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ABSTRACT
The polyhedral model provides a powerful mathematical ab-
straction to enable effective optimization of loop nests with
respect to a given optimization goal, e.g., exploiting par-
allelism. Unexploited reduction properties are a frequent
reason for polyhedral optimizers to assume parallelism pro-
hibiting dependences. To our knowledge, no polyhedral loop
optimizer available in any production compiler provides sup-
port for reductions. In this paper, we show that leveraging
the parallelism of reductions can lead to a significant per-
formance increase. We give a precise, dependence based,
definition of reductions and discuss ways to extend polyhe-
dral optimization to exploit the associativity and commu-
tativity of reduction computations. We have implemented
a reduction-enabled scheduling approach in the Polly poly-
hedral optimizer and evaluate it on the standard Polybench
3.2 benchmark suite. We were able to detect and model all
52 arithmetic reductions and achieve speedups up to 2.21×
on a quad core machine by exploiting the multidimensional
reduction in the BiCG benchmark.

Categories and Subject Descriptors
D 3.4 [Programming languages]: Processors—Compil-
ers, Optimization

General Terms
Algorithms; Performance

Keywords
Compiler Optimization; Affine Scheduling; Reductions

1. INTRODUCTION
Over the last four decades various approaches [10, 11, 2,

17, 22, 6, 18, 21, 27, 31, 7] were proposed to tackle reduc-
tions: a computational idiom which prevents parallelism due
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to loop carried data dependences. An often used definition
for reductions describes them as an associative and commu-
tative computation which reduces the dimensionality of a
set of input data [16]. A simple example is the array sum
depicted in Figure 1a. The input vector A is reduced to
the scalar variable sum using the associative and commuta-
tive operator +. In terms of data dependences, the loop has
to be computed sequentially because a read of the variable
sum in iteration i+ 1 depends on the value written in itera-
tion i. However, the associativity and commutativity of the
reduction operator can be exploited to reorder, parallelize
or vectorize such reductions.

While reordering the reduction iterations is always a valid
transformation, executing reductions in a parallel context re-
quires additional “fix up”. Static transformations often use
privatization as fix up technique as it works well with both
small and large parallel tasks. The idea of privatization is
to duplicate the shared memory locations for each instance
running in parallel. Thus, each parallel instance works on
a private copy of a shared memory location. Using the pri-
vatization scheme we can vectorize the array sum example
as shown in Figure 1b. For the shared variable sum, a tem-
porary array tmp_sum, with as many elements as there are
vector lanes, is introduced. Now the computation for each
vector lane uses one array element to accumulate interme-
diate results unaffected by the computations of the other
lanes. As the reduction computation is now done in the
temporary array instead of the original reduction location
we finally need to accumulate all intermediate results into
the original reduction location. This way, users of the vari-
able sum will still see the overall sum of all array elements,
even though it was computed in partial sums first.

for (i = 0; i < 4 * N; i++)
sum += A[i];

(a) Sequential array sum computation.

tmp_sum[4] = {0,0,0,0}
for (i = 0; i < 4 * N; i+=4)
tmp_sum[0:3] += A[i:i+3];

sum += tmp_sum[0] + tmp_sum[1];
+ tmp_sum[2] + tmp_sum[3];

(b) Vectorized array sum computation.

Figure 1: A canonical example of a single address reduction.
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Transformations as described above have been the main
interest of reduction handling approaches outside the poly-
hedral world. Associativity and commutativity properties
are used to extract and parallelize the reduction loop [10,
6] or to parallelize the reduction computation with regards
to an existing surrounding loop [17, 18, 21, 27, 31]. While
prior work on reductions in the polyhedral model [22, 23, 24,
9, 32] was focused on system of affine recurrences (SAREs),
we look at the problems a production compiler has to solve
when we allow polyhedral optimizations that exploit the re-
duction properties. To this end our work supplements the
polyhedral optimizer Polly [8], part of the LLVM [14] com-
piler framework with awareness for the associativity and
commutativity of reduction computations. While we are
still in the process of upstreaming, most parts are already
accessible in the public code repository.

The contributions of this paper include:

• A powerful algorithm to identify reduction dependences,
applicable whenever memory or value based depen-
dence information is available.

• A sound model to relax memory dependences with re-
gards to reductions and its use in reduction-enabled
polyhedral scheduling.

• A dependence based approach to identify vectorization
and parallelization opportunities in the presence of re-
ductions.

The remainder of this paper is organized as follows: We
give a short introduction into the polyhedral model in Sec-
tion 2. Thereafter, in Section 3, our reduction detection is
described. Section 4 discusses the benefits and drawbacks
of different reduction parallelization schemes, including pri-
vatization. Afterwards, we present different approaches to
utilize the reduction properties in a polyhedral optimizer in
Section 5. In the end we evaluate our work (Section 6), com-
pare it to existing approaches (Section 7) and conclude with
possible extensions in Section 8.

2. THE POLYHEDRAL MODEL
The main idea behind polyhedral loop nest optimizations

is to abstract from technical details of the target program.
Information relevant to the optimization goal is represented
in a very powerful mathematical model and the actual opti-
mizations are well understood transformations on this rep-
resentation. In the context of optimization for data locality
or parallelism, the relevant information is the iteration space
of each statement, as well as the data dependences between
individual statement instances.

for (i = 0; i < NX; i++) {
R: q[i] = 0;

for (j = 0; j < NY; j++) {
S: q[i] = q[i] + A[i][j] * p[j];
T: s[j] = s[j] + r[i] * A[i][j];

}
}

Figure 2: BiCG Sub Kernel of BiCGStab Linear Solver.

Figure 2 shows an example program containing three state-
ments R, S and T in a loop nest of depth two. Figure 3
shows the polyhedral representation of the individual iter-
ation spaces for all statements, as well as value-based data

dependences between individual instances thereof. R has a
one-dimensional iteration space, as it is nested in the i-loop
only. Statements S and T have a two-dimensional iteration
space as they are nested in both the i-loop as well as in the
j -loop. The axes in the Figure correspond to the respective
loops. Single instances of each statement are depicted as
dots in the graph. Dependences between individual state-
ment instances are depicted as arrows: dashed ones for reg-
ular data dependences and dotted ones for loop carried data
dependences.

i

0
0

NX-1

Stmt R
i

j

0 NY-1

Stmt S
i

j

0 NY-1

Stmt T

Figure 3: Polyhedral representation of statements R, S and
T of the BiCG Sub Kernel of Figure 2.

In the polyhedral model the iteration space of a statement
Q is represented as a multidimensional Z-polytope IQ, de-
fined by affine constraints on the iteration variables of loops
surrounding the statement, as well as global parameters.
The latter are basically loop invariant expressions like for ex-
ample the upper bounds NX and NY of the loops in Figure 2.
As a consequence, the polyhedral model is only applicable
to well structured program parts with affine loop bounds
and memory access functions, so called Static Control Parts
(SCoPs) [8]. While, there are different over-approximations
to increase the applicability (e.g., by Benabderrahmane [1])
we will assume that all restrictions of SCoPs are fulfilled.

The dependences between two statements Q and T are
also represented as a multidimensional Z-polytope known
as the dependence polytope D<Q,T>. It contains a point <
iQ, iT > for every pair of instances< iQ >∈ IQ and< iT >∈
IT for which the latter depends on the former. To ease
reading we will however omit the index of the dependence
polytopes and only argue about the set of all dependences
D, defined as:

D := {< iQ, iT > | ∀Q,T ∈ SCoP :< iQ, iT >∈ D<Q,T>}

Later we will also distinguish all Write-After-Write (WAW
or output dependence) dependences of D by writing DWAW .

A loop transformation in the polyhedral model is repre-
sented as an affine function θQ for each statement Q. It is
often called scheduling or scattering function. This func-
tion translates a point in the original iteration space IQ of
statement Q into a new, transformed target space. One im-
portant legality criterion for such a transformation is that
data dependences need to be respected: The execution of
every instance of a source statement Q of a dependence has
to precede the execution of the corresponding target state-
ment T in the transformed space. Formulated differently:
the target iteration vector of the value producing instance
of Q has to be lexicographically smaller1 than the target

1To compare two vectors of different dimensionality, we sim-
ply fill up the shorter vector with zeros in the end to match
the dimensionality of the larger one.
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iteration vector of the consuming instance of T :

< iQ, iT >∈ D ⇒ θQ(iQ)� θT (iT ) (1)

Multiple statements, or multiple instances of the same state-
ment, that are mapped to the same point in the target space,
can be executed in parallel. However, implementations of
polyhedral schedulers [3, 29] usually generate scheduling
functions with full rank, thus rank(dom(θ)) = rank(img(θ)).
The parallelism is therefore not explicit in the scheduling
function but is exposed later when the polyhedral represen-
tation is converted to target code.

There are two things that make the described model par-
ticularly interesting for loop transformation: First, unlike
classical optimizers, a polyhedral optimizer does not only
consider individual statements, but instead individual dy-
namic instances of each statement. This granularity leads
to a far higher expressiveness. Second, the combination of
multiple classical loop transformations, like for instance loop
skewing, reversal, fusion, even tiling, typically used as atoms
in a sequence of transformations, can be performed in one
step by the scattering function. There is no need to come
up with and evaluate different, possibly equivalent or even
illegal combinations of transformations. Instead, linear opti-
mization is used to optimize the scattering function for every
individual statement with respect to an optimization goal.

3. DETECTING REDUCTIONS
Pattern based approaches on source statements are lim-

ited to find general reduction idioms [6, 21, 27]. The two
main restrictions are the amount of patterns in the com-
piler’s reduction pattern database and the sensitivity to the
input code quality or preprocessing steps. To become as in-
dependent as possible of source code quality and canonical-
ization passes we replace the pattern recognition by a simple,
data flow like analysis. This analysis will identify reduction-
like computations within each polyhedral statement. Such a
computation is a potential candidate for a reduction, thus it
might be allowed to perform the computation in any order
or even in parallel. Afterwards, we utilize the polyhedral
dependence analysis [5] to precisely identify all reduction
dependences [20] in a SCoP , hence to identify the actual
reduction computations from the set of possible candidate
(reduction-like) computations.

l = load A[f(iS , p)] store x A[f(iS , p)]
x = y � z

Figure 5: SSA-based language subset.

The following discussion is restricted to the SSA-based
language subset (Insts) depicted in Figure 5. Our imple-
mentation however handles all LLVM-IR [14] instructions.

The binary operation is parametrized with � and can be
instantiated with any arithmetic, bit-wise or logic binary op-
erator. To distinguish associative and commutative binary
operators we use ⊕ instead. The load instruction is applied
to a memory location. It evaluates to the current value x
stored in the corresponding memory location. The store
instruction takes a value x and writes it to the given mem-
ory location. In both cases the memory location is described
as A[f(iS , p)], where A is a constant array base pointer
and f(iS , p) is an affine function with regards to outer loop
indices of the statement S (iS) and parameters (p) of the

SCoP . The range of a memory instruction is defined as the
range of its affine access function:

ran(store x A[f(iS , p)]) := ran(A[f(iS , p)])

ran(load A[f(iS , p)]) := ran(A[f(iS , p)])

ran(A[f(iS , p)]) := A + ran(f(iS , p))

Note the absence of any kind of control flow producing or
dependent instructions (φ instructions or branches). This
is a side effect of the limited scope of the reduction detec-
tion analysis. It is applied only to polyhedral statements, in
our setting basic blocks with exactly one store instruction.
Furthermore, we assume all loop carried values are commu-
nicated in memory. This setup is equivalent to C source
code statements without non-memory side effects.

3.1 Reduction-like Computations
Reduction-like computations are a generalization of the

reduction definition used e.g., by Jouvelot [11] or Rauchw-
erger [21]. Their main characteristic is an associative and
commutative computation which reduces a set of input val-
ues into reduction locations. Furthermore, the input values,
the control flow and any value that might escape into a non-
reduction location needs to be independent of the intermedi-
ate results of the reduction-like computation. The difference
between reduction-like computations and reductions known
in the literature is the restriction on other appearances of
the reduction location in the loop nest. We do not restrict
syntactic appearances of the reduction location base pointer
as e.g., Rauchwerger [21] does, but only accesses to the ac-
tual reduction location in the same statement. This means
a reduction-like computation on A[i%2] is not invalidated
by any occurrence of A[i%2 + 1] in the same statement
or any occurrence of A in another statement.

It is crucial to stress that we define reduction-like compu-
tations for a single polyhedral statement containing only a
single store. Thus intermediate results of a reduction-like
computation can only escape if they are used in a differ-
ent statement or outside the SCoP . As we focus on mem-
ory reductions in a single statement we will assume such
outside uses invalidate a candidate computation from being
reduction-like. To this end we define the function:

hasOutsideUses : Insts =⇒ bool

that returns true if an instruction is used outside its state-
ment. In Section 3.3 we explain how the situation changes if
multiple statements are combined into compound statements
in order to save compile time.

Reconsider the array sum example in Figure 1. The re-
duction location is the variable sum, a scalar variable or
zero dimensional array. However, we do not limit reduction-
like computations to zero dimensional reduction locations,
instead we allow multidimensional reduction locations, also
called histogram reductions [18], as well. The second exam-
ple, Figure 2, shows two such multidimensional reductions.
The reduction locations are q[i] and s[j]. The first is
variant in the outer loop, the second in the inner loop.

To detect reduction-like computations we apply the de-
tection function tS , shown in Figure 4, to the store in the
polyhedral statement S. The idea is to track the flow of
loaded values through computation up to the store. To
this end, tS (I) for any instruction I will assign each load
a symbol that describes how the value loaded by load used
up to and by I. We will use Rop to refer to the set of all
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tS (l = load A[f(iS , p)]) := λl : if (l 6= l) then ⊥ else

if (hasOutsideUses(l)) then > else ↑
tS (x = y � z) := λl : if ({ (tS (y))(l), (tS (z))(l) } = {⊥,⊥}) then ⊥ else

if ¬(isCommutative(�) ∧ isAssociative(�)) then > else

if (hasOutsideUses(x)) then > else

if ({ (tS (y))(l), (tS (z))(l) } = { ↑,⊥}) then � else

if ({ (tS (y))(l), (tS (z))(l) } = {�,⊥}) then � else >
tS (store x A[f(iS , p)]) := λl : if x /∈ Insts then ⊥ else

if (ran(l) ∩ ran(A[f(iS , p)]) = ∅) then > else
if (∃l′ : l 6= l′ ∧ ran(l′) ∩ ran(l) ∩ ran(A[f(iS , p)]) 6= ∅) then > else (tS (x))(l)

Figure 4: Detection function for reduction-like computations: tS : Insts → (loads(S)→Rop).

four symbols. It includes the ⊥ indicating that the load
was not used by the instruction, the ↑ to express that it
was only loaded but not yet used in any computation, the >
stating that the loaded value may have been used in a non-
associative or non-commutative computation. Additionally,
the ⊕ is used when the loaded value was exactly one in-
put of a chain of ⊕ operations. Note that only a load l
that flows with ⊕ into the store is a valid candidate for
a reduction-like computation and only if the load and the
store access (partially) the same memory. Furthermore, we
forbid all other load instructions in the statement to access
the same memory as both l and the store as that would
again make the computation potentially non-associative and
non-commutative.

If a valid load l was found, it is the unique load in-
struction inside the statement S that accesses (partially)
the same memory as the store s and (tS (s))(l) is an as-
sociative and commutative operation ⊕. We will refer to the
quadruple (S, l, ⊕, s) as the reduction-like computation Rc
of S and denote the set of all reduction-like computations in
a SCoP as Rc.

It is worth noting that we explicitly allow the access func-
tions of the load and the store to be different as for ex-
ample shown in Figure 6. In such cases a reduction can
manifest only for certain parameter valuations or, as shown,
for certain valuations of outer loop indices. Additionally, we
could easily extend the definition to allow non-affine but
Presburger accesses or even over-approximated non-affine
accesses if they are pure. It is also worth to note that our
definition does not restrict the shape of the induced reduc-
tion dependences.

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)
A[j] = A[j-i] + Mat[i][j];

Figure 6: Conditional reduction with different access func-
tions.

3.2 Reduction Dependences
While the data flow analysis performed on all polyhedral

statements only marks reduction-like computations, we are
actually interested in reduction dependences [20]. These loop
carried self dependences start and end in two instances of
the same reduction-like computation and they inherit some
properties of this computation. Similar to the reduction-like

computation, reduction dependences can be considered to be
“associative” and “commutative”. The latter allows a sched-
ule to reorder the iterations participating in the reduction-
like computation while it can still be considered valid, how-
ever all non-reduction dependences still need to be fulfilled.

We split the set of all dependences D into the set of re-
duction dependences Dρ ⊆ D and the set of non-reduction
dependences Dν := D \ Dρ. Now we can express the commu-
tativity of a reduction dependence by extending the causal-
ity condition given in Constraint 1 as follows:

< iQ, iT >∈ Dν =⇒ θQ(iQ)� θT (iT ) (2)

< iQ, iT >∈ Dρ =⇒ θQ(iQ) 6= θT (iT ) (3)

Constraint 2 is the same as the original causality condi-
tion (Constraint 1), except that we restrict the domain to
non-reduction dependences Dν . For the remaining reduc-
tion dependences Dρ, Constraint 3 states that the schedule
θ can reorder two iterations freely, as long as they are not
mapped to the same time stamp. However, relaxing the
causality condition for reduction dependences is only valid
if D contains all transitive reduction dependences. This is
for example the case if D is computed by a memory-based
dependence analysis. In case only value-based dependence
analysis [5] was performed it is also sufficient to provide the
missing transitive reduction dependences e.g., by recomput-
ing them using a memory-based dependence analysis.

Reconsider the BiCG kernel (Figure 2) and its non transi-
tive (value-based) set of dependences D shown in Figure 3.
If we remove all reduction dependences Dρ from D, the only
constraints left involve statement R and the iterations of
statements S with j = 0. Consequently, there is no reason
not to schedule the other instances of statement S before
statement R.

To address the issue of only value-based dependences with-
out recomputing memory-based ones we use the transitive
closure D+

ρ S of the reduction dependences for a statement S
(Equation 4). As the transitive closure of a Presburger rela-
tion is not always a Presburger relation we might have to use
an over-approximation to remain sound, however Pugh and
Wonnacot [19] describe how the transitive closure can also
be computed precisely for exact direction/distance vectors.
They also argue in later work [20] that the transitive closure
of value-based reduction dependences of real programs can
be computed in an easy and fast way.

If we now interpret D+
ρ S as a relation that maps instances

of a reduction statement S to all instances of S transi-
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tively dependent, we can define privatization dependences
Dτ (Equation 5). In simple terms, Dτ will ensure that
no non-reduction statement accessing the reduction loca-
tion can be scheduled in-between the reduction statement
instances by extending the dependences ending or starting
from a reduction access to all reduction access instances.
This also means that in case no memory locations are reused
e.g., after renaming and array expansion [4] was applied, the
set of privatization dependences will be empty.

D+
ρ S := (Dρ ∩ < IS , IS >)+ (4)

Dτ := {< iT ,D+
ρ S(iS) > | < iT , iS >∈ D<T,S>}

∪ {< D+
ρ S(iS), iT > | < iS , iT >∈ D<S,T>} (5)

Privatization dependences overestimate the dependences
that manual privatization of the reduction locations would
cause. They are used to create alternative causality con-
straint for the reduction statements that enforce the initial
order between the reduction-like computation and any other
statement accessing the reduction locations. To make use of
them we replace Constraint 2 by Constraint 6.

< iQ, iT >∈ (Dν ∪ Dτ ) =⇒ θQ(iQ)� θT (iT ) (6)

If we now utilize the associativity of the reduction de-
pendences we can compute intermediate results in any or-
der before we combine them to the final result. As a con-
sequence we can allow parallelization of the reduction-like
computation, thus omit Constraint 3; thereby eliminating
the reduction dependences Dρ from the causality condition
of a schedule completely. However, parallel execution of it-
erations connected by reduction dependences requires spe-
cial “treatment” of the accesses during the code generation
as described in Section 4.

The restriction on polyhedral statements, especially that
it contains at most one store instruction, eases the identi-
fication of reduction dependences; they are equal to all loop
carried Write-After-Write self dependences over a statement
with a reduction-like computation2. Thus, Dρ can be ex-
pressed as stated in Equation 7.

Dρ := DWAW ∩ { IS × IS | (S, l,⊕, s) ∈ Rc} (7)

3.3 General Polyhedral Statements
Practical polyhedral optimizer operate on different gran-

ularities of polyhedral statements; a crucial factor for both
compile time and quality of the optimization. While Clan 3

operates on C statements, Polly is based on basic blocks
in the SSA-based intermediate language of LLVM. The for-
mer eases not only reduction handling but also offers more
scheduling freedom. However, the latter can accumulate the
effects of multiple C statements in one basic block, thus it
can perform better with regards to compile time. Finding a
good granularity for a given program, e.g., when and where
to split a LLVM basic block in the Polly setting, is a research
topic on its own but we do not want to limit our approach to
one fixed granularity. Therefore, we will now assume a poly-
hedral statement can contain multiple store instructions,
thus we allow arbitrary basic blocks.

As a first consequence we have to check that intermediate
values of a reduction-like computation do not escape into

2In this restricted environment we could also use the Read-
After-Write (RAW) dependences instead of the WAW ones.
3http://icps.u-strasbg.fr/˜bastoul/development/clan/

non-reduction memory locations. This happens if and only
if intermediate values—and therefore the reduction load—
flow into multiple store instructions of the statement S.
Additionally, other store instructions are not allowed to
override intermediate values of the reduction computation.
Thus, (S,l,⊕,s) can only be a reduction-like computations,
if for all other store instructions s’ in S:

(t(s’))(l) = ⊥ ∧ range(s’) ∩ range(s) ∩ range(l) = ∅

Furthermore, we cannot assume that all loop carried WAW
self dependences of a statement containing a reduction-like
computation are reduction dependences: other read and
write accesses contained in the statement could cause the
same kind of dependences. However, we are particularly
interested in dependences caused by the load and store
instruction of a reduction-like computation Rc. To track
these accesses separately we can pretend they are contained
in their own statement SRc that is executed at the same
time as S (in the original iteration space). This is only
sound as long as no other instruction in S accesses (partially)
the same memory as the load or the store, but this was
already a restriction on reduction-like computations. The
definition of reduction dependences (Equation 7) is finally
changed to:

Dρ := DWAW ∩ { ISRc
× ISRc

| Rc ∈ Rc} (8)

It is important to note the increased complexity of the
dependence detection problem when we model reduction ac-
cesses separately. However, our experiments in Section 6
show that the effect is (in most cases) negligible. Further-
more, we want to stress that this kind of separation is not
equivalent to separating the reduction access at the state-
ment level as we do not allow separate scheduling functions
for S and SRc . Similar to a fine-grained granularity at the
statement level, separation might be desirable in some cases,
however it suffers from the same drawbacks.

4. PARALLEL EXECUTION
When executing accesses to a reduction location x , p times

in parallel, it needs to be made sure that the read-modify-
write cycle on x happens atomically. While doing exactly
that — performing atomic read-modify-write operations —
might be a viable solution in some contexts [31], it is gen-
erally too expensive. The overhead of an atomic operation
easily outweighs the actual work for smaller tasks [18]. Ad-
ditionally, the benefit of vectorization is lost for the reduc-
tion, as atomic operations have to scalarize the computation
again. We will therefore focus our discussion and the eval-
uation on privatization as it is generally well-suited for the
task at hand [18].

4.1 Privatizing Reductions
Privatization means that every parallel context ci, which

might be a thread or just a vector lane, depending on the
kind of parallelization, gets its own private location xi for
x . In front of the parallelized loop carrying a reduction de-
pendence p, private locations x1, · · · , xp of x are allocated
and initialized with the identity element of the correspond-
ing reduction operation ⊕. Every parallel context ci now
non-atomically, and thus cheaply, modifies its very own lo-
cation xi. After the loop, but before the first use of the x,
accumulation code needs to join all locations into x again,
thus: x := x⊕ x1 ⊕ · · · ⊕ xp.
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// (A) init
for (i = 0; i < NX; i++)
// (B) init
for (j = 0; j < NY; j++)

// (C) init
for (k = 0; k < NZ; k++)

P[j] += Q[i][j] * R[j][k];
// (C) aggregate

// (B) aggregate
// (A) aggregate

Figure 7: Possible privatization locations (A-C ) for the re-
duction over P[j].

Such a privatization transformation is legal due to the
properties of a reduction operation. Every possible user
of x sees the same result after the final accumulation has
been performed as it would have seen before the transfor-
mation. Nevertheless we gained parallelism which cannot be
exploited without the reduction properties. It might seem,
that the final accumulation of the locations needs to be per-
formed sequentially, but note that the number of locations
does not necessarily grow with the problem size but instead
only with the maximal number of parallel contexts. Fur-
thermore, accumulation can be done in logarithmic time by
parallelizing the accumulation correspondingly [6].

One positive aspect of using privatization to fix a broken
reduction dependence is that it is particularly well-suited for
both ways of parallelization usually performed in the poly-
hedral context: thread parallelism and vectorization. For
thread parallelism real private locations of the reduction
address are allocated; in case of vectorization, a vector of
suitable width is used.

As described, privatization creates “copies” of the reduc-
tion location, one for each instance possibly executed in par-
allel. While we can limit the number of private locations
(this corresponds to the maximal number of parallel con-
texts), we cannot generally bound the number of reduction
locations. Furthermore, the number of necessary locations,
as well as the number of times initialization and aggrega-
tion is needed, varies with the placement of the privatization
code.

Consider the example in Figure 7. Different possibilities
exist to exploit reduction parallelism: using placement C
for the privatization, the k -loop could be executed in par-
allel and only p private copies of the reduction location are
necessary. There is no benefit in choosing location B as we
then need p×NY privatization locations (we have NY differ-
ent reduction locations modified by the j -loop and p parallel
contexts), but there is no gain in the amount of parallelism
(the j -loop is already parallel). Finally, choosing location
A for privatization might be worthwhile. We still only need
p × NY privatized values, but save aggregation overhead:
While for location C , p values are aggregated NX × NY
times and for location B , p × NY locations are aggregated
NX times, for location A, p× NY locations are aggregated
only once. Furthermore, the i-loop can now be parallelized.

In general, a trade-off has to be made between memory
consumption, aggregation time and exploitable parallelism.
Finding a good placement however is difficult and needs to
take the optimization goal, the hardware and the workload
size into account. Furthermore, depending on the schedul-
ing, the choices for privatization code placement in the re-

sulting code might be limited, which suggests that the sched-
uler should be aware of the implications of a chosen schedule
with respect to the efficiency of necessary privatization.

In Section 6.1 we discuss the effect of different placement
choices for the BiCG benchmark shown in Figure 2.

5. MODELING REDUCTIONS
As mentioned earlier, the set D of all dependences is parti-

tioned into the set Dρ of reduction induced dependences and
Dν of regular dependences. Reduction dependences inherit
properties similar to associativity and commutativity from
the reduction operator ⊕: the corresponding source and
target statement instances can be executed in any order—
provided ⊕ is a commutative operation—or in parallel—if
⊕ is at least associative. In order to exploit these proper-
ties the polyhedral optimizer needs to be aware of them. To
this end we propose different scheduling and code generation
schemes.

Reduction-Enabled Code Generation
is a simple, non-invasive method to realize reductions
during the code generation, thus without modification
of the polyhedral representation of the SCoP .

Reduction-Enabled Scheduling
exploits the properties of reductions in the polyhedral
representation. All reduction dependences are basi-
cally ignored during scheduling, thereby increasing the
freedom of the scheduler.

Reduction-Aware Scheduling
is the representation of reductions and their realiza-
tion via privatization in the polyhedral optimization.
The scheduler decides when and where to make use of
reduction parallelism. However, non-trivial modifica-
tions of the polyhedral representation and the current
state-of-the-art schedulers are necessary.

5.1 Reduction-Enabled Code Generation
The reduction-enabled code generation is a simple, non-

invasive approach to exploit reduction parallelism. The only
changes needed to enable this technique are in the code gen-
eration, thus the polyhedral representation is not modified.
So far, dimensions or loops are marked parallel if they do
not carry any dependences. With regards to reduction de-
pendences we can relax this condition, hence we can mark
non-parallel dimensions or loops as parallel, provided we add
privatization code, if they only carry reduction dependences.
To implement this technique we add one additional check to
the code generation that is executed for each non-parallel
loop of the resulting code that we want to parallelize. It
uses only non-reduction dependences Dν not D to deter-
mine if the loop exclusively carries reduction dependences.
If so, the reduction locations corresponding to the broken
dependences are privatized and the loop is parallelized.

Due to its simplicity, it is easily integrable into existing
optimizers while the compile time overhead is reasonably
low. However, additional heuristics are needed. First, to
decide if reductions should be realized e.g., if privatization
of a whole array is worth the gain in parallelism. And sec-
ond, where the privatization statements should be placed
(cf. Section 4.1). Note that usually the code generator has
no, and in fact should not have any, knowledge of the opti-
mization goal of the scheduler.
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Apart from the need for heuristics, reduction-aware code
generation also misses opportunities to realize reductions ef-
fectively. This might happen if the scheduler has no reason
to perform an enabling transformation or the applied trans-
formation even disabled the reduction. Either way, it is hard
to predict the outcome of this approach.

5.2 Reduction-Enabled Scheduling
In contrast to reduction-aware code generation, which is

basically a post-processing step, reduction-enabled schedul-
ing actually influences the scheduling processes by elimi-
nating reduction dependences beforehand. Therefore, the
scheduler is (1) unaware of the existence of reductions and
their dependences and (2) has more freedom to schedule
statements if they contain reduction instances. While this
technique allows to exploit reductions more aggressively, there
are still disadvantages. First of all, this approach relies
on reduction-aware code generation as a back-end, hence it
shares the same problems. Second, the scheduler’s unaware-
ness of reduction dependences prevents it from associating
costs to reduction realization. Thus, privatization is implic-
itly assumed to come for free. Consequently, the scheduler
does not prefer existing, reduction-independent parallelism
over reduction parallelism and therefore may require unnec-
essary privatization code.

For the BiCG example (Figure 2) omitting the reduction
dependences might not result in the desired schedule if we
assume we are only interested in one level of outermost par-
allelism4 and furthermore that the statements S and T have
been split prior to the scheduling. In this situation we want
to interchange the outer two loops for the T statement in
order to utilize the inherent parallelism, not the reduction
parallelism. However, without the reduction dependences
the scheduler will not perform this transformation. In order
to decrease the severity of this problem, the reduction de-
pendences can still be used in the proximity constraints of
the scheduler [29], thus the scheduler will try to minimize
the dependence distance between reduction iterations and
implicitly move them to inner dimensions. This solves the
problem for all Polybench benchmarks with regards to out-
ermost parallelism, however it might negatively affect vec-
torization if e.g., the innermost parallel dimension is always
vectorized.

5.3 Reduction-Aware Scheduling
Reduction-enabled scheduling results in generally good

schedules for our benchmark set, however resource constraints
as well as environment effects, both crucial to the overall per-
formance, are not represented in the typical objective func-
tion used by polyhedral optimizers. In essence we believe,
the scheduler should be aware of reductions and the cost of
their privatization, in terms of memory overhead as well as
aggregation costs. This is especially true if the scheduler
is used to decide which dimensions should be executed in
parallel or if there are tight memory bounds (e.g., on mobile
devices).

In Section 6.1 we show that the execution environment as
well as the values of runtime parameters are crucial factors in
the actual performance of parallelized code, even more when
reductions are involved. While a reduction-aware scheduler
could propose different parallelization schemes for different

4A reasonable assumption for desktop computers or moder-
ate servers with a low number of parallel compute resources.

Parallel 210 × 210 212 × 212 214 × 214 215 × 215

Outer 0.19 0.55 2.31 0.75 3.91 0.72 2.19 0.96
Tile 0.03 1.10 0.32 1.54 0.10 1.60 0.16 2.21

Table 1: BiCG run-time results. The values are speedups
compared to the sequential Polly version, first for the 32-
core machine, then for the 4-core machine.

execution environments or parameter values, there is more
work needed in order to (1) predict the effects of paralleliza-
tion and privatization on the actual platform and to (2) ex-
press them as affine constraints in the scheduling objective
function.

6. EVALUATION
We implemented Reduction-Enabled Scheduling (c.f., Sec-

tion 5.2) in the polyhedral optimizer Polly and evaluated the
effects on compile time and run-time on the Polybench 3.2.
We used an Intel(R) core i7-4800MQ quad core machine
and the standard input size of the benchmarks.

Our approach is capable of identifying and modeling all
reductions as described in Section 3: in total 52 arithmetic
reductions in 30 benchmarks 5.

As described earlier, our detection virtually splits polyhe-
dral statements to track the effects of the load and store
instructions that participate in reduction-like computations.
As this increases the complexity of the performed depen-
dence analysis we timed this particular part of the compila-
tion for each of the benchmarks and compared our hybrid
dependence analysis to a completely access-wise analysis
and the default statement-wise one. We use the term hy-
brid because reduction accesses are tracked separately while
other accesses are accumulated on statement level.

As shown in Figure 8 (top) our approach takes up to 5×
as long (benchmark lu) than the default implementation but
in average only 85% more. Access-wise dependence compu-
tation however is up to 10× slower than the default and
takes in average twice as long as our hybrid approach. Note
that both approaches do not only compute the dependences
(partially) on the access level but also the reduction and
privatization dependences as explained in Section 3.2.

Figure 8 (bottom) shows the speedup of our approach
compared to the non-reduction Polly . The additional schedul-
ing freedom causes speedups for the data-mining applica-
tions (correlation and covariance) but slowdowns especially
for the matrix multiplication kernels (2mm, 3mm and gemm).
This is due to the way Polly generates vector code. The
deepest dimension of the new schedule that is parallel (or
now reduction parallel) will be strip-mined and vectorized.
Hence the stride of the contained accesses, crucial to gener-
ate efficient vector code, is not considered. However, we do
not believe this to be a general shortcoming of our approach
as there are existing approaches to tackle the problem of
finding a good vector dimension [13] that would benefit from
the additional scheduling freedom as well as the knowledge
of reduction dependences.

6.1 BiCG Case Study
Polybench is a collection of inherent parallel programs,

there is only one—the BiCG kernel— that depends on re-

5This assumes the benchmarks are compiled with -ffast-
math, otherwise reductions over floating point computations
are not detected.
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duction parallelism. To study the effects of parallelization
combined with privatization of multidimensional reductions
in the BiCG kernel we compared two parallel versions to
the non-parallel code Polly would generate without reduc-
tion support. The first version “Outer” has a parallel outer-
most loop and therefore needs to privatize the whole array
s. The second version “Tile” parallelizes the second out-
ermost loop. Due to tiling, only “tile size” (here 32) loca-
tions of the q array need to be privatized. Table 1 shows
the speedup compared to the sequential version for both a
quad core machine and a 8 × 4-core server. As the input
grows larger the threading overhead as well as the inter-
chip communication on the server will cause the speedup of
Tile to stagnate, however on a one chip architecture this
version generally performs best. Outer on the other hand
will perform well on the server but not on the 4-core ma-
chine. We therefore believe the environment is a key factor
in the performance of reduction-aware parallelization and a
reduction-aware scheduler is needed to decide under which
run-time conditions privatization becomes beneficial.

7. RELATED WORK
Reduction aware loop parallelization has been a long last-

ing research topic. Different approaches to detect reduction,
to model them and finally to optimize them have been pro-
posed. As our work has some intersection with all three
parts we will discuss them in separation.

7.1 Detection
Reduction detection started with pattern based approaches

on source statements [11, 17, 22, 18, 21, 24] and evolved to
more elaborate techniques that use symbolic evaluation [6],
a data dependency graph [27] or even a program dependency
graph [17] to find candidates for reduction computations.

For functional programs Xu et al. [30] use a type system
to deduce parallel loops including pattern based reductions.
Their typing rules are similar to our detection function (Fig-
ure 4) we use to identify reduction-like computations.

Sato and Iwasaki [25] describe a pragmatic system to de-
tect and parallelize reduction and scan operations based on
the ideas introduced by Matsuzaki et al. [15]: the represen-
tation of (part of) the loop as a matrix multiplication with
a state vector. They can handle mutually recursive scan
and reduction operations as well as maximum computations
implemented with conditionals, but they are restricted to
innermost loops and scalar accumulation variables. As an
extension Zou and Rajopadhye [32] combined the work with
the polyhedral model and the recurrence detection approach
of Redon and Feautrier [22, 24]. This combination over-
comes many limitations, e.g., multidimensional reductions
(and scans) over arrays are handled. However, the applica-
bility is still restricted to scans and reductions representable
in State Vector Update Form [12].

In our setting we identify actual reductions utilizing the
already present dependence analysis, an approach very sim-
ilar to the what Suganuma et al. [27] proposed to do. How-
ever, we only perform the expensive, access-wise dependence
analysis for reduction candidates, and not for all accesses in
the SCoP . Nevertheless, both detections do not need the
reductions to be isolated in a separate loop as assumed by
Fisher and Ghuloum [6] or Pottenger and Eigenmann [18].
Furthermore, we allow the induced reduction dependences
to be of any form and carried by any subset of outer loop

dimensions. This is similar to the nested Recur operator in-
troduced by Redon and Feautrier [22, 24]. Hence, reductions
are not only restricted to a single loop dimension, as in other
approaches [11, 6, 25], but can also be multidimensional as
shown in Figure 2.

7.2 Modeling
Modeling reductions was commonly done implicitly, e.g.,

by ignoring the reduction dependences during a post paral-
lelization step [11, 17, 22, 18, 21, 30, 28]. This is comparable
to the reduction-enabled code generation described in Sec-
tion 5.1. However, we believe the full potential of reductions
can only be exposed when the effects are properly modeled
on the dependence level.

The first to do so, namely to introduce reduction depen-
dences, where Pugh and Wonnacot [20]. Similar to most
other approaches [22, 23, 27, 24, 7, 25, 32], the detection
and modeling of the reduction was performed only on C-
like statements and utilizing a precise but costly access-wise
dependence analysis (see the upper part of Figure 8). In
their work they utilize both memory and value-based de-
pendence information to identify statements with an itera-
tion space that can be executed in parallel, possibly after
transformations like array expansion. They start with the
memory-based dependences and compute the value-based
dependences as well as the transitive self-dependence rela-
tion for a statement in case the statement might not be
inherently sequential.

Stock et al.[26] describe how reduction properties can be
exploited in the polyhedral model, however neither do they
describe the detection nor how omitting reduction depen-
dences may affect other statements.

In the works of Redon and Feautrier [23] as well as the
extension to that by Gupta et al. [9] the reduction model-
ing is performed on SAREs on which array expansion [4]
and renaming was applied, thus all dependences caused by
memory reuse were eliminated. In this setting the possible
interference between reduction computation and other state-
ments is simplified but it might not be practical for general
purpose compilers due to memory constraints. As an exten-
sion to these scheduling approaches on SAREs we introduced
privatization dependences. They model the dependences be-
tween a reduction and the surrounding statements without
the need for any special preprocessing of the input. How-
ever, we still allow polyhedral optimizations that will not
only affect the reduction statement but all statements in a
SCoP .

7.3 Optimization
Optimization in the context of reductions is twofold. There

is the parallelization of the reduction as it is given in the in-
put and the transformation as well as possible parallelization
of the input with awareness of the reduction properties. The
first idea is very similar to the reduction-enabled code gen-
eration as described in Section 5.1. In different variations,
innermost loops [25], loops containing only a reduction [6,
18] or recursive functions computing a reduction [30] were
parallelized or replaced by a call to a possibly parallel re-
duction implementation [28]. The major drawback of such
optimizations is that reductions have to be computed ei-
ther in isolation or with the statements that are part of
the source loop that is parallelized. Thus, the reduction
statement instances are never reordered or interleaved with
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other statement instances, even if it would be beneficial. In
order to allow powerful transformations in the context of re-
ductions, their effect, hence the reduction dependences, as
well as their possible interactions with all other statement
instances must be known. The first polyhedral scheduling
approach by Redon and Feautrier [23] that optimally6 sched-
ules reduction together with other statements assumed re-
ductions to be computable in one time step. With such
atomic reduction computations there are no reduction state-
ment instances that could be reordered or interleaved with
other statement instances. Gupta et al. [9] extended that
work and lifted the restriction on an atomic reduction com-
putation. As they schedule the instances of the reduction
computation together with the instances of all other state-
ments their work can be seen as a reduction-enabled sched-
uler that optimally minimizes the latency of the input.

To speed up parallel execution of reductions the runtime
overhead needs to be minimized. Pottenger [18] proposed to
privatize the reduction locations instead of locking them for
each access and Suganuma et al. [27] described how multiple
reductions on the same memory location can be coalesced.
If dynamic reduction detection [21] was performed, different
privatization schemes to minimize the memory and runtime
overhead were proposed by Yu et al. [31]. While the latter
is out of scope for a static polyhedral optimizer, the former
might be worth investigating once our approach is extended
to multiple reductions on the same location.

In contrast to polyhedral optimization or parallelization,
Gautam and Rajopadhye [7] exploited reduction properties
in the polyhedral model to decrease the complexity of a com-
putation in the spirit of dynamic programming. Their work
on reusing shared intermediate results of reduction compu-
tations is completely orthogonal to ours.

While Array Expansion, as introduced by Feautrier [4], is
not a reduction optimization, it is still similar to the priva-
tization step of any reduction handling approach. However,
the number of privatization copies the approach introduces,
the accumulation of these private copies as well as the kind
of dependences that are removed differ. While privatization
only introduces a new location for each processor or vector
lane, general array expansion introduces a new location for
each instance of the statement. In terms of dependences,
array expansion aims to remove false output and anti de-
pendences that are introduced by the reuse of memory while
reduction handling approaches break output and flow depen-
dences that are caused by a reduction computation. Because
of the flow dependences—the actual reuse of formerly com-
puted values—the reduction handling approaches also need
to implement a more elaborate accumulation scheme that
combines all private copies again.

8. CONCLUSIONS AND FUTURE WORK
Earlier work already utilized reduction dependences in dif-

ferent varieties, depending on how powerful the detection
was. Whenever reductions have been parallelized the reduc-
tion dependences have been implicitly ignored, in at least
two cases they have even been made explicit [20, 26]. How-
ever, to our knowledge, we are the first to add the concept
of privatization dependences in this context. The reason is
simple: we believe the parallel execution of a loop contain-
ing a reduction is not always the best possible optimization.

6e.g., according to the latency

Instead we want to allow any transformation possible to our
scheduler with only one restriction: the integrity of the re-
duction computation needs to stay intact. In other words,
no access to the reduction location is scheduled between the
first and last instance of the reduction statement. This al-
lows our scheduler not only to optimize the reduction state-
ment in isolation, but also to consider other statements at
the same time without the need for any preprocessing to get
a SARE-like input.

To this end we presented a powerful reduction detection
based on computation properties and the polyhedral depen-
dence analysis. Our design leverages the power of polyhe-
dral loop transformations and exposes various optimization
possibilities including parallelism in the presence of reduc-
tion dependences. We showed how to model and leverage
associativity and commutativity to relax the causality con-
straints and proposed three approaches to make polyhedral
loop optimization reduction-aware. We believe our frame-
work is the first step to handle various well-known idioms,
e.g., privatization or recurrences, not yet exploited in most
practical polyhedral optimizers.

Furthermore, we showed that problems and opportuni-
ties arising from reduction parallelism (see Section 6.1) have
to be incorporated into the scheduling process, thus the
scheduling in the polyhedral model needs to be done in a
more realistic way. The overhead of privatization and the
actual gain of parallelism are severely influenced by the exe-
cution environment (e.g., available resources, number of pro-
cessors and cores, cache hierarchy), however these hardware
specific parameters are often not considered in a realistic
way during the scheduling process.

Extensions to this work include a working reduction-aware
scheduler and the modeling of multiple reduction-like com-
putations as well as other parallelization preventing idioms.
In addition we believe that a survey about the applicability
of different reduction detection schemes as well as optimiza-
tion approaches in a realistic environment is needed. In any
case this would help us to understand reductions not only
from the theoretical point of view but also from a practical
one.
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