
Understanding PolyBench/C 3.2 Kernels

Tomofumi Yuki
INRIA

Rennes, FRANCE
tomofumi.yuki@inria.fr

ABSTRACT
In this position paper, we argue the need for more rigorous
specification of kernels in the PolyBench/C benchmark suite.
Currently, the benchmarks are mostly specified by their im-
plementation as C code, with a one sentence description of
what the code is supposed to do. While this is sufficient in
the context of automated loop transformation, the lack of
precise specification may have let some questionable behav-
iors as benchmark kernels remain unnoticed.

As an extreme example, two kernels in PolyBench/C 3.2
exhibit parametric speed up with respect to the problem
size when its questionable properties are used. Abusing such
properties can provide arbitrary speedup, which can be some
factor of millions, potentially threatening the credibility of
any experimental evaluation using PolyBench.

1. INTRODUCTION
Optimizing compiler research and empirical evaluation are

inseparable in most cases. It is often impossible to directly
show how much benefit a transformation can bring in an an-
alytical manner, and researchers rely on empirical evidence.

When many groups of researchers work in the same area, it
is beneficial for the whole community to share a common set
of benchmarks for evaluating their work. Benchmark suites
enhance reproducibility of the experiments and results from
different papers can be compared with greater consistency.

PolyBench [5] is one of such benchmark suites developed
for the polyhedral community. PolyBench is now being used
by many members of our community, greatly contributing
in making a common ground for empirical validations.

In this paper, we bring the reader’s attention to question-
able properties found in a small subset of kernels in Poly-
Bench. In two extreme cases, exploiting these properties
enables transformations that can have parametric, in other
words, arbitrary, speedup over the original code, even with
sequential execution.

Having such questionable properties risks the full experi-
mental validation using PolyBench to be questioned. In this

IMPACT 2014
Fourth International Workshop on Polyhedral Compilation Techniques
Jan 20, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://impact.gforge.inria.fr/impact2014

#pragma scop
for (iter =0; iter <TSTEPS; iter ++) {

for (i=0; i<LENGTH; i++)
for (j=0; j<LENGTH; j++)

c[i][j] = 0;

for (i=0; i<= LENGTH - 2; i++) {
for (j=i+1; j<= LENGTH - 1; j++) {

sum_c[i][j][i] = 0;
for (k=i+1; k<=j-1; k++)

sum_c[i][j][k] = sum_c[i][j][k-1]
+ c[i][k] + c[k][j];

c[i][j] = sum_c[i][j][j-1] + W[i][j];
}

}
out_l += c[0][LENGTH -1];

}
#pragma endscop

Figure 1: dynprog kernel from PolyBench/C 3.2

paper, we explain these properties and argue the need for a
more rigorous specifications of PolyBench kernels.

2. DYNAMIC PROGRAMMING
In this section, we inspect the dynprog kernel in Poly-

Bench that implements dynamic programming. Figure 1
shows the original kernel.

2.1 Memory Optimization
The first optimization that can be performed on dynprog

is memory contraction. The variable that uses the most
memory in this kernel is sum_c. It is easy to see with exact
dependence analysis [1] that the lifetime of values written to
this array is one iteration, in the original execution order.
In fact, this array is really used as an accumulation variable
to compute the sum.

The obvious optimization is to replace the array by a
scalar, saving O(n3) memory. Although such a contraction
hinders parallelism, a 3D array is clearly an overkill, as a
2D array is enough for most parallel schedules. Basic reuse
analysis can easily find better memory allocations than the
original single assignment allocation [4, 6, 8].

2.2 Reducing Work
Another optimization is related to the outermost iter

loop. Note that the c array is initialized at every iteration of
the iter loop at the first statement. The only value-based
dependence that is carried by the iter loop is that of the
variable out_l written and read only at the last statement.

1

http://impact.gforge.inria.fr/impact2014

#pragma scop
for (i=0; i<LENGTH; i++)

for (j=0; j<LENGTH; j++)
c[i][j] = 0;

for (i=0; i<= LENGTH - 2; i++) {
for (j=i+1; j<= LENGTH - 1; j++) {

sum = 0;
for (k=i+1; k<=j-1; k++)

sum += c[i][k] + c[k][j];
c[i][j] = sum + W[i][j];

}
}
out_l += (TSTEPS)*c[0][LENGTH - 1];
#pragma endscop

Figure 2: “Optimized” dynprog kernel. 3D array is reduced
to a scalar, and one loop is completely eliminated.

Since the value of c[0][LENGTH-1] accumulated every it-
eration of the iter loop does not change, it is possible to
remove the outermost loop by replacing the last statement
with the following:

out_l += (TSTEPS -1)*c[0][LENGTH -1];

Figure 2 shows the dynprog kernel after the optimizations.
Automating the above transformation requires much more

sophisticated analysis compared to memory re-allocation.
However, it is definitely possible with a combination of exist-
ing techniques for detecting reductions [7, 10] and for trans-
forming programs using the semantics of reductions [2, 3].

In fact, the outermost loop seems to be an artificially
added loop to increase the amount of computation, and thus
it is probably not intended to be optimized. However, it is
part of the kernel function, and it is even within the region
marked by the pragmas as scop. Many tools currently do
optimize the entire kernel.

2.3 Impact on Performance
The three versions of the kernel were executed on a ma-

chine with a Xeon X3450, 2.66 GHz quad-core, and 8GB of
memory. The programs were compiled with GCC 4.7.2 us-
ing O3 optimizations. Reported speedups are the execution
times of the original program divided by the execution times
of the optimized version.

Figure 3 shows the speedup when only the memory op-
timization was applied. The trip count of the outermost
loop (TSTEPS) was set to one and only the program pa-
rameter related to memory (LENGTH) was changed. With
LENGTH = 1200, the orignal program ran in 4.47 seconds,
where the optimized version ran in 0.387 seconds.

Figure 4 shows the speedup with both optimizations com-
bined. The parameter LENGTH was set to 1000 and TSTEPS

was changed for each data point. The original program took
459.25 seconds where the optimized version only took 0.22
seconds when TSTEPS was set to 1000.

Note that the speedup can theoretically be any number
you wish, since it increases as you increase the parameter.
The memory optimizations are not exploiting the outermost
loop, but can be seen as a more critical optimization since
the program cannot even execute without the optimization
for large problem sizes.

Even without completely removing the outer loop, the re-
sult obtained from using the current dynprog program must
be presented with great care. For example, transformations

200 400 600 800 1000 1200

4
6

8
1

0

dynprog Speedup with Memory Optimization

LENGTH

S
p

e
e

d
u

p

Figure 3: Speedup only from memory re-allocation. With
LENGTH = 1300, the original program cannot allocate mem-
ory. The speedup increases in a stepwise manner (first and
last points), as the memory footprint of the original program
exceedss the capacity of different memory subsystems.

0 200 400 600 800 1000

0
5

0
0

1
0

0
0

2
0

0
0

dynprog Speedup with All Optimizations

TSTEPS

S
p

e
e

d
u

p

Figure 4: Speedup after both optimizations (Figure 2). The
amount of work in the original program increases linearly as
TSTEPS increases, where it is independent in the optimized
version, and thus resulting in a linear increase in speedup.

2

#pragma scop
for (t=0; t<NITER; t++) {

for (j=0; j<MAXGRID; j++)
for (i=j; i<MAXGRID; i++)

for (cnt=0; cnt <LENGTH; cnt++)
S1: diff[j][i][cnt] = sum_tang[j][i];

for (j=0; j<MAXGRID; j++)
for (i=j; i<MAXGRID; i++) {

S2: sum_diff[j][i][0] = diff[j][i][0];
for (cnt=1; cnt <LENGTH; cnt++)

S3: sum_diff[j][i][cnt] =
sum_diff[j][i][cnt -1] +
diff[j][i][cnt];

mean[j][i] = sum_diff[j][i][LENGTH -1];
}

for (i=0; i<MAXGRID; i++)
path [0][i] = mean [0][i];

for (j=1; j<MAXGRID; j++)
for (i=j; i<MAXGRID; i++)

path[j][i] = path[j-1][i-1]
+ mean[j][i];

}
#pragma endscop

Figure 5: reg_detect kernel from PolyBench/C 3.2

such as tiling would take advantage of data locality that
would not be present in a true dynamic programming in-
stance. Thus, presenting the result using tiled dynprog as
tiled dynamic programming would be problematic.

3. REGULARITY DETECTION
In this section, we will look at the reg_detect kernel from

PolyBench. Figure 5 shows the original kernel.

3.1 Inlining
The first optimization is a simple inlining. In S1, the diff

array is initialized by values of sum_tang. Note that a 3D
array is initialized by a 2D array. However, this array is
never written again until the next iteration of the t loop
that re-initializes the array. Thus, the 3D array is useless,
and can completely be removed by inlining statement S1 to
S2 and S3.

3.2 Memory Optimization
The next optimization is memory contraction, similar to

the one shown in Section 2.1. The array sum_diff is initial-
ized at S2 and then used in S3 as an accumulator variable
for the summation. Since the result is immediately copied
to mean, sum_diff can be reduced to a scalar.

Figure 6 shows the kernel after the two optimizations de-
scribed so far.

3.3 Reducing Work
There are multiple places where work can be reduced in

this kernel. One is the outermost loop that repeats the same
computation. With exact value-based dependence analysis,
it can be found that no dependence is carried by the out-
ermost loop. Thus, the outermost loop can completely be
eliminated.

Furthermore, the summation using sum is actually adding
the same value LENGTH times. Thus, computing an element
of mean can be simplified as:

#pragma scop
for (t=0; t<NITER; t++) {

for (j=0; j<MAXGRID; j++)
for (i=j; i<MAXGRID; i++) {

sum = sum_tang[j][i];
for (cnt=1; cnt <LENGTH; cnt++)

sum += sum_tang[j][i];
mean[j][i] = sum;

}

for (i=0; i<MAXGRID; i++)
path [0][i] = mean [0][i];

for (j=1; j<MAXGRID; j++)
for (i=j; i<MAXGRID; i++)

path[j][i] = path[j-1][i-1]
+ mean[j][i];

}
#pragma endscop

Figure 6: reg_detect kernel after inlining S1 and contract-
ing sum_diff array to a scalar.

#pragma scop
for (i=0; i<MAXGRID; i++)

path [0][i] = sum_tang [0][i]* LENGTH;

for (j=1; j<MAXGRID; j++)
for (i=j; i<MAXGRID; i++)

path[j][i] = path[j-1][i-1]
+ sum_tang[j][i]* LENGTH;

#pragma endscop

Figure 7: “Optimized” reg_detect kernel.

mean[j][i] = sum_tang[j][i]* LENGTH;

Since each element of mean is only read once, there is no
need for an array. Inlining the above computation to the
uses of mean further reduces the memory usage.

The final code after the above optimizations is depicted
in Figure 7.

3.4 Impact on Performance
The three versions of the kernel were executed with the

same environment as described in Section 2.3.
Figure 8 shows the speedup using the first two optimiza-

tions presented in this section (code in Figure 6). The pa-
rameter NITER was set to one, and only the two program
parameters LENGTH and MAXGRID related to memory were
changed. The same values were used for these two param-
eters. With LENGTH = MAXGRID = 1200, the original code
took 26.9 seconds while the optimized version took 0.0017
seconds.

Figure 9 illustrates the speedup with all optimizations
combined. The parameters LENGTH and MAXGRID were set
to 1000 and NITER was changed for each data point. With
NITER = 1000, the original code took 1296 seconds whereas
the optimized version took 0.0006 seconds.

It is important to note that unusual speedup (i.e., a factor
of 15, 000) can be achieved without exploiting the redundant
work coming from the outermost artificial loop.

It is unclear what is being computed in this kernel, but the
implementation in PolyBench does match the original imple-
mentation cited within the source code comments. However,
the original implementation does not have the outermost
loop repeating the same computation.

3

200 400 600 800 1000 1200

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

reg_detect Speedup with Memory Optimization

LENGTH=MAXGRID

S
p

e
e

d
u

p

Figure 8: Speedup with inlining and memory optimizations
(Figure 6). Parameters LENGTH and MAXGRID were set to the
same value. With LENGTH = MAXGRID = 1300, the original
program cannot allocate memory.

0 200 400 600 800 1000

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0

reg_detect Speedup with All Optimizations

NITER

S
p

e
e

d
u

p

Figure 9: Speedup with all optimizations for reg_detect

(Figure 7). Since NITER only increases work for the unop-
timized code, the speedup linearly increases as NITER in-
creases. Combined with other optimizations, performance
improvements over a factor of 2 million can be observed.

4. OTHER ISSUES
The issues found in the two kernels discussed above are

(in our opinion) the most critical ones. We have thoroughly
inspected all the kernels in PolyBench/C 3.2, and have found
questionable behaviors in several of them. These findings are
summarized below.

• Some linear algebra benchmarks may produce nan with
default inputs.

• adi has a bug that causes forward and backward sub-
stitution to be independent of each other [9]. This
makes the program to be tilable in all dimensions,
where a correct implementation of Alternate Direction
Implicit method is not.

• symm does not correspond to any of the configurations
in BLAS.

• trmm is not correct; the values written to B are some-
times read for multiplication.

• doitgen uses 3D arrays for something that only re-
quires 1D.

• fdtd-apml seems like it is missing the time dimension.

• Description of the 2mm kernel on the website is different
from the code. The website mentions E = C.D; D =
A.B where the code implements E = αA.B.C + βD.

• gramschmidt is actually QR decomposition, and it ap-
pears that it is not using the Gram-Schmidt method
to perform the decomposition.

• lu is actually LU decomposition, and ludcmp does
LUD and forward/backward substitution.

• cholesky and trisolv should be in the same category
as lu (solvers). cholesky and lu both perform a de-
composition of a square matrix into upper and lower
triangular matrices. trisolv is performing forward
substitution. Thus, if lu and ludcmp belong to solvers
category, these two kernels should as well.

• mvt may not be a good name since there is a BLAS
routine named gemvt that perform a similar but dif-
ferent computation.

• gauss-filter is on the website, but is not in the dis-
tribution.

5. DISCUSSION
Some of the issues found are bugs without question. The

issue in trmm is one such example; values multiplied in matrix
multiplication should be inputs, not some computed value.
This bug comes from incorrect array accesses, which seems
to be due to mis-translation from a Fortran implementation.
However, many others do not have a clear cut “fix”.

Let us revisit the dynprog example. If the first loop nest
that initializes the c array is removed, different values would
be computed at each iteration of the outer loop, making
the“optimization” illustrated previously unapplicable. How-
ever, such a change would make the kernel no longer corre-
spond to (repeated) dynamic programming, and it becomes
unclear what it is supposed to be computing.

4

The situation is even less clear for memory allocations
in the program. For many of the polyhedral tools that re-
tain the original memory allocation, having a compact mem-
ory allocation may leave no room for parallelism. Similarly,
those that feature memory contraction cannot expect much
gains for already tightly allocated programs.

On the other hand, starting from a single assignment im-
plementation, and showing great performance improvement
is unlikely to be convincing. What is a “reasonable” memory
allocation is a difficult question, and it may be dependent
on the intent of the experiments.

Many of the issues can be addressed, at least partially, by
having detailed specifications of the kernels.

6. SPECIFYING THE COMPUTATION
We propose to enhance PolyBench by providing a detailed

specification of the computation. PolyBench/C would be-
come a reference implementation of these specifications in
C, and should come with detailed description of the algo-
rithm being used, as well as other implementation choices,
such as memory allocation.

6.1 Example: Cholesky Decomposition
We illustrate the specification we seek using cholesky,

which implements Cholesky decomposition, as an example.
Cholesky decomposition is a special case of LU decompo-

sition for positive-definite matrices.
It takes the following as input,

• A: N ×N positive-definite matrix

and gives the following as output:

• L: N ×N lower triangular matrix such that A = LLT

The Cholesky-Banachiewicz algorithm is used by the C

reference implementation. The algorithm computes the fol-
lowing, where the computation starts from the upper-left
corner of L and proceeds row by row.

L(i, j) =

i = j :

√√√√A(j, j) −
j−1∑
k=0

L(j, k)2

i > j :

A(i, j) −
j−1∑
k=0

L(i, k)L(k, j)

L(j, j)

In the reference implementation, memory allocation is al-
most in-place. A separate vector is used to store the diagonal
elements, but other values are stored in-place.

6.2 Benefits of Specification
One of the immediate benefits is that the expected input

is clearly specified. Some linear-algebra kernels expect ma-
trices with certain properties. Incorrect inputs may cause
numerically unstable operations, such as division by zero,
which is one of the reasons nan is produced.

Questionable properties would be explained in the speci-
fication, leaving less room to be criticized. Since polyhedral
analysis has the potential to automate algorithmic simpli-
fications of redundant work, kernels with redundant loops
may serve as a good “challenge”.

Having specifications as the central point of reference
helps maintaining consistency among various versions of

PolyBench implementations. For example, it would be use-
ful to have hand optimized versions of the kernels, but such
an effort should not be constrained by the implementation
details in the C version. Similarly, implementations for other
platforms (e.g., PolyBench/GPU) would benefit from spec-
ifications of the computation.

7. CONCLUSION
In this paper, we have discussed questionable properties

found in PolyBench/C 3.2 kernels. In extreme cases, these
properties can be exploited to produce arbitrary speedups,
threatening the credibility of experimental evaluation.

We are exposing ourselves to numerous criticisms by using
these kernels with questionable properties. We believe that
part of the problem is the lack of detailed specification of the
computation. We propose to enrich PolyBench by providing
a detailed specification of the computation, clearly separated
from implementation details, to improve the understanding
of the kernels.1

8. REFERENCES
[1] P. Feautrier. Dataflow analysis of array and scalar

references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[2] G. Gupta and S. Rajopadhye. Simplifying reductions.
In Proceedings of the 33rd Conference on Principles of
Programming Languages, pages 30–41, 2006.

[3] H. Le Verge. Reduction operators in alpha. In
D. Etiemble and J.-C. Syre, editors, Parallel
Algorithms and Architectures, Europe, pages 397–411,
Paris, June 1992. See also, Le Verge Thesis.

[4] V. Lefebvre and P. Feautrier. Automatic storage
management for parallel programs. Parallel
Computing, 24(3-4):649–671, 1998.

[5] L.-N. Pouchet. PolyBench/C 3.2. http://www.cse.
ohio-state.edu/~pouchet/software/polybench/.

[6] F. Quilleré and S. Rajopadhye. Optimizing memory
usage in the polyhedral model. Transactions on
Programming Languages and Systems, 22(5):773–815,
2000.

[7] X. Redon and P. Feautrier. Detection of recurrences in
sequential programs with loops. In Proceedings of the
5th International Parallel Architectures and Languages
Europe Conference, pages 132–145, 1993.

[8] D. Wilde and S. Rajopadhye. Memory reuse analysis
in the polyhedral model. In Proceedings of the 2nd
International Euro-Par Conference, pages 389–397,
1996.

[9] T. Yuki, G. Gupta, D. Kim, T. Pathan, and
S. Rajopadhye. Alphaz: A system for design space
exploration in the polyhedral model. In Proceedings of
the 25th International Workshop on Languages and
Compilers for Parallel Computing, LCPC ’12, 2012.

[10] Y. Zou and S. Rajopadhye. Scan Detection and
Parallelization in Inherently Sequential Nested Loop
Programs. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization,
pages 74–83, 2012.

1Preliminary version for most of the kernels in Poly-
Bench/C 3.2 is available at: http://polyweb.irisa.fr/
polybench-report.pdf

5

http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://polyweb.irisa.fr/polybench-report.pdf
http://polyweb.irisa.fr/polybench-report.pdf

	Introduction
	Dynamic Programming
	Memory Optimization
	Reducing Work
	Impact on Performance

	Regularity Detection
	Inlining
	Memory Optimization
	Reducing Work
	Impact on Performance

	Other Issues
	Discussion
	Specifying the Computation
	Example: Cholesky Decomposition
	Benefits of Specification

	Conclusion
	References

