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ABSTRACT
We contribute a method to jointly use CPU and GPU in or-
der to execute a balanced parallel code, automatically gen-
erated using polyhedral tools. To evenly distribute the load,
the system is guided by predictions of loop nest execution
times. Static and dynamic performance factors are modelled
by two automatic and portable frameworks targeting CPUs
and CUDA GPUs. The prediction methods comprise three
parts: static code generation, offline profiling and online pre-
diction. There are multiple versions of the loop nests, so that
our scheduler balances the load of multiple combinations of
code versions and selects the fastest before execution. This
proposal is validated on the polyhedral benchmark suite,
showing that CPU+GPU load balance is maintained and
overhead is minimal.

1. INTRODUCTION
Efficient exploitation of heterogeneous computing resour-

ces is a difficult problem, especially when the processing
units (PUs) run different compilation and runtime environ-
ments, in addition to different hardware. On multicore-
CPUs, efficient computing relies on parallelization, load bal-
ance, cache locality exploitation, low-level optimizations.
Efficient use of GPUs requires optimization of memory trans-
fers between host and device, distribution of the computa-
tions on a grid of SIMD blocks with limitations on their
sizes, explicit memory hierarchy exploitation, global mem-
ory accesses coalescing, etc.

Scientific codes are sensitive to their dynamic context.
Dynamicity arises for two main reasons: the execution envi-
ronment variations (e.g. hardware characteristics and avail-
ability, compiler optimizations) and input data size variation
(e.g. from a call to a function to another). On the other
hand, compilers have to take static decisions to generate the
best possible performing code. But, as a result of the dy-
namic context, they miss many optimization opportunities.

In this work, we aim to address these issues automati-
cally, namely to generate efficient code, that will run on
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multiple PUs and fully exploit the hardware, in a dynamic
context. The most difficult problem is to achieve load bal-
ance between heterogeneous PUs. We rely on execution time
predictions on each PU, based on a static code generator,
an offline profiling and a runtime prediction and scheduling.
Our current development platform targets shared memory
cores (one- or multi-socket multicore CPUs) and one or mul-
tiple CUDA GPUs.

For achieving execution time prediction and distribution
of computations, we target static control parts (SCoPs) of
programs [5]. Computation distribution is made possible
by polyhedral dependence analysis and scheduling, through
Pluto [5] or PPCG [20] for instance. The outermost par-
allel loops are chunked into controllable size partitions and
executed independently on different PUs.

The execution time of a chunk on a given PU is predicted
at runtime, at each run of the target code. This computa-
tion is based on: (1) number of iterations and accessed data,
evaluated using polyhedral tools; (2) the average execution
time per iteration and per accessed data, based on tables
that are generated automatically during profiling and de-
pending on the context of the execution (number of blocks
on GPUs, load balance between cores on CPU). Finally, load
balance between different PUs is obtained by adjusting the
size of the chunks such that their predicted execution times
are as close as possible.

The main contribution of this work is an automatic frame-
work for data-parallel workload partitioning and balancing
on CPU+GPU systems. The runtime implements a low
overhead dynamic scheduler, driven by pre-collected profil-
ing data and by the program parameters. Completely in-
effective PUs are automatically eliminated according to the
prediction of their performance. Our system integrates a
multiversioning mechanism capable to select the best per-
forming combination of code versions, differing by their per-
formance characteristics. Moreover, our implementation
combines automatic polyhedral tools to tackle heterogeneous
architectures (CPUs and GPUs) transparently.

A typical use-case of this framework is to compile a li-
brary, such as BLAS. Compile and profile time is not an
issue, but performance on the machine hardware and adap-
tivity to different parameters are crucial: the user of this
library wants to exploit efficiently all available resources of
his machine, in all the calls he will make to the library, possi-
bly using different parameters. For compiling such a library
in our framework, one would first mark all computation-
ally intensive SCoPs in the source, then call the script that
generates the profiling and executable codes and distribute



them. The user of the library would run the profiling code
on his computer at installation time, and then the code of
the library would automatically adapt to the hardware en-
vironment (multicore CPUs, number of GPUs, relative per-
formance) and to the dynamic parameters of each call to the
library at runtime.

In Sect. 2 we present some relevant related work. We
detail the procedures of code generation in Sect. 3, profil-
ing and execution time prediction in Sect. 4 and runtime
scheduling in Sect. 5. In Sect. 6 we validate our proposal by
running the polyhedral benchmark suite, and verifying that
load balance is achieved with varying input data size on a
testbed with a multicore CPU and one to four GPUs.

2. RELATED WORK
Our scheduling algorithm relies on [17] and [9] methods for

predicting execution times on CPU and GPU (respectively).
They were originally designed to portably select the best
performing code amongst multiple, semantically equivalent
versions. Python scripts generate profiling and prediction
code. The profiling step simulates the target code execution
and evaluates the throughput of host and device commu-
nications. At runtime, as the execution context is known,
approximated execution times are computed and used as
predictions.

Peng Di et al. [7] propose a technique to automatically
select a good-performing tile size for codes targeting GPUs.
They primarily focus on doaccross loops for which they ex-
tract inter-tile and intra-tile wavefront parallelism. Tile
size selection is performed by comparing predicted execu-
tion times for different configurations of tile sizes. Even
though the prediction model accurately approximates execu-
tion times, the generated code must follow a specific pattern
and host-device communications are not considered.

Introduction of directive-based languages, such as Ope-
nACC [14] or HMPP [8] have leveraged the programmer
task to exploit accelerators. Although they provide means
to easily target a single device, they lack in straightforward
distribution of the computations onto all the available PUs.
Komoda et al’s work [11] is a first step towards using all
resources of a machine with openACC. Still, it needs refine-
ments and requires the implementation of scheduling to be
efficient on heterogeneous systems.

Boyer et al.’s work [6] focuses on hardware availability
and environment dynamicity while we focus on problem size
influence. To train the scheduler, work groups aggregated
into chunks, which size is exponentially increased at each
step, are run on the target processor. Each chunk execu-
tion triggers data movements to the target processors. As
an arbitrary threshold is reached the measurements are con-
sidered as relevant and the training stops. Due to its dy-
namic nature, the system is inclined to adapt to external
performance-impacting events, for instance punctual clock
rate scaling, processor load, etc. Based on the last exe-
cution times, the scheduler linearly dispatches the rest of
the computations to the PUs. The authors evaluated their
framework for problem sizes occupying the whole memory.
We show in this paper that the execution times of chunks
do not vary linearly with their size.

StarSs [15] extends the OpenMP directives with construc-
tions to specifically handle and offload code portions. The
scheduling strategy relies on a training phase during which
tasks are run on the available processors, and it builds affini-

ties between processors and tasks. Then, the tasks are asso-
ciated to the processors so that the computational load and
the overall execution time is minimized. This coarse-grained
approach is best effort as it does not guarantee load balance.

Recently, there has been a lot of interest in providing
multi-GPU accelerated mathematical libraries. CuBLAS-
XT [13] is an Nvidia multi-GPU capable BLAS library,
however, it is not clear whether load balance is maintained
on heterogeneous GPUs configuration. MAGMA [18] is a
similar linear algebra library that manages heterogeneous
CPU+GPU platforms by relying on dynamic scheduling pro-
vided by StarPU.

The StarPU runtime system [2] schedules tasks onto the
available computing resources. The programmer has to write
the tasks as codelets, provide their dependencies, and decide
which scheduling policy to employ. To maintain load bal-
ance, the heft-tm strategy [1] relies on a history-based time
prediction to assign tasks to PUs, so that execution time is
minimized. In order to characterize performance, multiple
actual target code executions are required, for all execution
contexts. Conversely, our framework profiles the code be-
fore the first execution of the application, thus immediately
enabling maximum performance for any parameters values
at runtime.

Overall, in comparison to the task-based StarSs and -
StarPU systems, which may stall on dependencies, our run-
time makes immediate and continuous use of all the hard-
ware resources; and it is fully automatic, once the program-
mer has marked the region of (sequential) code of interest
with a pragma. On the other hand our framework handles
only SCoP codes, which can be handled by optimizing poly-
hedral compilers, while StarSs and StarPU can handle any
parallel code that the programmer writes.

In the HDSS scheduling scheme [3] loops are decomposed
into chunks. The first chunk performs a training phase to
model the performance for each compute device with a loga-
rithmic function. This function is then used to determine a
weight, controlling the chunk size associated to each PU.
While offering opportunities to adapt to external perfor-
mance factors, training is required for each run, which may
induce a large overhead, especially on short and frequently
called codes. The performance model is coarse grain and
may be imprecise on GPUs (see for example Fig. 2). Con-
versely, our scheduler does not require an online training,
and partitions precisely the whole parallel loop nest before
its execution.

In the SKMD system [12] the loop partitioning is com-
puted by generating multiple combinations of compute de-
vice workload until they minimize execution time. To pre-
dict the performance, a table stores performance values ex-
pressed in work groups per millisecond. As mentioned in the
paper, the target codes are hand-written. Moreover, host-
device bandwidth is considered constant, which may imply
prediction inaccuracies.

3. CODE GENERATION
In this section we present how we automatically generate

OpenMP code for CPU and CUDA code for GPU. A set
of python scripts orchestrates the code generation process
for its execution on a heterogeneous configuration. To pro-
vide source code analysis and modification capabilities, the
scripts implement a wrapper on pycparser [4], a C parser
written in python. We extended it to handle C for CUDA
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Figure 1: Global framework workflow overview.

and a pragma to mark the regions of code of interest. To
build the target code, the generator makes extensive use of
template files. For specializing the parallel loop nests we rely
on Pluto [5] and PPCG [20], two source-to-source polyhedral
compilers. Both compilers generate optimized parallel code
from static control loops written in C. PPCG specializes
in CUDA host and device code generation, from sequential
loops.

During a first stage, the code is parallelized using the
OpenMP C backend of PPCG. Artificial parametric loop
bounds are injected in the parallel loops to control the it-
eration domains. This enables the iteration domains of the
parallel loops to be cut into chunks. At runtime, each chunk
will be assigned a PU and sized to ensure load balance. To
this end, Pluto and PPCG generate specialized versions of
the parallel chunks, optimized towards CPU and GPU. As
the chunks can be executed in any order, the code seman-
tics is preserved and they can be safely distributed on the
available PUs. Our scripts also compute the geometrical
bounding box of the accessed arrays to generate minimal
data communications between CPU and GPUs. This oper-
ation is performed through calls to the isl library [19] via
its python bindings islpy [10] and a loop nest polyhedral
representation extracted with pet [21].

One single version of a code may not perform well un-
der all circumstances. Multiversioning is an adaptive tech-
nique consisting in generating semantically equivalent ver-
sions of a code, differing by their performance characteris-

tics. The versions are built by PPCG and Pluto, launched
with version-specific arguments, such as the tile size, tiling
level, block size and schedule. The scripts generate all the
version combinations by successively assigning the parallel
and prediction code function pointers to internal structures.
For each combination it places a call to the scheduler and
the selection function. The combinations are scheduled at
runtime, supposedly the best is executed on CPU+GPU.

4. EXECUTION TIME PREDICTION
Predicting execution times in heterogeneous contexts is a

difficult problem. Performance of a code may vary according
to compiler transformations, input dataset, hardware spec-
ifications and execution environment interactions. For this
purpose, we rely on two techniques providing accurate exe-
cution time predictions of affine parallel loop nests on CPU
and GPU.

Both frameworks share the same architecture as depicted
in Fig. 1: static code generation, offline profiling and on-
line prediction. Annotated loop nests are automatically ex-
tracted from the original source code and parallelized. An
artificial lower- and upper-bound is injected for partitioning
the outermost parallel loop into chunks. An architecture
specific optimized version of the parallel loop nests is then
produced by Pluto (for CPU) or PPCG (for CUDA GPU).
A set of Python scripts generates the profiling and the pre-
diction codes (build templates).

Prior to any execution of the target application, an offline



profiling phase executes the annotated code on the target
architectures. To perform relevant measurements, iteration
domain sizes are controlled by adjusting loop nest parame-
ters. The profiler outputs ranking tables filled with average
statement execution times per iteration. We will abbrevi-
ate them to execution times per iteration in the following.
An additional micro-benchmark builds up a bandwidth table
modelling PCIe communication throughput.

At runtime, as the execution configuration is known, the
scheduler calls the prediction functions by passing the paral-
lel loop nests parameters as arguments. Simplified versions
of the original loop nests, called prediction nests, compute
an approximation of the execution times using the offline
collected profiling results. Note that the required parame-
ters and the prediction nests may differ between different
classes of PUs.

Different types of performance factors will impact the par-
allel loop nests execution times. Static performance factors
are constant during the execution (e.g. arithmetic instruc-
tions duration). Thus, they are naturally taken into account
by the profiler. External dynamic performance factors origi-
nate from the execution environment (e.g. system scheduler,
(co)processor load, I/O operations) and may impact the reli-
ability of the profiling data. To adapt to these interactions,
the ranking and bandwidth tables could be readjusted by
the runtime or through renewed profiling sessions. Finally,
internal dynamic performance factors fluctuate during the
execution (e.g. cache effects, Thread Level Parallelism) and
are inherent to the targeted code and architecture. They
are depending on the input dataset and they parametrize
the profiling tables. Internal dynamic performance factors
are thoroughly described in Subsection 4.1 for CPU [17] and
in Subsection 4.2 for GPU [9].

4.1 CPU execution time prediction
Two important dynamic internal performance factors were

identified on CPUs. Cache effects are evicted by exponen-
tially increasing the iteration domain size, until measure-
ments become stable. This method is best effort and may
stop prematurely in case of local stabilization. Triangular
iteration domains or non-equal partitioning of the parallel
iterations imply thread load imbalance which significantly
impacts a code performance. To characterize load balance,
the profiler builds a ranking table parametrized by the num-
ber of active threads. This allows to characterize the exe-
cution time per iteration according to the CPU cores usage.
Note that during profiling, only full tiles are considered. In
average the profiler requires a few seconds to evaluate one
code version.

At runtime, the CPU prediction code computes the num-
ber of iterations per thread. Then, it determines the number
of iterations processed in parallel, per thread quantity. The
corresponding execution time per iteration is fetched from
the ranking table and multiplied by the number of iterations
to get the approximated loop nest execution time. The cal-
culation can be synthesized as: time =

∑C
i=1(iti − iti+1) ∗

rki, where time represents the approximated execution time
of the loop nest, C the total number of cores, iti the num-
ber of iterations per thread quantity i and rki the execution
time per iteration for i active threads.

4.2 GPU execution time prediction
To make accurate predictions, distinction is made between

 0.1

 1

10
0

10
1

10
2

10
3

10
4

10
5

e
x
e
c
u
ti
o
n
 t
im

e
 p

e
r 

it
e
ra

ti
o
n
 (

n
s
) 

(l
o
g
s
c
a
le

)

number of blocks

real (2000)
profiled (2000)

Figure 2: Comparison between profiled and mea-
sured execution times per iteration for gemm.

parallel and sequential loop nest parameters. The parame-
ters that appear in parallel loop bounds are called the paral-
lel parameters. All the other ones are sequential parameters:
they bound sequential loops only, enclosing or enclosed in
parallel loops.

CUDA Thread Level Parallelism (TLP) latency hiding
mechanisms have a strong incidence on performance. Rela-
tively to the CUDA grid size, execution times per iteration
typically follow a shrinking sawtooth-shaped curve. This
curve is modelled by a piecewise affine function, built on
the fly by the profiler. As a certain number of blocks is
reached, the execution time per iteration becomes constant.
The measurements are stopped as soon as the number of
blocks exceeds hardware limitations. The profiling space is
pruned in real time based on the affine shape of the exe-
cution time per iteration. Also, through experiments, we
noticed that the grid dimensions are commutative for per-
formance: perf(szx ∗ szy) ≈ perf(szy ∗ szx). Cache effects
are subdued by gradually increasing the size of the sequen-
tial parameters, until stabilization. Through experiments, it
appeared that the sequential loop parameters had a variable
incidence on performance. This mainly stems from memory
access contention and bank conflicts. As their impact is
moderate, their influence is modelled via a linear regression
function. All in all, the ranking table is parametrized by
the size of the grid and the value of sequential parameters.
Figure 2 shows that the ranking table values interpolations
(plain line) overlap the measurements (dashed line) and thus
captures the performance variations.

PCIe bandwidth is an asymmetric (read/write) and non-
uniform function of the message size. A micro-benchmark
builds a bandwidth table of piecewise affine functions of the
message size, for each direction of the transfer. Similarly to
Fig. 2, Fig. 3 shows the bandwidth table values interpola-
tions overlapping the measurements. The measurements are
performed for different message sizes until saturation of the
GPU memory. Overall, the CUDA kernel profiling duration
ranges from 15 minutes to 5 hours per code version, depend-
ing on the kernel durations and on the number of required
kernel runs.

The GPU prediction code is executed on the CPU. The
kernel execution time prediction function seeks, through the
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tive transfer times.

values stored in the ranking table, the interval in which the
kernel grid size belongs. The two linear regression functions
of the sequential parameters that it gets from the table are
then instantiated with an average of the sequential param-
eters values. We then calculate a linear interpolation to
compute an accurate approximation of the execution time
per iteration.

Memory transfer duration prediction takes as input the
message size and the direction of the transfer. In the same
way as the execution time computation, transfer time cal-
culation requires linear interpolations on the bandwidth ta-
bles. Finally, the sum of the transfer and execution times
approximates the global execution time of the kernel.

5. CPU+GPU RUNTIME

5.1 Scheduler
The scheduler implements a work sharing mechanism sim-

ilar to the OpenMP static scheduling strategy. The quantity
of work of each PU, controlled by the chunk size, is deter-
mined before the execution of the loop nest.

The scheduler relies on the execution time predictions to
distribute iterations to the PUs. Let Ti = ti×Q(Pi)+C(Pi)
be the chunk i predicted duration, where 0 ≤ i < n, n
being the number of PUs. Function Q(Pi), generated with
the Barvinok counting library [22], computes the number of
iterations of the union of the statements iteration domains:
it is a symbolic piecewise quasipolynomial instantiated with
the parameters values Pi at runtime. ti is the execution time
per iteration. Function C(Pi) is in charge of estimating the
data transfer time on GPUs; for CPUs it returns 0.

For a given parallel loop nest, the load balance problem
can be expressed as an equality between the chunks dura-
tions: T0 ≈ T1 ≈ ... ≈ Tn−1. The upper parallel loop bound
of each chunk i is the lower bound of chunk i + 1. The
execution time per iteration ti of each chunk fluctuates non-
linearly depending on the chunk size as described in Sub-
sections 4.1 and 4.2. As a consequence, there is no direct
method to compute the chunk sizes, but this optimization
problem requires iterative refinements.

Through problem reformulation, achieving load balance
comes down to make Ti tend to Tall/n, where Tall is the

sum of the PUs execution times: Tall =
∑n−1

i=0 Ti. We im-
plemented a low overhead iterative algorithm in three steps:
initialization, refinement and partitioning. The refinement
and partitioning stages are repeated until convergence is
reached, or a maximum of 15 steps is attained. In the initial-
ization phase, the iterations of the chunked loops are equally
distributed between the PUs. No preliminary assumptions
can be made concerning the execution times of the chunks.

The refining stage starts by computing each chunk execu-
tion time Ti and their sum Tall. Each chunk execution time
proportion Ri = Ti/Tall must tend to o = 1/n to achieve
load balance. Note that an optimal predicted load balance
is obtained for Ri = o for all i. Each chunk size is then
ajusted by multiplying it by o/Ri, to get closer to optimal
load balance. However, these adjustments are computed
independently for each chunk, and this leads to situations
where the sum of the chunk sizes is not equal to the total
number of iterations. Thus, the partitioning phase normal-
izes the chunk sizes so that all iterations of the chunked loop
are processed. Iterations eliminated by integer rounding are
assigned to an arbitrary PU (the CPU by default in our
current implementation).

To get rid of very inefficient PUs faster, a chunk of less
than x% of another chunk size is eliminated: x = 10 by
default in our implementation. It can be increased if en-
ergy consumption is an issue: in that case one will want to
eliminate inefficient PUs faster.

Algorithm 1: Scheduler algorithm

; // step 1: initialize to equal distribution
chnk size← (ub− lb)/num pu;
for i← 0 to num PU − 1 do

PUs[i].lb← i ∗ chnk size;
PUs[i].ub← PUs[i].lb+ chnk size;

end
; // step 2: refine
for s← 0 to MAX STEPS do

time← 0.;
for i← 0 to num PU − 1 do

PUs[i].size = PUs[i].ub− PUs[i].lb;
if PUs[i].size 6= 0 then

PUs[i].time val =
PUs[i].time(PUs[i].lb, PUs[i].ub);
time← time+ PUs[i].time val;

end
end
for i← 0 to num PU − 1 do

if PUs[i].time val 6= 0 then
adjst = time/(num PU ∗ PUs[i].time val);
PUs[i].size = PUs[i].size ∗ adjst;

end
end
; // normalize the chunk bounds
(PUs,max card)← normalize(PUs) for i← 0 to
num PU − 1 do

if PU.card(PU )/max card < 0.1 then
PUs← eliminate(PUs, i);

end
end

end

The full algorithm is presented in Alg. 1, and Fig. 4
shows a typical example of the scheduler steps. Two PUs
are considered: 1 GPU (on the left of each couple of bars)
+ 1 CPU (on the right). The lower-solid bars represent the
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Figure 4: Example of scheduler algorithm steps for
gemm.

size of the iteration domains of each chunk (Q(Pi)), and the
upper-strided bars, the corresponding execution times (Ti).
In Fig. 4, the GPU is assigned much more iterations for
approximately the same execution time than the CPU, in 6
steps of the scheduler.

5.2 Dispatcher
The dispatcher is in charge of launching the codes on the

different PUs. Each PU is assigned a thread using OpenMP
parallel sections. Before launching the computation, a de-
vice initialization function is called. On CPUs it sets the
number of threads required for the computation and acti-
vates nested parallelism. For GPUs, it selects the device
and modifies the CUDA device scheduling policy. Indeed,
we observed that the scheduling policy has an impact on
the CPU threads performance. By default it will busy-wait
if enough processing resources are available and yield the
threads otherwise. To get rid of any overhead, we chose
another strategy which blocks the polling threads until the
device finishes its work (i.e. blocking synchronization). Due
to device initialization purposes, the first called CUDA func-
tion (e.g. cudaMalloc(...)) consumes more time. To avoid
noise in the measurements, we introduced a fake runtime
call. At the end of the computation, the threads are syn-
chronized using a barrier. All data movements are carried
by the thread handling each PU.

6. EVALUATION

6.1 Benchmarks
The test platform is composed of two Asus GTX 590

plugged into an Asus P8P67-Pro motherboard. Each GTX
590 card is composed of two Fermi GPUs sharing 3 GB of
GDDR5. Each graphics processor on the GTX 590 embeds
a total of 512 Streaming Processors1 (16 SM×32 SP ). The
motherboard provides a PCIe 2.0 x16 bus for connecting
the peripherals. The two graphics cards individually sup-
port PCIe x16 and share half of the bus width (x8) in our
configuration. The host processor is an Intel core i7-2700
(Sandy Bridge) with 4 hyperthreaded cores for which we

1SM: Streaming Multiprocessors, SP: Streaming Processors

enabled dynamic overclocking.
The benchmark programs that we run are taken from the

Polyhedral Benchmark suite [16]. We used the extra-large
dataset size by default, reducing it on some of the tested
programs so that they fit the GPU memory. We did not
consider some programs because they are very inefficient
on GPU: the CPU version is much faster in any case, and
there is no point in trying to exploit a GPU version of them.
We did however include some benchmarks that fall in this
category in our experiments (gesummv, mvt and gemver).
All loop nests of depth 1 are ignored by our framework.

We compiled the benchmarks using gcc version 4.4.6 with
-O3 -march=native optimization flags. On GPUs, the codes
were compiled with the CUDA 5.5 compilation tools. The
GPU on-chip memory partitioning was set to 48 KB of
shared memory and 16 KB of L1 cache. In our first experi-
ment presented in Fig. 5, only one code version was gener-
ated. To generate CUDA code, the minimum loop nest fuse
flag was provided to PPCG and automatic cache manage-
ment code generation was enabled. The CUDA block and
tile sizes have been set to the default provided by PPCG.
Communications between host and device are handled with
synchronous non-pinned memory copies. Similarly, we run
PLUTO with the default parameters, and disabled tiling for
mvt, gemver and gesummv as these tiled CPU codes are
strongly affected by performance fluctuations. For the mul-
tiversioning experiments presented in Fig. 7 and 9, we gen-
erated CUDA codes with couple (block size, tile size) equal
to (32×16, 32×16), (32×16, 64×64) and (16×16, 16×16),
respectively for the (c1, c2, c3), (c4, c5, c6), (c7, c8, c9)
combinations. CPU versions were generated with one level
of tiling, of size 32, 64 and 128, respectively for the (c1, c4,
c7), (c2, c5, c8), (c3, c6, c9) combinations. We averaged all
measurements on five runs.

Figure 5 depicts the speedup obtained by using differ-
ent combinations of PUs compared to the execution time
on CPU alone or on GPU alone. Our system achieves a
maximum speedup of 20x for gemm and a speedup of 7.1x
on average comparing the best and worst execution times.
These results show that gemm, 2mm, 3mm, syrk, syr2k (the
five on the left of Fig. 5) better suit the GPU while doit-
gen, gesummv, mvt, gemver better suit the CPU. Note that
doitgen better suits the CPU because of a lower compu-
tation time on CPU than on GPU, and not because of the
data transfer times. It is interesting to notice that combined
CPU+GPU execution provide noticeable benefits for three
benchmarks (syr2k, doitgen and gemver). When the GPU
version is faster, the average speedup of our system on CPU
plus 4 GPUs against 1 GPU, is 3.49x and is greater than 4x
for syrk ; for the programs where the CPU version is faster,
the average speedup on CPU plus 4 GPUs against 1 CPU
is negligible, as in these case GPUs were generally unused.
Also notice that, apart from 2mm (for which CPU was un-
used), the 1 CPU + 1 GPU version is always faster to the
CPU alone and GPU alone versions. Figure 6 shows the im-
balance ratio between the total longest and shortest execu-
tion times of the different PUs. In 2mm the CPU was elim-
inated, and in gesummv and mvt the GPU was eliminated2.
Figure 6 shows an average of 10% load imbalance. The im-
balance is mostly due to prediction inaccuracies rather than
bad scheduling decisions. In fact, the sum of the absolute

2Figure 5 shows small variations of the CPU+nGPU ver-
sions due to measurements inaccuracies.
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Figure 5: Speedup to execution time on CPU or GPU alone.
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Figure 6: Execution time imbalance ratio for several
combinations of PUs.

prediction errors drives imbalance. In particular, this affects
fast codes with shallow loop nests, such as gemver for which
the imbalance peaks at 45% for CPU+4GPUs. These codes
are strongly affected by multiple running GPUs.

Gesummv, mvt and gemver are also noticeable due to the
elimination of the GPU for certain loop nests computation.
For gesummv and mvt the whole computation is run by the
CPU. This happens when the ratio between the communica-
tion and the computation times is too high. Also, reducing
the problem size may eliminate non-necessary PUs. Remark
that there are performance interactions between CPU and
GPU, especially on the host code side as memory transfers
get through the CPU caches. As an example, the spinning
CUDA runtime scheduling policy, set by default, impacts
CPU performance by 30% on gemm with 4 GPUs running.
The opposite effect of using blocking scheduling is that small
codes repeatedly executed tend to run slower.

Our system overhead (including all prediction and schedul-
ing calls) is low: it caps at 2ms for doitgen, that is to say
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Figure 7: Speedup to execution time of slowest code
version combination for gemm.

0.02% of the execution time. It tends to average below 1ms
for most of the codes, which is a reasonable figure for codes
that are suited to run on GPUs (executing for more than a
second).

6.2 Multiversioning
Our framework is able to generate multiple versions of

the CPU and GPU codes and to select the best performing
combination at runtime. The scheduler is called for each
combination and returns its predicted execution time. The
runtime selects the scheduled combination of versions which
minimizes the execution time. As the number of combina-
tions grows exponentially, we limited our experiments to 3
versions per PU (9 combinations). Note that for syr2k, the
maximum scheduler overhead was of 450 ∗ 9 = 3600µs, that
is to say less than 0.01% of the execution time. Figures 7
and 9 show speedups to the slowest combination of versions.
Usefulness of multiversioning is emphasized by the perfor-
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Figure 8: Execution time imbalance ratio for several
combination of code versions for gemm.

 0

 1

 2

 3

 4

 5

 6

C
PU

1G
PU

C
PU

+1G
PU

C
PU

+2G
PU

s

C
PU

+3G
PU

s

C
PU

+4G
PU

s

s
p

e
e

d
u

p

syr2k (c1)
syr2k (c2)
syr2k (c3)
syr2k (c4)
syr2k (c5)
syr2k (c6)
syr2k (c7)
syr2k (c8)
syr2k (c9)
syr2k (all)

Figure 9: Speedup to execution time of slowest code
version combination for syr2k.

mance variations of the GPU only executions in the (c1),
(c4), (c7) combinations. The (all) bars refer to the final com-
bination selected by our runtime system. At best, it was able
to achieve a 1.53x speedup for gemm and a 3.46x speedup
for syr2k against the slowest combination. For gemm, it is
noticeable that best performance were obtained when CPU
was evicted. On the opposite, combinations benefit from the
use of CPU and GPUs for syr2k.

Imbalance shown in Fig. 8 and 10 mainly results from
fluctuations in CPU time predictions. Despite the good ac-
curacy of predictions, as confirmed by Fig. 11, slight changes
in the partition size can significantly alter the predicted ex-
ecution time and mislead the scheduler. This behavior is
highlighted in gemm (c7), for which the imbalance reaches
22%. However, imbalance is acceptable as it averages out at
5% and 8% for all the combinations of gemm and syr2k. Ac-
curacy of our execution time prediction methods for syr2k is
shown in Fig. 11. The plotted prediction errors are derived
from the average error for all the PUs combination. Those
results validate our methods for accurately predicting exe-
cution times.

Overall, the experiments show that our multiversioning
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Figure 10: Execution time imbalance ratio for sev-
eral combination of code versions for syr2k.

 0

 0.2

 0.4

 0.6

 0.8

 1

syr2k (c1)

syr2k (c2)

syr2k (c3)

syr2k (c4)

syr2k (c5)

syr2k (c6)

syr2k (c7)

syr2k (c8)

syr2k (c9)

syr2k (all)

p
re

d
ic

ti
o

n
 e

rr
o

r

CPU
GPU

Figure 11: Average prediction error ratio of CPU
and GPU for syr2k.

system was systematically selecting the best version, thus
improving performance. The design and low overhead of our
runtime system allows the comparison of multiple schedules,
combining different code versions, during execution.

7. CONCLUSION
We presented an original method for achieving load bal-

ance between CPUs and GPUs in a dynamic context. It is
based on an accurate prediction of the CPU and GPU exe-
cution times of codes, using the results of a profiling of those
codes. We implemented it using Python scripts, calling sev-
eral polyhedral compilation tools, and we tested it on the
polyhedral benchmark suite, showing that it is effective on
a platform composed of one CPU and 4 GPUs.

Our future plans include extending this work to handle
other types of hardware, for example Xeon Phi processors
and larger systems including 10’s of GPUs and 100’s of cores.
Finally, the current system is focused towards performance,
but with slight modifications it could be adapted to improve
energy consumption by deactivating the inefficient PUs.
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J. Ignacio Gómez, C. Tenllado, and F. Catthoor.
Polyhedral parallel code generation for CUDA. ACM
Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan.
2013.

[21] S. Verdoolaege and T. Grosser. Polyhedral extraction
tool. In International Workshop on Polyhedral
Compilation Techniques (IMPACT’12), Jan. 2012.

[22] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric
polytopes using Barvinok’s rational functions.
Algorithmica, 48(1):37–66, 2007.


