
Understanding���
PolyBench/C 3.2 Kernels

Tomofumi Yuki
INRIA

1

PolyBench

n Collection of small, polyhedral, kernels
n Aimed to uniformize experimental validation

n  How to performing timing
n  Same variant of “matrix multiply”

n C/Fortran/GPU implementations
n Being used by many people

2

PolyBench

n Collection of small, polyhedral, kernels
n Aimed to uniformize experimental validation

n  How to performing timing
n  Same variant of “matrix multiply”

n C/Fortran/GPU implementations
n Being used by many people
n But,

n description of the kernels are lacking

3

lu and ludcmp!

n Description (from PolyBench web)
n  lu: LU Decomposition
n  ludcmp: LU Decomposition
n  no additional description in source

4

lu and ludcmp!

n Description (from PolyBench web)
n  lu: LU Decomposition
n  ludcmp: LU Decomposition
n  no additional description in source

n Only one-line description for many kernels
n Many complications are not obvious

n  memory allocation
n  legal input data set
n  bugs and questionable properties

5

PolyBench as Specification

n  Equational/Mathematical specification of the
computation should be the PolyBench
n  expected input/output
n  context—typical use case

n Reference implementations should:
n  implement the same computation
n  clearly explain implementation decisions
n  algorithms may be different

6

Extreme Example

n  2 kernels exhibit parametric speedup
n  excessive (single assignment) memory
n  redundant work

7

N

speedup

N

speedup

Redundant Work

n Can be legitimate target of optimization
n  e.g., UNAfold, MSS

n  These two kernels have artificial outer loop

8

for (n=0; n<N; n++) {!
 //init!
 …!
!
 //compute!
 …!
}!

What has been done so far

n  Preliminary specification
n  polyweb.irisa.fr/polybench-report.pdf!

n  List of bugs and questionable behaviors
n  PolyBench/Alpha

n  Executable specification

9

Using different starting points

n We have 3 implementations of PolyBench
n  C1, C2, and Alpha
n  all versions implement the same specification

n  Performance of gemm (on the same machine)
n  Tool A performs best with PolyBench/C1
n  Tool B performs best with PolyBench/C2
n  Tool C performs best with PolyBench/Alpha

n How should we evaluate the tools?

10

Impact of Implementation

n  Implementation decisions significantly
influence performance of tools

n  Ex1: in-place memory allocation
J memory expansion + parallelization
L memory contraction

n  Ex2: single assignment code
J easier for compiler to analyze
L terrible performance without contraction
L when does compiler see SA code?

11

Discussion

n Not restricted to PolyBench!

12

