
Mind The Gap!
A study of some pitfalls preventing peak performance in

polyhedral compilation using a polyhedral antidote

Philippe Clauss
Team CAMUS, INRIA, ICube Lab., CNRS, University of Strasbourg, France

philippe.clauss@inria.fr

ABSTRACT
The polyhedral model is a wonderful but imperfect world.
While many advanced and fully automatic program analysis
and optimization techniques have been developed thanks to
its accuracy and expressiveness, these techniques may fail in
producing efficient codes in some circumstances. Recently,
this has been identified more clearly through the proposition
of a new programming structure called xfor (multifor). This
structure eases the manual application of optimizing trans-
formations on loop nests for expert programmers and allows
to generate executable codes that may be significantly faster
than those generated automatically using well-established
polyhedral strategies. In this paper, we highlight five main
gaps regarding these strategies and discuss some ideas on
how to bridge them.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

General Terms
Performance

Keywords
Loop nest optimization, program execution performance,
performance issues, data locality, data dependence, proces-
sor stalls

1. INTRODUCTION
The polyhedral model is a mathematical framework which

has permitted the development of very advanced analysis
and optimizing transformation techniques for Static Con-
trol Parts (SCoP), some of them being implemented in high
quality software libraries and compilers [15, 4, 3, 2]. Re-
cently, its underlying principles have even been adapted to
speculative and dynamic optimization of more general loops
exhibiting a polyhedral behavior at runtime [8, 14]. How-
ever, the actual runtime performance of the codes generated

IMPACT 2015
Fifth International Workshop on Polyhedral Compilation Techniques
Jan 19, 2015, Amsterdam, The Netherlands
In conjunction with HiPEAC 2015.

http://impact.gforge.inria.fr/impact2015

automatically using polyhedral techniques is still an uncon-
trolled issue. This situation has symptomatically lead to the
development of iterative and machine learning compilation
frameworks [12, 9, 16, 7]. Decisions taken by automatic tools
are based on heuristics that can fail in some circumstances.
Moreover, these heuristics may ignore some important per-
formance issues or miss some alternative optimization tech-
niques.

Recently, we have proposed a new programming control
structure called “xfor”, allowing users to explicitly schedule
statements of a loop nest by shifting and stretching each
statement’s iteration domain [6, 5]. It has been shown that
xfor programs often reach better performance than programs
optimized by fully automatic polyhedral compilers like Pluto
[4]. It has also been shown that different versions of codes
may perform very differently, although their memory be-
haviors are very similar [5]. By analyzing further the origins
of such performance differences, we noticed five important
gaps in the currently adopted and well-established code op-
timization strategies: insufficient data locality optimization,
excess of conditional branches in the generated code, too ver-
bose code with too many machine instructions, data locality
optimization resulting in processor stalls, and finally missed
vectorization opportunities.

In this paper, we highlight and try to explain these five
gaps using benchmark codes. We also give some ideas for
strategies to bridge these gaps.

The paper is organized as follows. First, we recall the
xfor syntax and semantics in Section 2. Next in Section 3,
we focus on five important performance issues by relating
them as being jointly the cause of wasted processor cycles.
Each highlighted issue is addressed in a dedicated subsection
using illustrative benchmark codes. Section 4 discusses some
ideas for the consideration of these performance issues when
optimizing codes. Finally, conclusions are given in Section 5.

2. THE XFOR LOOP STRUCTURE
In this section, we recall the xfor syntax and semantics

initially presented in [6] and later updated in [5]. The xfor
syntax is defined by:

xfor (index = expr , [index = expr , . . .] ;
index r e l op expr , [index r e l op expr , . . .] ;
index += incr , [index += incr , . . .] ;
grain , [grain , . . .] ;
o f f s e t , [o f f s e t , . . .]) {
l a b e l : { statements }

[l a b e l : { statements } , . . .] }

The first three elements in the xfor header are similar to
the initialization, test, and increment parts of a traditional

1

C for-loop, except that all these elements describe two or
more loop indices. The last two components provide the
grain and offset for each index: these values are constants,
and the grain must be positive. All domains must be affine:
“expr” denotes affine combinations of enclosing loop indices,
“relop” is one of ==, !=, <, <=, > or >=, and “incr” must
be an integer. Every index in the set must be present in all
components of the header, and (sequences of) statements
are labelled with the rank of the corresponding index (0 for
the first index, 1 for the second, and so on).

The list of indices defines several for-loops whose respec-
tive iteration domains are all mapped onto a same global
“virtual referential” domain. The way iteration domains of
the for-loops are overlapped is defined solely by their respec-
tive offsets and grains, and not by the values of their respec-
tive indices, which have their own ranges of values. The
grain defines the frequency in which the associated loop has
to run, relatively to the referential domain. For instance,
if the grain equals 2, then one iteration of the associated
loop will run in two iterations of the referential. The offset
defines the gap between the first iteration of the referential
and the first iteration of the associated loop. For instance, if
the offset equals 3, then the first iteration of the associated
loop will run at the fourth iteration of the referential loop.

The size and shape of the referential domain can be de-
duced from the for-loop domains composing the xfor-loop.
Geometrically, the referential domain is defined as the union
of the for-loop domains, where each domain has been shifted
according to its offset and dilated according to its grain.

The relative positions of the iterations of the individual
for-loops composing the xfor-loop depend on how individ-
ual domains overlap. Iterations are executed in the lexico-
graphic order of the referential domain. On portions of the
referential domain where at least two domains overlap, the
corresponding statements are run in the order implied by
their label (which is also the order with which indices are
listed in the xfor header) and their order in the loop body
(statements are interleaved according to this order).

On a sub-domain where one or more loops actually execute
their statements, it can happen that some iterations have no
statement to execute, when the individual loops involved all
have grains larger than 1. In such cases, that particular
sub-domain is compressed, by a factor equal to the greatest
common divisor of all grains.

The bodies of the for-loops composing the xfor-loop can
be any C-based code. However, their statements can only
access their respective loop indices, and not any other loop
index whose value may be incoherent in their scope. More-
over, indices can only be modified in the loop header by
incrementation, and never in the loop body.

Nested xfor-loops are behaving like several nested for-
loops which are synchronized according to the common ref-
erential domain. Nested for-loops are defined according to
the order in which their respective indices appear in the xfor
headers. For instance, in a 2-level xfor nest, the first index
variable of the outermost loop is linked to the first index
variable of the inner loop, the second to the second, and so
on. Hence the same number of indices have to be defined at
each level of any xfor nest. This is not a strong restriction.
The syntax enables shorter specifications of indices which
are not used inside statements.

Source code containing xfor loop-structures is translated
by the IBB source-to-source compiler [5] into a semanti-

cally equivalent C code made of“regular”for-loop structures.
This is done in two steps. First, index domains are turned
into polytopes over a common referential domain, and sec-
ond, scanning code is generated for the union of these poly-
topes using the CLooG library [3].

Notice that the xfor structure allows users to write for ex-
ample codes implementing explicitly and in a concise man-
ner the scatter-gather combinations for stencil computations
described in [13].

3. WASTED PROCESSOR CYCLES
The execution time of a program is obviously directly re-

lated to the total number of cycles spent by the CPU for
running all of its instructions. Among these consumed cy-
cles, some of them may be stalled, and some others may
be spent uselessly in running a too verbose set of instruc-
tions that perform computations that could either have been
achieved using a significantly smaller set of instructions, or
by taking advantage of some accelerator processor units us-
ing the dedicated instructions. The latter issue is detailed
in subsection 3.5 regarding vectorization, while the previous
one is addressed in subsection 3.3. It is shown that codes ex-
hibiting a good data locality may be even slower than codes
with weaker locality, just because of one of both issues.

Stalled processor cycles are cycles spent by the processor
in waiting for the completion of some event on which the
continuation of the current instruction sequence depends.
Thus these cycles are wasted since they are uselessly con-
suming time and energy. Although such processor stalls can
never be completely avoided, or may be partially hidden by
simultaneous instruction executions, their amount should be
minimized. For this purpose, their cause have to be handled
specifically when optimizing programs. They can be classi-
fied into four main categories:

1. stalls due to insufficient computing resources: for ex-
ample, the processor core is not embedding enough
floating-point units while several floating point opera-
tions are ready to be performed simultaneously;

2. stalls due to memory latency: this issue is one of the
most frequently handled issues in program optimiza-
tion techniques, with goals like data locality improve-
ment and minimization of cache misses;

3. stalls due to dependences between instructions: the ex-
ecuted code contains many sequences of dependent
instructions, i.e., instructions for which at least one
operand is reused in some closely following instruc-
tions in a Read-After-Write fashion. Such a situation
prevents superscalar microprocessors to launch simul-
taneously several instructions due to the unavailability
of operands. This may potentially occur with codes
resulting from aggressive data locality optimization,
since data reuse distances are traditionally minimized
by bringing as close as possible instructions referencing
common data which may be dependent.

4. stalls due to branch mispredictions: When a branch
prediction made by the CPU is incorrect, all the spec-
ulatively executed instructions are discarded as soon
as the correct branch is determined, and the processor
execution pipeline restarts with instructions from the
correct branch destination. This halt while the new in-
structions work their way down the execution pipeline

2

causes a processor stall, which is a major drain on per-
formance.

While point 1 can be solved using more hardware, point 2
is handled by most compilers which implement data local-
ity optimization techniques that are more or less efficient.
Regarding affine loop nests, the Pluto source-to-source com-
piler [4, 1] implements some of the most advanced data local-
ity optimization strategies based on the polyhedral model,
e.g. some advanced tiling techniques, loop interchange, skew-
ing, etc. However, the heuristics that are used necessarily
miss some optimization opportunities that may be handled
by an expert programmer, particularly when using the xfor
structure, as it will be shown in the next subsection. All in
all, the strategies used are not conscious of the other per-
formance issues described below, and may have such a neg-
ative impact that they annihilate the gain provided by data
locality improvement, as it will be shown in the following
subsections.

Regarding points 3, this issue is never addressed explicitly
by automatic polyhedral optimizers since data locality opti-
mization has always been seen as a final goal. However, we
show in subsection 3.4 that code versions that are all exhibit-
ing similar and “optimized” memory performance (and sim-
ilar performance regarding all the other points) may show
very different execution times because of this issue. Ad-
ditionally, the minimization of data reuse distances among
instructions may prevent vectorization of these instructions
(subsection 3.5).

Regarding point 4, while branch predictors cannot be con-
trolled by software, the potential risk with loop transforma-
tions regarding branch mispredictions is related to the kind
of optimizing transformation that has been applied and the
number of branches resulting from it in the executable code.
The classic tiling transformation may present such a poten-
tial risk due to the complicated control it requires, particu-
larly when it involves non-rectangular shapes. This point is
addressed in subsection 3.2.

In the following subsections, we illustrate the importance
of these issues in program optimization using eleven rep-
resentative codes extracted from the Polybench benchmark
suite [11]. Every code has been rewritten using the xfor
structure and also optimized by the most recent version of
the source-to-source Pluto polyhedral compiler [1] with the
combination of options generating the best performing code
among -tile (with the default tile size of 32 in each tilable
dimension), -l2tile, -smartfuse, -maxfuse and -rar . Xfor
and Pluto versions have been compiled using GCC 4.8.1 with
options O3 and march=native, and are compared regarding
several relevant processor performance counters whose val-
ues were collected using the perf linux tool and the libpfm

library [10]. The collected CPU events are detailed and com-
mented in Table 1. Notice that the origins of stalls are gener-
ally difficult to classify using CPU events. Each performance
counter related to stalled cycles monitors a particular hard-
ware unit that may stall for many reasons, and several units
may stall for a common reason. Thus the reported counters
in the following subsections provide some hints about the
origins of some stalls, but can never be exhaustive. Experi-
ments have been conducted on an Intel Xeon X5650 6-core
processor 2.67GHz (Westmere) running Linux 3.2.0.

Among the eleven benchmark codes, we identified the ones
whose runtime behavior is more significantly impacted by
one single performance issue among the five ones, even if

#CPU cycles: total number of CPU cycles, halted and
unhalted.

#L1 data loads: total number of data references to the L1
cache.

#Li misses: total number of loads that miss the Li
cache.

#TLB misses: total number of load misses in the TLB
that cause a page walk.

#branches: total number of retired branch instruc-
tions.

#branch
misses:

total number of branch mispredictions.

#Stalled
cycles:

total number of cycles in which no micro-
operations are executed on any port.

#Resource
related stalls:

total number of allocator resource re-
lated stalls.

#Reservation
Station stalls:

Number of cycles when the number of
instructions in the pipeline waiting for
execution reaches the limit the proces-
sor can handle. A high count of this
event indicates that there are long la-
tency operations in the pipe (possibly in-
structions dependent upon instructions
further down the pipeline that have yet
to retire). Regarding program analysis,
a high count of this event most proba-
bly exhibits the effect of long chains of
dependences between close instructions.

#Re-Order
Buffer stalls:

Number of cycles when the number of
instructions in the pipeline waiting for
retirement reaches the limit. A high
count for this event indicates that there
are long latency operations in the pipe
(possibly, load and store operations that
miss the L2 cache, and other instructions
that depend on these cannot execute un-
til the former instructions complete exe-
cution). Regarding program analysis, a
high count of this event most probably
exhibits the effect of long latency mem-
ory operations and TLB or cache misses.

#instructions: total number of retired instructions.

Table 1: Collected CPU events

in general, performance is a question of balance among the
provided gains and overheads. Thus these eleven codes have
been selected because they enable such discrimination for
pedagogical purposes. Notice also that the highlighted issues
are independent of the compiler. We have observed similar
runtime behaviors with codes compiled with ICC, excepting
for automatic vectorization which is generally better handled
by ICC.

3.1 Gap 1: Insufficient data locality optimiza-
tion

Tables 2 and 3 show four codes whose best Pluto-optimized
versions are compared to better performing xfor-optimized
versions. By comparing their respective performance coun-
ters, one can observe that the number of stalled cycles and
the number of TLB and data cache misses are showing im-
portant differences, while the other values do not show such
significant disparity. From more more than 25% up to 99%
more TLB misses, and more than 15% up to 98% more L3
misses, have been observed with the Pluto codes, obviously
yielding more stalled cycles associated to larger memory ac-
cess latencies. The origin of this higher amount of stalls is
specifically highlighted by the high count of re-order buffer

3

Pluto XFOR Ratios
mvt
#CPU cycles 3,824M 2,425M -36.58%
#L1 data loads 748M 451M -39.71%
#L1 misses 45M 50M +10.71%
#L2 misses 29M 5.8M -80.09%
#L3 misses 38M 14M -63.77%
#TLB misses 3.8M 0.7M -82.62%
#branches 224M 212M -4.89%
#branch misses 470K 439K -6.58%
#instructions 2,469M 2,010M -18.58%
syr2k
#CPU cycles 7,005M 5,671M -19.05%
#L1 data loads 4,322M 2,158M -50.06%
#L1 misses 299M 137M -54.18%
#L2 misses 8.4M 3.6M -55.94%
#L3 misses 10M 5.1M -48.57%
#TLB misses 4.3M 3.2M -25.78%
#branches 1,072M 1,078M +0.58%
#branch misses 1,072K 1,084K +1.03%
#instructions 11,890M 13,946M +17.29%
3mm
#CPU cycles 17,557M 4,358M -75.18%
#L1 data loads 4,226M 2,440M -24.36%
#L1 misses 815M 206M -74.67%
#L2 misses 554M 5.4M -99.02%
#L3 misses 174M 3M -98.25%
#TLB misses 541M 3.2M -99.41%
#branches 1,625M 813M -49.96%
#branch misses 2,704K 1,630K -39.73%
#instructions 11,331M 8,941M -21.09%
gauss-filter
#CPU cycles 3,457M 2,963M -14.28%
#L1 data loads 873M 843M -3.45%
#L1 misses 75M 46M -38.97%
#L2 misses 4.2M 2.4M -42.33%
#L3 misses 29.5M 24.8M -15.91%
#TLB misses 1.5M 0.7M -49.78%
#branches 724M 572M -20.92%
#branch misses 622K 689K +10.78%
#instructions 5,026M 4,652M -7.44%

Table 2: Slowdowns mostly due to more TLB and
cache misses

stalls which are symptomatic of long latency memory oper-
ations.

In mvt, from the first to the second loop nest, only array A
is reused. Data-reuse distances between both iteration do-
mains are large, since array A is accessed in row-major order
in the first nest, and in column-major order in the second
nest, which is also an unfavourable access order regarding
intra-statement data locality. Since no data dependences
prevent loop transformations, interchanging loops i and j in
the second nest is obviously beneficial. Finally, overlapping
both resulting iteration domains optimizes inter-statement
data reuse distances and provides a significant speed-up.
The best Pluto version is resulting from merging both loop
nests and tiling the resulting nest, however without inter-
changing loops of the second nest.

With syr2k, the xfor code is built by splitting the itera-
tion domain into two iteration domains respectively associ-
ated with one of the two statements, and by exchanging the
loops of the second domain from i-j-k to j-i-k. Thus, each
couple of accesses to elements of arrays A and B is reused
consecutively by both statements. Temporal reuse was also
promoted by using a temporary variable instead of C[i][j]
for the second statement. Pluto just kept intact the original
code which seemingly was evaluated exhibiting a good data
locality.

In 3mm, there are three successive matrix products E =

Pluto XFOR Ratios
mvt - #stalled cycles 2,742M 1,582M -42.29%
#Resource related stalls 2,544M 1,347M -47.05%
#Reservation Station stalls 431M 447M +3.63%
#Re-Order Buffer stalls 2,008M 771M -61.62%
syr2k - #stalled cycles 1,570M 1,346M -14.27%
#Resource related stalls 1,495M 1,332M -10.91%
#Reservation Station stalls 327M 1,199M +266.50%
#Re-Order Buffer stalls 1,182M 132M -88.80%
3mm - #stalled cycles 12,695M 524M -95.87%
#Resource related stalls 12,392M 387M -96.87%
#Reservation Station stalls 10,667M 379M -96.44%
#Re-Order Buffer stalls 2,606M 38M -98.52%
gauss-filter - #stalled cycles 1,351M 1,196M -11.45%
#Resource related stalls 924M 824M -10.82%
#Reservation Station stalls 174M 150M -13.88%
#Re-Order Buffer stalls 171M 134M -21.25%

Table 3: Stalls mostly due to more TLB and cache
misses

A × B, F = C × D and G = E × F for which the two
first products are independent and thus could be perfectly
overlapped. However, since there is no data reuse between
them, such a program version would induce saturated mem-
ory bandwidth or numerous cache conflicts. The third prod-
uct uses both computed matrices to compute matrix G. The
loop nests can obviously take advantage of a common loop
interchange from order i-j-k to i-k-j. However, to promote
overlapping of the third nest onto the second nest, the order
of the two first loop nests is inverted such that the reuse of
matrix E in the third nest can occur row by row as soon as
any E-row computation has been completed. The best Pluto
version is not implementing any loop fusion and do not take
advantage at all of data reuse among the statements.

In conclusion, Pluto’s heuristics do not seem to promote
temporal data reuse among different statements at all, de-
spite the -rar and -maxfuse options. For example, with mvt,
Pluto did not detect the opportunity of interchanging loops
of the second loop nest before merging them. With syr2k,
the xfor code promotes the inter-statement data reuse of el-
ements of matrices A and B, while the Pluto code prioritizes
only intra-statement data locality for each single access to
the matrices. Similar situations occur with 3mm and gauss-

filter.

3.2 Gap 2: Excess of conditional branches
Codes seidel, correlation and covariance, are symp-

tomatic cases where loop tiling is more penalizing than ad-
vantageous, despite the fact that it may provide a signifi-
cantly better cache performance. Pluto’s best performing
versions for these three codes are tiled versions embedding
many additional loop levels and complex loop bounds made
with combinations of min, max, floor and ceiling functions
invocations (see Figure 1). This additional control yields
many more branches in the final generated code than in
a version built without tiling, and thus more machine in-
structions. No tiling has been applied in the xfor codes.
The code generated by the xfor compiler IBB for seidel is
shown in Figure 2. Consequently, Pluto’s codes are more
exposed to branch misses as exhibited by the performance
counters (see Table 4). Moreover, branches resulting from
complex combinations of min, max, floor and ceiling may
be hardly predictable. Thus, the larger amount of instruc-
tions and the related branch misses completely annihilate
the gain expected from the significantly lower number of

4

for (t1 =0; t1<=f l o o r d (t s t eps −1 ,32); t1++)
for (t2=t1 ; t2<=min(f l o o r d (32∗ t1+n+29 ,32) ,

f l o o r d (t s t e p s+n−3 ,32)) ; t2++)
for (t3=max(c e i l d (64∗ t2−n−28 ,32) , t1+t2) ;

t3<=min(min (min (min (f l o o r d (32∗ t1+n+29 ,16) ,
f l o o r d (t s t e p s+n−3 ,16)) ,
f l o o r d (64∗ t2+n+59 ,32)) ,
f l o o r d (32∗ t1+32∗ t2+n+60 ,32)) ,
f l o o r d (32∗ t2+t s t e p s+n+28 ,32)) ; t3++)

for (t4=max(max(max(32∗ t1 ,32∗ t2−n+2) ,16∗ t3−n+2) ,
−32∗ t2+32∗t3−n−29);
t4<=min(min (min (min(32∗ t1 +31 ,32∗ t2 +30) ,
16∗ t3 +14) , t s t eps −1),−32∗ t2+32∗ t3 +30); t4++)

for (t5=max(max(32∗ t2 , t4 +1) ,32∗ t3−t4−n+2);
t5<=min(min(32∗ t2 +31 ,32∗ t3−t4 +30) , t4+n−2);
t5++)

for (t6=max(32∗ t3 , t4+t5 +1);
t6<=min(32∗ t3 +31, t4+t5+n−2); t6++) {

A[− t4+t5][− t4−t5+t6] = . . . ;

Figure 1: Tiled loop nest generated by Pluto for
seidel

TLB misses generated with seidel and covariance Pluto’s
versions. Notice that for covariance, the xfor code is even
exhibiting more stalled cycles than the Pluto code, although
it is still globally faster.

Complex loop control yields also many more instructions
of various kinds in the final executable than with simpler
control, as it is clearly highlighted by the number of retired
instructions for seidel and covariance. This issue, which
is specifically addressed in the next subsection, impacts also
solely performance significantly.

3.3 Gap 3: Number of instructions
Both Pluto and XFOR1 codes of Table 5 are implementing a

similar transformation of the original jacobi-2d code which
consists in fusing both original loop nests in order to promote
inter-statement data reuse and minimize loop control cost.
Even if XFOR1 and XFOR2 exhibit a better data locality than
Pluto’s code (less caches misses), they also execute a signif-
icantly greater amount of instructions making them slower.
The small differences in the reservation station and re-order
buffer stalls show that the execution times differences are
not significantly influenced by differences regarding memory
operations or dependences between instructions.

3.4 Gap 4: Unaware data locality optimiza-
tion

We have written three xfor code versions of the polybench
seidel code which just differ by their offset values. The xfor
code is shown in Figure 3 while the offset values are shown
in Table 6. Notice that these codes have a different shape
than the xfor seidel code addressed in subsection 3.2, which
explains the different counter values. One can observe from
the performance counters that these three codes are behav-
ing mostly similarly at runtime, while showing important
execution time differences. The only performance counters
showing significant differences are those related to stalled
cycles. However, neither the amount of branch misses, in-
structions, nor cache misses can explain these differences.
Some of these numbers seem even slightly more favorable
for the slowest code.

This performance issue is probably the most surprising
one among the five issues highlighted in this paper. It is gen-
erally difficult to identify since it is usually hidden by other

Pluto XFOR Ratios

seidel
#CPU cycles 15,721M 7,476M -52.45%
#L1 data loads 3,099M 672M -78.31%
#L1 misses 12M 83M +569.40%
#L2 misses 3.7M 1.2M -65.64%
#L3 misses 3.9M 3.4M -12.69%
#TLB misses 78K 688K +783.18%
#branches 387M 179M -53.88%
#branch misses 456K 132K -70.97%
#stalled cycles 11,297M 4,499M -60.18%
#Resource related stalls 11,030M 4,4281M -59.85%
#Reservation Station stalls 3,017M 440M -85.39%
#Re-Order Buffer stalls 9,466M 3,982M -57.93%
#instructions 10,015M 7,857M -21.55%

correlation
#CPU cycles 425M 426M +0.22%
#L1 data loads 224M 186M -17.10%
#L1 misses 3.7M 12M +223.95%
#L2 misses 2.2M 1M -50.77%
#L3 misses 635K 395K -37.83%
#TLB misses 294K 306K +4.27%
#branches 120M 78M -34.39%
#branch misses 549K 231K -58.01%
#stalled cycles 115M 47M -58.79%
#Resource related stalls 81M 24M -69.49%
#Reservation Station stalls 47M 3.7M -92.10%
#Re-Order Buffer stalls 16M 14M -13.31%
#instructions 906M 934M +3.03%

covariance
#CPU cycles 419M 320M -23.71%
#L1 data loads 217M 117M -46.19%
#L1 misses 3.5M 22M +539%
#L2 misses 1.9M 9M +366.65%
#L3 misses 744K 496K -33.42%
#TLB misses 247K 501K +102.87%
#branches 119M 35M -70.40%
#branch misses 721K 199K -72.37%
#stalled cycles 61M 123M +100.75%
#Resource related stalls 59M 117M +98.54%
#Reservation Station stalls 44M 43M -1.40%
#Re-Order Buffer stalls 17M 75M +344.54%
#instructions 1,050M 506M -51.86%

Table 4: Slowdowns partially due to more branch
mispredictions

jacobi-2d Pluto XFOR1 XFOR2

#CPU cycles 12,136M 13,700M 12,641M
#L1 data loads 1,400M 1,530M 1,529M
#L1 misses 236M 206M 205M
#L2 misses 44M 6M 11M
#L3 misses 76M 68M 68M
#TLB misses 2.7M 2.8M 3M
#branches 657M 564M 650M
#branch misses 1,560K 1,448K 1,329K
#stalled cycles 9,265M 9,463M 8,673M
#Resource related stalls 8,317M 8,433M 7,606M
#Reservation Station stalls 1,123M 1,088 930M
#Re-Order Buffer stalls 5,435M 4,775M 4,740M
#instructions 6,950M 9,370M 10,469M

Table 5: Slowdowns mostly due to higher instruction
counts

5

for (t =0; t<=tsteps −1; t++) {
for (i =0; i<=f l o o r d (n−3 ,2) ; i++) {
A[2∗ i +1][1]+=A[2∗ i + 1] [2] ;
A[2∗ i +1][1]+=A[2∗ i + 2] [0] ;
A[2∗ i +1][2]+=A[2∗ i + 1] [3] ;
A[2∗ i +1][2]+=A[2∗ i + 2] [1] ;
A[2∗ i +1][1]+=A[2∗ i + 2] [1] ;
A[2∗ i +1][1]+=A[2∗ i + 2] [2] ;
A[2∗ i +2][1]+=A[2∗ i + 3] [1] ;
A[2∗ i +2][1]+=A[2∗ i + 2] [2] ;
A[2∗ i +2][1]+=A[2∗ i + 3] [0] ;
A[2∗ i +2][1]+=A[2∗ i + 3] [2] ;
A[2∗ i +1] [1]=(A[2∗ i +1][1]+A[2∗ i] [0] +A[2∗ i] [1]

+A[2∗ i] [2] +A[2∗ i + 1] [0]) / 9 . 0 ;
for (j =2; j<=n−3; j++) {
A[2∗ i +1] [j+1]+=A[2∗ i +1] [j +2] ;
A[2∗ i +1] [j+1]+=A[2∗ i +2] [j] ;
A[2∗ i +1] [j−2]+=A[2∗ i +2] [j −2] ;
A[2∗ i +1] [j−2]+=A[2∗ i +2] [j −1] ;
A[2∗ i +2] [j−2]+=A[2∗ i +3] [j −2] ;
A[2∗ i +2] [j−2]+=A[2∗ i +2] [j −1] ;
A[2∗ i +2] [j−2]+=A[2∗ i +3] [j −3] ;
A[2∗ i +2] [j−2]+=A[2∗ i +3] [j −1] ;
A[2∗ i +1] [j −2]=(A[2∗ i +1] [j−2]+A[2∗ i] [j −3]

+A[2∗ i] [j−2]+A[2∗ i] [j−1]+A[2∗ i +1] [j −3]) /9 . 0 ;
A[2∗ i +2] [j −3]=(A[2∗ i +2] [j −3]

+A[2∗ i +1] [j−4]+A[2∗ i +1] [j −3]
+A[2∗ i +1] [j−2]+A[2∗ i +2] [j −4])/9 .0 ;}

A[2∗ i +1] [n−2]+=A[2∗ i +2] [n−2] ;
A[2∗ i +1] [n−2]+=A[2∗ i +2] [n−1] ;
A[2∗ i +2] [n−2]+=A[2∗ i +3] [n−2] ;
A[2∗ i +2] [n−2]+=A[2∗ i +2] [n−1] ;
A[2∗ i +2] [n−2]+=A[2∗ i +3] [n−3] ;
A[2∗ i +2] [n−2]+=A[2∗ i +3] [n−1] ;
A[2∗ i +1] [n−2]=(A[2∗ i +1] [n−2]+A[2∗ i] [n−3]
+A[2∗ i] [n−2]+A[2∗ i] [n−1]+A[2∗ i +1] [n−3]) /9 . 0 ;
A[2∗ i +2] [n−3]=(A[2∗ i +2] [n−3]+A[2∗ i +1] [n−4]
+A[2∗ i +1] [n−3]+A[2∗ i +1] [n−2]+A[2∗ i +2] [n−4]) /9 . 0 ;
A[2∗ i +2] [n−2]=(A[2∗ i +2] [n−2]+A[2∗ i +1] [n−3]
+A[2∗ i +1] [n−2]+A[2∗ i +1] [n−1]+A[2∗ i +2] [n−3])/9 .0 ;}}

Figure 2: Code generated by the xfor-IBB compiler
for seidel

performance issues. The xfor structure allows to isolate it,
thanks to its explicit control of the data reuse distances,
which enables the generation of several code versions which
are all exhibiting a similar well-optimized data locality.

Thanks to the Intel Vtune profiling tool, a precise view
of the CPU time spent by the respective groups of most
time-consuming assembly instructions of XFOR1, XFOR2 and
XFOR3 is shown in Table 7. It clearly shows excessive times
spent by some instructions. Instructions spending up to
hundreds of milliseconds are exhibiting dependences due to
accesses to common registers that could not be resolved
through register renaming. These dependences are typically
Read-After-Write (RAW) dependences. These excessive la-
tencies are particularly exacerbated by the use of the x86
divsd floating-point division instruction which is costly: its
latency is about 24 CPU cycles on Westmere microproces-
sors as reported in the related documentations. Thus, any
delay regarding its execution has a significant impact on de-
pending instructions, and any delay regarding instructions
on which it depends extends significantly its latency.

Typically, in this example in Table 7, each instruction
following immediately instruction divsd exhibits a high la-
tency due to its RAW register dependence with instruction
divsd: movsdq and register xmm2 for XFOR1, movsdq and reg-
ister xmm0 for XFOR2, addsd and register xmm1 for XFOR3.

However it is difficult and tedious to understand precisely
from assembly codes why some codes are slower than oth-

for (t = 0 ; t <= tsteps−1 ; t++)
xfor (i 0 =1, i 1 =1, i 2 =1, i 3 =1, i 4=1 ;

i0<=n−2, i1<=n−2, i2<=n−2, i3<=n−2, i4<=n−2 ;
i 0 +=2, i 1 +=2, i 2 +=2, i 3 +=2, i 4+=2 ;
1 ,1 ,1 ,1 ,1 ; /∗ grains ∗/
? , ? , ? , ? , ?) /∗ o f f s e t s ∗/ {

xfor (j 0 =1, j1 =1, j 2 =1, j3 =1, j 4=1 ;
j0<=n−2, j1<=n−2, j2<=n−2, j3<=n−2, j4<=n−2 ;
j 0++, j1++, j2++, j3++, j4++ ;
1 ,1 ,1 ,1 ,1 ; /∗ grains ∗/
? , ? , ? , ? , ?) /∗ o f f s e t s ∗/ {

0 : { A[i 0] [j 0] += A[i 0] [j 0 +1] ;
A[i 0 +1] [j 0] += A[i 0 +1] [j 0 +1] ; }

1 : { A[i 1] [j 1] += A[i 1 +1] [j1 −1] ;
A[i 1 +1] [j 1] += A[i 1 +2] [j1 −1] ; }

2 : { A[i 2] [j 2] += A[i 2 +1] [j 2] ;
A[i 2 +1] [j 2] += A[i 2 +2] [j 2] ; }

3 : { A[i 3] [j 3] += A[i 3 +1] [j 3 +1] ;
A[i 3 +1] [j 3] += A[i 3 +2] [j 3 +1] ; }

4 : { A[i 4] [j 4] = (A[i 4] [j 4]+A[i4 −1] [j4 −1]
+A[i4 −1] [j 4]+A[i4 −1] [j 4 +1]
+A[i 4] [j4 −1])/9 .0 ;

A[i 4 +1] [j 4] = (A[i 4 +1] [j 4]+A[i 4] [j4 −1]
+A[i 4] [j 4]+A[i 4] [j 4 +1]
+A[i 4 +1] [j4 −1])/9 .0 ; } }}

Figure 3: The xfor seidel code used for register de-
pendence analysis

seidel XFOR1 XFOR2 XFOR3

offsets-i 0,0,0,0,1 0,1,0,0,1 0,1,1,1,1
offsets-j 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
#CPU cycles 7,392M 11,393M 12,283M
#L1 data loads 986M 997M 837M
#L1 misses 123M 123M 103M
#L2 misses 1.9M 1.9M 1.6M
#L3 misses 3.5M 3.5M 3.5M
#TLB misses 725K 694K 693K
#branches 97M 94M 96M
#branch misses 74K 78K 78K
#stalled cycles 5,100M 8,002M 9,367M
#Resource related stalls 5,076M 7,969M 9,334M
#Reservation Station stalls 1,543M 7,765M 9,130M
#Re-Order Buffer stalls 3,537M 170M 157M
#instructions 6,131M 7,146M 6,503M

Table 6: Processor stalls due to register depen-
dences for three xfor versions of seidel

ers regarding solely this issue, even if the cause is obviously
related to the instruction schedule. Additionally, since the
schedule window is too narrow for the CPU to dynamically
improve the situation, a similar issue occurs for humans
when trying to understand the weak performance by ana-
lyzing the assembly code.

Figure 4 shows the source codes of two successive unrolled
iterations of the innermost loop in each of the three xfor
codes. A rationale for the execution-time differences can be
deduced from the memory accesses related to the floating-
point divisions – translated as divsd instructions – which are
the main bottlenecks. Accesses to array elements related by
some dependences with an array access made in one of the
division statements have been colored with the same color.

The XFOR1 code shows four successive short RAW depen-
dences regarding the updates of element A[i][j] – in lines
11, 13, 15, 17, 20 – and one RAW dependence regarding ele-
ment A[i-1][j] – in lines 19, 20. All these dependences are
impacting significantly the second division statement in line
20, as it can be observed in Table 7 with a total CPU time

6

of 796ms for the second divsd instruction, while the first
statement in line 19 is not impacted by any short distance
dependence. The RAW dependences prevent the superscalar
CPU to launch simultaneously several addsd instructions,
which consequently extends the time to be spent until the
availability of all the operands of statement 20. Moreover,
statement 19, which is a costly division, has also to be com-
pleted before statement 20 can be launched.

The XFOR2 code is showing very similar short RAW de-
pendences regarding the updates of element A[i][j] – in
lines 11, 14, 15, 17, 20 – and the same RAW dependence.
But additionally, since the statement in line 13 is delayed by
the update of element A[i][j-1] in line 10 – which is a long
latency division (RAW dependence) – the division in line 19
is transitively impacted since it reads and also updates the
updated element A[i-1][j] of line 13 (RAW dependence).
It can be observed in Table 7 that both divsd division in-
structions are now showing important latencies (542ms and
526ms CPU times).

The situation is even worse with XFOR3 which is showing a
succession of dependences preventing any simultaneous su-
perscalar execution of instructions of the loop body. Lines
from 11 to 20 are strongly sequentialized due to many short
RAW dependences which explain the huge latencies of both
divsd instructions.

Since XFOR1 is the fastest version, an even faster version
should be expected by extending the distances of depen-
dences which impact statement 20. On the other hand,
such extensions may alter the data locality, or increase the
number of instructions and thus result in a slower code.
An offset-j of 1 assigned to statement 20 extends signifi-
cantly its dependence distance regarding statement 19. This
can be directly observed with this new xfor code from the
huge improvement in the number of reservation station stalls
(119M). However, due to the specific schedule of statement
20, a larger amount of required instructions (7,354M) makes
the code slightly slower (7,442M CPU cycles).

These code examples show that a “too good” data local-
ity may introduce long chains of many short dependences
making instructions so tightly coupled that despite register
renaming, and despite out-of-order execution, the micropro-
cessor cannot find any independent instructions to launch
simultaneously. This issue is particularly highlighted by the
higher counts of the reservation station stalls in Table 6.

3.5 Gap 5: Insufficient handling of vectoriza-
tion opportunities

Table 8 shows three codes whose xfor versions are signifi-
cantly faster than Pluto’s versions, although their respective
performance counters are not exhibiting great differences.
Some counters are even in contradiction with the execution
times (number of TLB and cache misses). In contrast to
the previous issue regarding short dependences between in-
structions, these codes are representative of another issue
related to vectorization: the compiler automatically vector-
ized kernel loops of the xfor codes, while it did not for Pluto’s
codes. This has been clearly observed thanks to the -ftree-
vectorizer-verbose GCC option.

Vectorization is subject to two main parameters: data
dependence and alignment. Processors’ SIMD units require
fixed-size vectors, say sv, of equally spaced data , i.e., spaced
by constant memory strides. Thus, sv iterations are run in
parallel thanks to the SIMD unit. Mainstream compilers fea-

XFOR1 ms
addsd %xmm7, %xmm0
addsd %xmm1, %xmm0 44
divsd %xmm3, %xmm0
movsdq %xmm0, -0x8(%r8) 8
movsdq -0x8(%rcx), %xmm2
movsdq (%r9), %xmm13 72
addsd %xmm1, %xmm2
movapd %xmm13, %xmm1
addsd %xmm9, %xmm1
addsd %xmm0, %xmm2 12
addsd %xmm7, %xmm1
addsd %xmm13, %xmm2
addsd %xmm5, %xmm2
divsd %xmm3, %xmm2 20
movsdq %xmm2, -0x8(%rcx) 796
movsdq (%rax), %xmm11 28

XFOR2 ms
addsd %xmm11, %xmm2
addsd %xmm0, %xmm2 70
addsd %xmm4, %xmm0 108
divsd %xmm3, %xmm2
movsdq %xmm2, (%rdi) 542
addsd %xmm2, %xmm0 48
movsdq 0x8(%r9), %xmm9 64
addsd %xmm9, %xmm0
addsd %xmm1, %xmm0 40
movapd %xmm10, %xmm1 78
divsd %xmm3, %xmm0
movsdq %xmm0, (%rax) 526
movsdq 0x8(%rcx), %xmm4 40

XFOR3 ms
addsd %xmm9, %xmm0 28
addsd %xmm7, %xmm0
addsd %xmm8, %xmm0 60
divsd %xmm3, %xmm0 48
movsdq %xmm0, -0x8(%rcx) 602
addsd %xmm0, %xmm1 20
movsdq (%r9), %xmm2 124
addsd %xmm2, %xmm1
addsd %xmm13, %xmm1 96
divsd %xmm3, %xmm1 42
addsd %xmm1, %xmm2 824
movsdq %xmm1, -0x8(%rdx) 74

Table 7: Total aggregated CPU time per instruc-
tions (ms) – source: Intel VTune

Pluto XFOR Ratios

jacobi-1d
#CPU cycles 9,711M 9,063M -6.67%
#L1 data loads 895M 885M -0.03%
#L1 misses 110M 110M -0.53%
#L2 misses 4M 4.7M +16.78%
#L3 misses 54M 57M +5.34%
#TLB misses 2.3M 2M -15.51%
#branches 508M 505M -0.48%
#branch misses 1,031K 1,174K +13.91%
#stalled cycles 7,465M 6,844M -8.32%
#instructions 4,891M 4,924M +0.69%

fdtd-2d
#CPU cycles 7,631M 5,679M -25.58%
#L1 data loads 950M 962M 1.25%
#L1 misses 130M 114M -12.29%
#L2 misses 5.6M 11.3M +103.02%
#L3 misses 39M 32M -18.81%
#TLB misses 1.8M 1.4M -25.64%
#branches 345M 249M -27.85%
#branch misses 755K 636K -15.79%
#stalled cycles 5,844M 3,871M -33.77%
#instructions 3,936M 4,427M +12.46%

fdtd-apml
#CPU cycles 2,969M 1,871M -36.96%
#L1 data loads 360M 333M -7.56%
#L1 misses 27M 30M +10.85%
#L2 misses 971K 1,127K +16.11%
#L3 misses 9.6M 9.2M -3.55%
#TLB misses 710K 925K +30.31%
#branches 97M 81M -17%
#branch misses 476K 572K +20.31%
#stalled cycles 2,196M 1,190M -45.81%
#instructions 1,581M 1,448M -8.46%

Table 8: Not vectorized/vectorized codes

7

Figure 4: Dependent memory accesses among two
unrolled iterations represented in a common refer-
ential for XFOR1, XFOR2 and XFOR3

/∗ Pluto code : A[t1] reuse dis tance = 1 ∗/
B[2] = 0.33333 ∗ (A[1] + A[2] + A [3]) ; ;
for (t1 =3; t1<=n−2; t1++) {
B[t1] = 0.33333 ∗ (A[t1−1] + A[t1] + A[t1 + 1]) ; ;
A[t1−1] = B[t1 −1] ; }

A[n−2] = B[n−2] ;

/∗ XFOR code : A[j] reuse dis tance = 9 ∗/
xfor (j 0 =2, j1 =2; j0<n−1, j1<n−1; j 0++, j1 ++;1 ,1;0 ,9) {
0 : B[j 0] = 0.33333 ∗ (A[j0 −1] + A[j0] + A[j0 +1]) ;
1 : A[j1] = B[j1] ; }

Figure 5: Pluto and xfor codes for jacobi-1d

turing automatic vectorization also require straightforward
memory access patterns. Thus, the xfor programming strat-
egy promoting vectorization is to build bodies of statements
whose inter-statement data reuse distance is strictly greater
than the SIMD vector size, and whose alignment of accessed
data complies with the processor requirements. A conve-
nient adjustment of the offset values allows easy compliance
with these requirements. We illustrate this programming
strategy using the xfor implementation of jacobi-1d.

As done in the xfor code, Pluto fuses appropriately both
original loops into one unique loop where the second state-
ment is shifted by one iteration in order to respect the Write-
After-Read dependence regarding accesses to array A (see
Figure 5). However, such a program construction does not
promote vectorization since the CPU cannot run simulta-
neously both statements because of the simultaneous write
and read of array element A[t1-1]. On the other hand, the
xfor structure allows to set the reuse distance precisely such
that the final generated loops are in favour of automatic vec-
torization. For jacobi-1d, a reuse distance set to 9 provides
the best performance.

4. BRIDGING THE GAPS
One legitimate rhetoric of the polyhedral community is

that source codes should be written by programmers in a
form that is the simplest for the compiler, such that codes
can be analyzed as precisely as possible to apply efficient op-
timizing transformations. In the same way, a similar rhetoric
should be claimed about the shape of the codes generated
by compilers for micro-processors.

The highlighted performance issues confirm that program
optimization is based on a careful balance between several
concurrent goals. While data locality is obviously an impor-
tant issue, it is not an isolated one and its improvement must
be careful of the other four issues which are excessive number
of branches, instruction counts, long chains of short RAW
dependences and vectorization. Moreover, inter-statement
data locality is as important as intra-statement data local-
ity and should be handled accordingly.

Regarding the latter aspect, the grain of reasoning should
be the memory access, rather than the statement which may
involve several memory accesses. According to this idea, it
has been shown with some xfor codes that splitting a state-
ment into several statements, where most of them involve
one memory read and one memory write, enables more ac-
curate scheduling also addressing inter-statement data reuse
(e.g. seidel). The same has been highlighted in [13].

However, inter-statement data reuse distances must be re-
duced carefully but not always at maximum, to still enable
vectorization of close instructions accessing common data
which are dependent. A convenient distance must be main-

8

tained between data that are read and written by the in-
structions which are vectorized simultaneously. At the same
time, this distance must still stay small enough to take ad-
vantage of cache locality.

Tiling is often the de facto answer for improving data lo-
cality, although we have shown that better performance can
be reached without tiling because of other performance is-
sues that annihilate locality improvement. The main draw-
back of tiling is the code required for the additional loop
levels and loop bounds which are often resulting from com-
plex computations using functions min, max, floor and ceil-
ing. Such a code may yield too many instructions with many
branches which are potentially subject to branch misses.

A fully automatic and static strategy covering simultane-
ously and ideally all these issues seems difficult to define.
Nevertheless, they should at least be considered since they
are mostly ignored in the currently adopted optimization
approaches. One unfortunate consequence is that propos-
als of new optimization techniques may even worsen the
situation regarding these ignored issues. A collaborative
static-dynamic approach, merging compile-time and run-
time mechanisms, may constitute an effective response.

All in all, we have shown that even when handling poly-
hedral loops, which are often perceived as already well han-
dled by compilers and current microprocessors, there is still
a large gap to fill to reach extreme performance. Compilers
must still be made conscious of more performance issues,
hardware prefetchers do not compensate for bad data lo-
cality, even with linear accesses, and branch predictors are
not infallible. The xfor structure is a polyhedral antidote to
help addressing these gaps, until the perfect compiler and
microprocessor have been developed, if they ever will be in
the future.

5. CONCLUSION
Apart from supplying advanced analysis and optimization

techniques for affine loop nests, the polyhedral model has
played the educational role of improving the understanding
of some main issues related to program performance and
code optimization. In the same way, beside being a new pro-
gramming structure allowing users to write very fast codes,
xfor helps in highlighting and overcoming important issues.
Data locality optimization has played the role of the tree
that hides the forest, while xfor allows to go behind this
tree. The post-data-locality era of polyhedral optimization
has started. Mind the gap! 1.

Acknowledgments
I would like to thank Imen Fassi, Alexandra Jimborean,
Louis-Noël Pouchet and Aravind Sukumaran-Rajam for their
assistance.

6. REFERENCES
[1] PLUTO - An automatic parallelizer and locality

optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[2] PolyLib - A library of polyhedral functions.
http://icps.u-strasbg.fr/polylib.

[3] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In Proc. of the 13th Int.

1Source: London subway

Conf. on Parallel Architectures and Compilation
Techniques, PACT ’04, pages 7–16, Washington, DC,
USA, 2004. IEEE Computer Society.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In PLDI ’08, pages
101–113. ACM, 2008.

[5] P. Clauss, I. Fassi, and A. Jimborean.
Software-controlled processor stalls for time and
energy efficient data locality optimization. In XIVth
Int. Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS,
pages 199–206, 2014.

[6] I. Fassi, P. Clauss, M. Kuhn, and Y. Slama. Multifor
for Multicore. In A. Grösslinger and L.-N. Pouchet,
editors, IMPACT 2013, Third Int. Workshop on
Polyhedral Compilation Techniques, pages 37–44,
Berlin, Germany, Jan. 2013. Epubli.

[7] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski,
O. Temam, M. Namolaru, E. Yom-Tov, B. Mendelson,
A. Zaks, E. Courtois, F. Bodin, P. Barnard,
E. Ashton, E. V. Bonilla, J. Thomson, C. K. I.
Williams, and M. F. P. O’Boyle. Milepost GCC:
machine learning enabled self-tuning compiler. Int. J.
of Parallel Programming, 39(3):296–327, 2011.

[8] A. Jimborean, P. Clauss, J. Dollinger, V. Loechner,
and J. M. M. Caamaño. Dynamic and speculative
polyhedral parallelization using compiler-generated
skeletons. International Journal of Parallel
Programming, 42(4):529–545, 2014.

[9] E. Park, J. Cavazos, L. Pouchet, C. Bastoul,
A. Cohen, and P. Sadayappan. Predictive modeling in
a polyhedral optimization space. International Journal
of Parallel Programming, 41(5):704–750, 2013.

[10] perfmon2: improving performance monitoring on
Linux. http://perfmon2.sourceforge.net.

[11] The Polyhedral Benchmark suite.
http://sourceforge.net/projects/polybench.

[12] L. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos.
Iterative optimization in the polyhedral model: part ii,
multidimensional time. In Proc. of the ACM
SIGPLAN 2008 Conf. on Programming Language
Design and Implementation, pages 90–100, 2008.

[13] K. Stock, M. Kong, T. Grosser, L. Pouchet,
F. Rastello, J. Ramanujam, and P. Sadayappan. A
framework for enhancing data reuse via associative
reordering. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI ’14,
pages 65–76, 2014.

[14] A. Sukumaran-Rajam, J. M. M. Caamaño, W. Wolff,
A. Jimborean, and P. Clauss. Speculative program
parallelization with scalable and decentralized runtime
verification. In Runtime Verification - 5th Int. Conf.,
RV 2014, Toronto, ON, Canada, LNCS 8734, pages
124–139, 2014.

[15] S. Verdoolaege. ISL: An integer set library for the
polyhedral model. In Proc. of the Third Int. Conf. on
Math. Software, LNCS 6327, pages 299–302, 2010.

[16] Z. Wang, G. Tournavitis, B. Franke, and M. F. P.
O’Boyle. Integrating profile-driven parallelism
detection and machine-learning-based mapping.
TACO, 11(1):2, 2014.

9

