d−1]
∧K⊆[j+1,d−1]

(
fj(~i)

∏
k∈[j+1,d−1]\K

αk

)

Having established this set of equalities, we start to relate
our terms g?(~i) to the terms f?(~i) and α? that we want to

derive. We first derive f0(~i) = g[1,d−1](~i), which can be
trivially derived by setting K = [1, d − 1] in the previous
equation.

Algorithm 2: Derive alpha values

Data: A dimensionality d, a set of expressions gs(~i)
Result: A list of values αk, k ∈ [2, d− 1] or [] in case of

inconsistencies
foreach k ∈ [2, d− 1] do

if g[1,d−1] not evenly divides g[1,d−1]\{k}(~i) then
return [];

αk = g[1,d−1]\{k}(~i)/g[1,d−1](~i);
foreach S ∈ P([2, k − 1] \ (∅ ∪ ([1, d− 1] \ {k})) do

if g[1,d−1](~i) not evenly divides S then
return [];

α′k = gS(~i)/g[1,d−1](~i);
if α′k 6= αk then

return [];
return {k → αk : k ∈ [2, d− 1]}

Then, we derive the values αk by looking at the terms
g[1,d−1]\{k}(~i). In the four-dimensional case such terms have
the form:

g{2,3,4}(~i) = α1f0(~i) + f1(~i)

g{1,3,4}(~i) = α2f0(~i) ⇒ α2 = g{1,3,4}(~i)/g[1,d−1](~i)

g{1,2,4}(~i) = α3f0(~i) ⇒ α3 = g{1,2,4}(~i)/g[1,d−1](~i)

g{1,2,3}(~i) = α4f0(~i) ⇒ α4 = g{1,2,3}(~i)/g[1,d−1](~i)

In general αk, k ∈ [2, d− 1] is αk = g[1,d−1]\{k}(~i)/g[1,d−1](~i).
Similiar to the two and three dimensional case, we cannot
derive a value for α1, as we do not know the value of f1(~i).
However, for higher dimensional cases we can make an inter-
esting observation. The values of αk can not just be obtained
by the equalities presented above. In fact, there is a larger
set of equalities that all need to return the same values αk

for an array view to be a valid delinearization. Specifically,
to derive αk, k ∈ [1, d − 1] we can choose any pair of sets
(S, T), ∅ ⊂ S ⊆ [1, k − 1] ∧ T = S ∩ {k} which can be used
to compute αk as shown in Figure 2. The following lists the
closed form expressions that compute α2 and α3 for the 4D
case:

α2 = g{1,3}(~i)/g{1,2,3}(~i), α3 = g{1}(~i)/g{1,3}(~i)

α3 = g{2}(~i)/g{2,3}(~i), α3 = g{1,2}(~i)/g{1,2,3}(~i)

As the different values of αk are overdefined, we can use this
information to cross check our delinearization. Specifically,
we can use it to validate the order of the array size param-
eters. Algorithm 2 gives the full algorithm we use to obtain
the different alpha values.

After having derived the different values of αk, we can
now derive the terms fj , j ∈ [2, d − 1] by looking at the

terms g[j+1,d−1](~i) (only interesting terms listed):

g{1,...,d−1}(~i) = f0(~i)

g{2,...,d−1}(~i) = α1f0(~i) + f1(~i)

g{3,...,d−1}(~i) = α1α2f0(~i) + α2f1(~i) + f2(~i)

= α2g{2,...,d−1}(~i) + f2(~i)

g{j,...,d−1}(~i) = αj−1g{j−1(~i),...,d−1}(
~i) + fj−1(~i)

g∅(~i) = αd−1g{d−1}(~i) + fd−1(~i)

from which we derive fj(~i) = g[j+1,d−1](~i) − αjg[j,d−1](~i).
The general algorithm (Algorithm 3) is straightforward, as
it mainly uses the equalities just given to derive the relevant
values. As a last step, we obtain the set of necessary run-
time conditions. This step is unchanged from Section 4.

Algorithm 3: Derive subscript expressions

Data: A dimensionality d, a set of expressions
gs(~i), s ∈ P([0, d− 1]), a set of values
αk, k ∈ [2, d− 1]

Result: A set of expressions fk(~i), k ∈ [0, d− 1]

f0(~i) = g[1,d−1](~i);
/* The next line assumes α1 = 0. */

f1(~i) = g2,d−1](~i);
foreach j ∈ [2, d− 1] do

fj(~i) = g[j+1,d−1](~i)− αjg[j,d−1](~i)

return {j → fj(~i) : j ∈ [0, d− 1]}

6. IMPLEMENTATION
We implemented Section 4 within LLVM and Polly [3].

In our implementation, LLVM’s scalar evolution analysis
has been used to perform the transformation of index ex-
pressions necessary, for example, to extract the array size
parameter candidates or to perform the division and re-
mainder computations we use to obtain the subscript ex-
pressions. Besides the basic delinearization support, we also

7

gS(~i)/gT (~i) =
∑

j∈[0,d−1]
∧S⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\S

αx

)
/

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\T

αx

)

=
∑

j∈[0,d−1]
∧S⊆[j+1,d−1]

(
fj(~i)αk

∏
x∈[j+1,d−1]\T

αx

)
/

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\T

αx

)

= αk

∑
j∈[0,d−1]

∧S⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\T

αx

)
/

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\T

αx

)

= αk

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\T

αx

)
/

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
fj(~i)

∏
x∈[j+1,d−1]\T

αx

)
= αk

Figure 2: Deriving αk

implemented support for array size parameters in the index
expressions (Section 4.3) as well as support for deriving a
unique array shape for a set of accesses (Section 4.2). We
also have full support for the generation of run-time condi-
tions that validate our delinearization. For the generation of
run-time conditions, we rely on a new AST generator devel-
oped as part of isl [10] and use its support to generate AST
expressions from user-provided integer sets. This feature al-
lowed us to use isl to compute the set of run-time constraints
that need to be checked, the AST generator to generate op-
timal code for them and Polly’s code generation back end to
translate the resulting AST expressions to LLVM IR. One
optimization that has shown to be useful for reducing the
complexity of run-time conditions is to ask isl to remove any
constraints that are only valid for parameter values for which
no memory access is executed. This is obviously valid. In
case no data access is executed, we cannot possibly model
this access incorrectly.

7. EXPERIMENTAL EVALUATION

7.1 C99 arrays in polybench
We tested the implementation of our delinearization on

all 30 polybench 3.2 kernels [8] with the use of C99 vari-
able length arrays enabled (-DPOLYBENCH_USE_C99_PROT0).
From the 29 kernels currently detected by Polly (Polly skips
floyd-warshall due to zero extends in the loop bounds intro-
duced by the use of 32 bit induction variables), the multi-
dimensional view of arrays can be correctly recovered in 27
of them; only two kernels (ludcmp, fdtd-apml) are currently
skipped, due to the array size itself being of the form N + 1.
However, with both of these kernels using either two dimen-
sional arrays or arrays with different parameters in each size
declaration, the approach proposed in Section 5 is applicable
and would allow us to extend Polly to handle these cases as
well. It is also interesting to note that the Polybench code
is written in a way that all delinearizations should be stat-
ically provable. Nevertheless our delinearization concluded
that run-time checks are necessary for five benchmarks (cor-
relation, covariance, 2mm, doitgen, symm). Looking closer
into why run-time checks are still generated we understand
that in the original polybench source code certain param-
eters have been accidentally swapped in the array declara-
tions and loop bounds, which unintentionally changed the
semantics of the loop kernels in a way that only if a cer-

tain relation between the different parameter holds (e.g. the
matrices are squared) the execution does not inhibit out-
of-bound accesses. The run-time conditions computed di-
rectly reflect those conditions and ensure that only in such
cases our optimized loop is used. Even though not fore-
seen, this example nicely shows the benefits of our approach
to delinearization. Not only did it prevent a possible mis-
compilation of this code, but it also ensured that we could
still optimize it even though there exists a set of parameter
values under which this optimization is not correct.

7.2 Julia / boost::ublas
We also verified our delinearization in two other environ-

ments. We implemented a simple gemm kernel in boost::ublas,
a blas library that uses C++ expression templates to gen-
erate efficient code. After extensive inlining, LLVM can re-
move the noise of the template instantiations and the matrix
multiply kernel is exposed to Polly. After some trivial loop
invariant code motion performed manually, our Polly com-
bined with delinearization successfully detects this kernel
and computes the necessary run-time checks. We imple-
mented the same kernel in Julia [1], a dynamic high-level
language for scientific computing. Similarly to the ublas
example, after some simple loop invariant code motion per-
formed manually, delinearizing the array accesses yields the
expected results, run-time checks are emitted and the Ju-
lia kernel can be optimized with Polly. For matrices of size
1024 × 1024 and type float, Polly’s default optimization
(mostly loop tiling) already speeds up the computation from
15.3 to 2.6 seconds when run single-threaded on an Intel i7-
3520M CPU with 128 KB L1, 512 KB L2 and 4096 KB L3
cache.

8. RELATED WORK
There have been previous approaches for delinearization

starting with Maslov [5] who introduced delinearization to
speed up dependence analysis by reducing the complexity of
linear dependence analysis problems that result from multi-
dimensional arrays of known size. In his work Maslov also
briefly discussed how to handle non-linear array references
as they arise from arrays with symbolic sizes. Maslov’s work
requires the iteration space boundaries to be known, the iter-
ation space itself being rectangular (and starting from zero)
and the boundaries to be integer constants. He lifts the last
restriction when extending his work to arrays with symbolic

8

sizes, but the iteration space is still required to be rectangu-
lar and of a size that allows the delinearization to be proven
statically. Furthermore, Maslov requires that: “each result-
ing dimension must contain at least one variable and no
variable can appear in more than one dimension”. Maslov
does not explore delinearization outside of the context of
dependence analysis and does not address the problem of
finding a consistent delinearization for a set of array refer-
ences. Maslov contributed a second approach in his work
on polynomial constraint simplification [6] where delineriza-
tion in the context of triangular iteration spaces and possi-
bly non-rectangular (triangular) arrays is discussed. Even
though the restrictions on the shape of the iteration space
have been lifted, the iteration space is still required to stati-
cally prove the delinearization. Also, delinearization is again
only applied in the context of dependence analysis. No ap-
proach for a consistent delinearization of a group of array
references has been shown. His polynomial constraint sim-
plification may suffer from an explosion of the number of
constraints, in case of large fixed-size offsets between arrays.
Also, the example shown in the paper is exploiting a spe-
cial case where an induction variable is only used in a single
array dimension. It is unclear how general his approach is.
Simbürger and Größlinger [9] recently discussed delineariza-
tion within Polly using quantifier elimination, but again they
focused on solving dependence analysis issues. Cierniak [2]
presents a solution independent of dependence analysis, dis-
cusses delinearization for non-rectangular arrays and also
provides ideas how to unify the delinearization of multiple
subscripts. However, he does not discuss a symbolic solution
and he requires that each loop index appears in at most one
array dimension.

9. FUTURE WORK
Even though the approach presented in this paper is al-

ready very useful, there are still several interesting research
questions. Analysing the approach in the context of a wider
range of compilers, programming languages and programs
will help us to better understand how widely this approach
is applicable. Depending on empirical results, it may be in-
teresting to generalize our approach to a larger set of array
shapes (e.g. parameter + constant where multiple dimen-
sions share the same parameter or even array sizes defined
by arbitrary affine expressions).

We also believe that the construction of run-time condi-
tions is worth further investigation. Interesting questions are
how to generate efficiently run-time conditions for kernels
with many memory references as well as how to minimize
the number of run-time checks needed.

10. CONCLUSION
In this paper, we have developed an approach to recov-

ering a multi-dimensional view from lower level linearized
polynomial array access expressions for affine accesses of
multi-dimensional arrays. Multi-dimensional array shapes
with sizes given as individual parameters, parameters times
a constant or parameters plus a constant are handled, with
the first two cases also supporting the use of identical param-
eters for extents along multiple dimensions. Our approach is
able to correctly recover the multi-dimensonal view for array
accesses even in those cases where we cannot prove the va-
lidity statically. Instead, we provide a set of conditions that

can be used to verify the validity of the multi-dimensional
view recovery at run-time. The approach has been partially
implemented in the context of LLVM and Polly and this
implementation has been used to evaluate the approach on
kernels from Julia, blast::ublas and polybench, where we
have seen promising results. The new support for analysis
of parametrically sized arrays significantly widens the set
of compute kernels for which precise data dependences can
be computed and which as a result are more likely to be
optimized successfully.

Acknowledgements
Tobias Grosser contributed parts of this work while affiliated
with INRIA and funded through a Google Europe Fellow-
ship of Efficient Computing. This work was also supported
in parts by the US National Science Foundation through
awards, 0811457, 0926127, 0926687, 1059417 and 1440749,
by the U.S. Department of Energy (award DE-SC0012489),
and by Louisiana State University. Furthermore, the LLVM
community and especially Hal Finkel, Armin Größlinger and
Andrew Trick provided important inputs.

11. REFERENCES
[1] J. Bezanson, S. Karpinski, V. B. Shah, and

A. Edelman. Julia: A fast dynamic language for
technical computing. CoRR, abs/1209.5145, 2012.

[2] M. Cierniak and W. Li. Recovering logical data and
code structures. Technical report, 1995.

[3] T. Grosser, A. Größlinger, and C. Lengauer. Polly –
performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing
Letters (PPL), 22(04), 2012.

[4] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Int. Symp. on Code Generation and
Optimization (CGO), 2004.

[5] V. Maslov. Delinearization: An efficient way to break
multiloop dependence equations. SIGPLAN Not.,
27(7):152–161, July 1992.

[6] V. Maslov and W. Pugh. Simplifying polynomial
constraints over integers to make dependence analysis
more precise. In Int. Conf. on Parallel and Vector
Processing, 1994.

[7] S. Pop, A. Cohen, and G.-A. Silber. Induction variable
analysis with delayed abstractions. In High
Performance Embedded Architectures and Compilers,
pages 218–232. Springer, 2005.

[8] L.-N. Pouchet. PolyBench/C 3.2. http:
//www.cs.ucla.edu/~pouchet/software/polybench/.

[9] A. Simbürger and A. Größlinger. On the variety of
static control parts in real-world programs: from affine
via multi-dimensional to polynomial and just-in-time.
In Proc. of the 4th Inter. Workshop on Polyhedral
Compilation Techniques, Vienna, Austria, Jan. 2014.

[10] S. Verdoolaege. isl: An integer set library for the
polyhedral model. In Mathematical Software
(ICMS’10), LNCS 6327, 2010.

9

http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/

	Introduction
	Motivating example
	Problem statement
	Arrays of parametric size
	Basic algorithm
	Multiple array references
	Subscripts containing size parameters
	Arrays of size A[][1 P1][2 P2]

	Parameter + constant
	Implementation
	Experimental Evaluation
	C99 arrays in polybench
	Julia / boost::ublas

	Related work
	Future work
	Conclusion
	References

