
Schedule Trees

Sven Verdoolaege
INRIA, École Normale Supérieure and

KU Leuven
sven.verdoolaege@inria.fr

Serge Guelton
École Normale Supérieure and

Télécom Bretagne
serge.guelton@telecom-bretagne.eu

Tobias Grosser
INRIA and École Normale Supérieure

tobias.grosser@inria.fr

Albert Cohen
INRIA and École Normale Supérieure

albert.cohen@inria.fr

ABSTRACT
Schedules in the polyhedral model, both those that represent
the original execution order and those produced by schedul-
ing algorithms, naturally have the form of a tree. Generic
schedule representations proposed in the literature encode
this tree structure such that it is only implicitly available.
Following the internal representation of isl, we propose to
represent schedules as explicit trees and further extend the
concept by introducing different kinds of nodes. We com-
pare our schedule trees to other representations in detail and
illustrate how they have been successfully used to simplify
the implementation of a non-trivial polyhedral compiler.

1. INTRODUCTION
The polyhedral model [10] is a powerful abstraction for an-

alyzing and transforming (parts of) programs that are“suffi-
ciently regular”. The key feature of this model is that it is in-
stance based. That is, each statement instance (i.e., each dy-
namic execution of a statement inside a loop nest) and each
array element is treated individually through the use of a
compact representation such as polyhedra [16] or Presburger
relations [19]. A program is typically represented using it-
eration domains, containing the statement instances, access
relations, mapping statement instances to the accessed array
element(s), dependences, relating statement instances that
depend on each other, and a schedule, assigning a relative
execution order to the statement instances.

The shape and representation of a schedule varies with
the way in which the schedule is computed. However, most
scheduling algorithms recursively decompose a dependence
graph, at each level separating the graph into (strongly con-
nected) components and computing a partial schedule for
each component separately. This partial schedule is usually
an affine function (possibly quasi-affine and/or piece-wise).
The complete schedule is then obtained as some form of
concatenation of the partial schedules, mapping statement
instances to a schedule space. The order of two statement in-

IMPACT 2014
Fourth International Workshop on Polyhedral Compilation Techniques
Jan 20, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://impact.gforge.inria.fr/impact2014

sequence

S1[i]

S1[i]→ [i]

S2[i, j];S3[i]

S2[i, j]→ [j];S3[i]→ [i− 1]

sequence

S2[i, j]

S2[i, j]→ [i]

S3[i]

Figure 1: Example schedule tree representation

stances in the complete schedule is determined by the outer
partial schedule that yields a different value for the two in-
stances or the outer pair of components that separates the
two instances, whichever appears outermost. An overview
of several early such algorithms is provided by Darte et
al. [7]. When constructing tilable bands (e.g., the Pluto algo-
rithm [3]), the partial schedules are multi-dimensional affine
functions and the order determined by a partial schedule is
given by the lexicographic order on its function values.

The above description suggests a representation of a sched-
ule in the form of a tree, with each node representing a par-
tial schedule and the order of the components determined by
the order of the children of a node. Such a representation
also seems the most natural way to represent the original
order of a program, when extracted from some form of ab-
stract syntax tree (AST). We are however unaware of any
prior work that explicitly operates on such schedule trees
(apart from our own “band forests” in isl). Instead, the
schedule trees are encoded in one way or another and all
operations are performed on the encodings of the schedule
trees. Depending on the chosen encoding, these operations
quickly become cumbersome and/or hard to understand.

In this paper, we propose to use an explicit representation
of a schedule as a tree and to perform all operations directly
on this tree. We argue that such a representation is more
natural, more practical and easier to understand. Figure 1
illustrates a schedule tree representation of the schedule

T1 :{[i] → [0, i ]}
T2 :{[i, j] → [1, j, 0, i ]}
T3 :{[i] → [1, i− 1, 1 ]}

1

http://impact.gforge.inria.fr/impact2014


in Kelly’s abstraction [14,15] or

ΘS1 =

0 0
1 0
0 0

 ΘS2 =


0 0 1
0 1 0
0 0 0
1 0 0
0 0 0

 ΘS3 =

0 1
1 −1
0 1


in the representation of Girbal et al. [11]. We first describe
the general concept of a schedule tree and show how it gener-
alizes the different schedule representations that have been
proposed in the past. We subsequently propose a specific
instance of the schedule tree concept that will be used in fu-
ture versions of isl [22]. This representation is more general
than earlier proposals, allowing an explicit representation of
subtrees that can be executed in parallel and the introduc-
tion of additional symbolic constants in subtrees. Finally,
we show how we used this new representation to simplify
the implementation of PPCG [25], significantly improving the
maintainability of the tool and enabling future extensions.

2. SCHEDULE USES
Depending on the framework used, there may be a sin-

gle iteration domain containing all statement instances or
there may be an iteration domain per statement. Invariably,
though, the elements of an iteration domain are (possibly
named) vectors of integers, called iteration vectors. In some
approaches, these elements determine an implicit execution
order, but this means that whenever a transformation is ap-
plied that changes the execution order, the iteration domains
themselves and everything that depends on the iteration do-
mains (such as access relations and dependences) need to be
updated. In this paper, we will therefore assume that, as
is common practice, the execution order is determined by
an explicit schedule that maps the elements of the iteration
domains to some other objects with an implicit execution
order. Note that a schedule only prescribes a relative execu-
tion order and that there are therefore typically an infinite
number of ways to express the same execution order, in-
dependently of the chosen schedule representation. In this
section, we describe some uses of schedules in general that
we will use to compare the different schedule representations
in Section 3.

2.1 Original Execution Order
Although much work has been devoted to automatic sched-

uling techniques that construct a schedule directly from the
dependence graph, the ability to interactively perform poly-
hedral transformations starting from the original execution
order is useful for teaching or manual exploration. Some im-
plementations of dataflow analysis [8] (e.g., that of isl) also
start from a polyhedral representation involving some form
of schedule (even though it may be more advisable to per-
form the dataflow analysis before or during the extraction of
a polyhedral representation from an AST using techniques
similar to lazy array data-flow analysis [17] or array region
analysis [6]). Our schedules therefore need to be able to
represent the original execution order.

When extracting a polyhedral model from an imperative
program, we mainly need to deal with two constructs in
terms of execution order, compound statements and loops.
In order to model the effect of compound statements, a
schedule needs to be able to express a sequence, i.e., that
one set of statement instances should be executed after some

other set of statement instances. To model the effect of
a loop, the schedule needs to be able to express an order
defined by an affine function on the iteration vectors. In
the simplest case, the iteration vectors are composed of the
values of the iterators of the enclosing loops. In this case,
the affine function simply projects the iteration vector onto
the iterator of the loop that needs to be modeled. In gen-
eral, an iteration vector can be any sequence of integers that
uniquely identifies a statement instance and a more compli-
cated function may be required to express the effect of a
loop.

2.2 Transformations
A polyhedral representation can be transformed either by

constructing a new schedule or by modifying some previously
obtained schedule. This other schedule may be a schedule
representing the original execution order or it may be the
result of an earlier transformation.

2.2.1 Schedule Construction
As an example of an automatic scheduling algorithm, let

us sketch a general overview of the “Pluto algorithm” [3].
The algorithm takes a dependence graph as input and re-
cursively constructs schedule bands. The dependence graph
expresses which statement instances depend on which other
statement instances and therefore need to be executed after
those other statement instances. The nodes of the depen-
dence graph are composed of the statements, while the edges
carry the dependence relations.

At each level of the recursion, the algorithm first checks for
(weakly connected) components in the dependence graph.
These components do not depend on each other in any way
and can therefore be scheduled independently. Within each
component, the algorithm looks for strongly connected com-
ponents (SCCs) and (optionally) marks them to be exe-
cuted in their topological order. For each (group of) SCC(s),
the algorithm then constructs a sequence (or band) of one-
dimensional affine functions such that each of these functions
respects the dependences independently of the other func-
tions in the same band, they are linearly independent of each
of the other functions in the same and in outer bands, and
such that they optimize some optimization criterion. Af-
ter the construction of a band is completed, the dependence
graph is updated to only contain dependences between pairs
of statement instances that are mapped to the same function
values by the current band and the process repeats.

The constructed schedule is therefore (at least conceptu-
ally) a tree that recursively consists of collections of state-
ment instances that can be executed in any order, sequences
of statement instances that need to be executed in the spec-
ified order and multi-dimensional affine functions.

2.2.2 Schedule Modification
Given a schedule (either corresponding to the original ex-

ecution order or constructed from a dependence graph), we
may want to apply a series of additional transformations.
In keeping in line with a clear separation between the state-
ment instances (in the iteration domain) and the order in
which they are executed (defined by the schedule), these
transformations need to be expressed as transformations on
the schedule itself.

The transformations that we may want to apply include
affine (typically uniform) transformations, statement reorder-

2



ing, fusion, distribution, index set splitting, strip-mining and
tiling. Most of these transformations do not require any ad-
ditional constructs beyond collection, sequence and multi-
dimensional affine functions. The only exceptions are strip-
mining and tiling. These transformations require the use
of integer divisions and/or modulo operations and therefore
require (explicit or implicit) quasi-affine expressions. Note
that we only consider non-parametric strip-mining and tiling
here.

2.3 AST Generation
AST generation takes an iteration domain and a schedule

as input and produces an AST that visits each element of
the iteration domain in the order specified by the schedule.
This operation is also known as polyhedral scanning [1, 4]
or code generation [2]. The constraints on the schedule rep-
resentation imposed by AST generation are not so much in
what the schedule should be able to express, but in the kind
of constructs for which an AST can be generated. Clearly,
generating an AST for a collection of statement instance
groups or for a sequence of such groups is trivial. Piece-
wise quasi-affine schedule functions can also be handled by
standard AST generators [2, 4].

The iteration domain and the schedule may refer to sym-
bolic constants (also known as parameters). If the iteration
domain is non-empty for only some values of these symbolic
constants, then the generated AST may contain explicit con-
ditions on the symbolic constants. Most AST generators al-
low the user to avoid the generation of such conditions by
providing the AST generator with known constraints on the
symbolic constants. This additional piece of information is
known as the context and is usually passed separately to the
AST generator. A final piece of information required by the
AST generator is a set of options that control the way the
AST is generated.

3. SCHEDULE REPRESENTATIONS
Many different schedule representations have been pro-

posed in different contexts. Some of these proposed rep-
resentations only serve as the input or output to a given
algorithm and are therefore typically unsuitable as a generic
schedule representation. Other proposals, such as “Kelly’s
abstraction”[14,15], “2d+1-schedules” [11] and“union maps”
[23], have been specifically designed as generic representa-
tions. In this section, we compare some of these representa-
tions.

3.1 Properties
In particular, we compare the following aspects of the

schedule representation

Scatteredness While some representations consist of a sin-
gle schedule object, in other representation the sched-
ule information is spread over different objects, typi-
cally one object for each statement.

Compositionality Compositionality is usually interpreted
to mean that the same schedule representation can be
used as both the input and the output of schedule
transformations. In some cases, the schedule trans-
formations themselves can be composed before being
applied to the schedule.

Partial schedules Some schedule representations are very
restrictive and only allow a limited set of predefined,

implicit partial schedules. Other representations allow
affine, quasi-affine or even piecewise quasi-affine par-
tial schedules. Recall that quasi-affine schedules are
required to express strip-mining or tiling. Some repre-
sentations also restrict the partial schedules to a single
dimension.

Sequence Many schedule representations do not support
an explicit representation of sequence. Instead, each
group of statement instances in the sequence is as-
signed a distinct increasing number. These increas-
ing numbers may be assigned as (part of) a regular
partial schedule, or they may be specified through a
dedicated mechanism, typically only allowing a single
constant for all instances of a statement. That is, these
dedicated mechanisms typically do not allow the set of
instances of a given statement to be broken up into
two or more parts.

Collection Very few schedule representations are able to
express that groups of statement instances can be ex-
ecuted in arbitrary order with respect to the other
groups. Instead, such collections are usually encoded
in the same way as sequences, fixing a particular exe-
cution order of the groups.

Injectivity Some early schedule representations explicitly
allowed different statement instances to be assigned
the same value in order to express inner parallelism.
Other representations treat inner parallelism in the
same way as other forms of parallelism and expect the
statement instances that can be executed in parallel
(at a given position in the schedule) to be assigned
different values using a partial schedule, but somehow
mark one or more dimensions in this partial schedule
as parallel.

Singlevaluedness Some schedule representations allow a
given statement instance to be assigned more than one
value by the schedule, i.e., they allow the statement
instance to be executed more than once.

Lexicographic order Two schedule values (either within
a partial schedule or over the entire schedule) are usu-
ally compared based on the lexicographic order. In
some representations, this lexicographic order is only
defined on vectors of the same dimension. That is,
the (partial) schedule is expected to have the same di-
mension across all statements. This corresponds to the
standard definition of lexicographic order as found in
most textbooks. We will call this a strict interpreta-
tion of lexicographic order. In other representations,
the schedule vectors can have different dimensions and
then the shortest vector is compared to the prefix of
the longest vector of the same size as the shortest vec-
tor. We will call this a relaxed interpretation of lexi-
cographic order.

3.2 Comparison
Some of the earliest schedule representations within the

context of polyhedral compilation appear in Feautrier’s work
[9]. The input schedule is mostly implicitly encoded in the
iteration domains, augmented with the number of shared
loops for each pair of statements and the textual order of

3



Kelly 2d+ 1 union map band forest schedule tree
scatteredness per statement per statement single object single object single object
compositional schedule schedule transformation schedule schedule
partial schedule representation p.w.q.a. affine p.w.q.a. p.w.q.a. p.w.q.a.
partial schedule dimension arbitrary 1 arbitrary arbitrary arbitrary
sequence cst per statement cst per statement p.w.q.a. p.w.q.a. explicit
collection n/a n/a n/a implicit explicit
injective yes yes yes yes yes
single-valued yes yes no yes mostly
total possibly yes no yes internally
lexicographic order relaxed relaxed strict relaxed relaxed

Table 1: Comparison of some generic schedule representations

each pair of statements. The relative order of two state-
ment instances is determined by the lexicographic order on
the prefixes of their iteration vectors of length equal to the
number of shared loops and by the textual order of the state-
ments. The output schedule is a multi-dimensional piecewise
quasi-affine schedule, with relaxed lexicographic order, im-
plicit inner parallelism and sequence encoded as any other
schedule row.

The first compositional representation appears to have
been proposed by Kelly [14,15]. Each statement keeps track
of its part of the schedule. The partial schedules may be
any multi-dimensional piecewise quasi-affine functions. Se-
quence is encoded by special schedule dimensions that are
marked as “syntactical” and that assign the same constant
value to all instances of a statement. Schedule values are
compared using a relaxed lexicographic order. Although an
explicit index set splitting operation is provided, index set
splitting typically happens implicitly through the use of a
piecewise partial schedule. When transforming a subtree of
the schedule, the subtree is identified by the statements that
are transformed by that subtree. The schedules appear to be
padded with zeros prior to being sent to the AST generator.

The “2d + 1” representation [11] can be seen as a fur-
ther specialization of Kelly’s abstraction. In particular, the
partial schedules are restricted to one-dimensional purely
affine functions (compared to the multi-dimensional piece-
wise quasi-affine functions of Kelly). The single-dimensional
partial schedules are interleaved with constant statement
level dimensions that express sequence. The restriction to
purely affine functions means that they are unable to ex-
press strip-mining and tiling in the schedule itself and in-
stead have to resort to a modification of the iteration do-
mains, undermining the separation between iteration do-
mains and schedule and the compositionality of their ap-
proach. The restriction to one-dimensional partial schedules
(between statement level dimensions) means that unimod-
ular transformations involving more than one loop dimen-
sion need to be applied across statement level dimensions.
When transforming a subtree of the schedule, the subtree is
identified by the values of the outer shared statement level
dimensions (the “β-prefix”). Although this may appear to
be more generic than using the statements involved, this is
in fact not the case as each statement can only have a single
β-prefix.

The “union map” representation [23] essentially pads the
per-statement schedules of Kelly with zeros to ensure that all
schedules have the same dimension and then combines the
per-statement schedules into a single schedule object. This

{S1[i]→ [0];S2[i, j]→ [1];S3[i]→ [1] }

{S1[i]→ [i] } {S2[i, j]→ [j];S3[i]→ [i− 1] }

{S2[i, j]→ [0];S3[i]→ [1] }

S2[i, j]→ [i] S3[i]→ []

Figure 2: Band forest representation of the schedule
in Figure 1

single object is a binary relation on tuples that maps named
integer vectors (with the names representing the statements),
to integer vectors of a fixed length. The main advantage of
this representation is that it is not tailored to schedules.
In particular, the same abstraction is also used to represent
access relations and dependence relations, allowing for a uni-
form manipulation. Moreover, the changes to the schedule
are also represented using the same abstraction and can be
combined prior to being applied to the schedule. The non-
specificity to schedules is also the main disadvantage of the
union map representation. Whereas the tree structure is
still visible in Kelly’s abstraction and in the 2d + 1 rep-
resentation through the marking as syntactical dimensions
and the implicit statement level dimensions, this structure
is completely hidden in the union map representation. The
mapping to a single schedule space also causes local trans-
formations to potentially have a global effect. For example,
if some part of the schedule tree is tiled, increasing the total
number of schedule dimensions, then the other parts of the
schedule need to be padded to maintain a single schedule
space.

The “band forest” abstraction that was available in ver-
sions 0.07 to 0.12 of isl builds on top of the union maps,
but makes the tree structure explicit. It was used to rep-
resent the schedules computed by isl’s scheduler, which is
very similar to the Pluto scheduler. Each node in the tree
represents a tilable band, with a partial schedule represented
by a union map. Siblings (including the roots of the forest)
represent groups of statement instances that can be exe-
cuted in parallel. Sequence is still encoded, in particular
as a single-dimensional band with a union map that assigns
constant values to groups of statement instances. The chil-
dren of such a band can be executed in parallel because the

4



band itself takes care of the ordering. The only operations
that were made available for this abstraction are splitting
a band into two nested bands and tiling a band. Figure 2
shows an example of a band forest.

Table 1 provides an overview of the above comparison,
including a comparison to the schedule trees of Section 4.
Note that while union map schedules are typically single-
valued, this is not strictly required. While the band forest
is essentially a tree of union maps and it is technically pos-
sible for the band forest not to be single-valued, the band
forests that are constructed in practice are always single-
valued. The “total” row indicates whether the schedule is a
total function. When using union maps, it is customary to
encode the iteration domain in the domain of the schedule
so that no separate iteration domain object is required. It is
then also possible to select a subset of some larger external
iteration domain. This is also possible in the case of Kelly’s
abstraction, but it is not clear if this is the intended use.
The abstractions with a relaxed lexicographic order use a
strict order within the partial schedules.

CLooG [2] and the union maps based isl code generator
impose a strict lexicographic order on its input, requiring
users to pad the schedules. Omega’s code generation [4] does
not impose a strict order. URUK [11] uses“2d+1”schedules,
with subtrees identified by prefixes. Pluto [3] allows par-
tial schedules (i.e., bands) of any dimension, but maintains
the restriction of purely affine partial schedules, therefore
also requiring a modification of the iteration domains to ex-
press tiling. A strict lexicographic order is imposed and sub-
trees are identified by sets of statements and a loop depth.
PoCC [18] appears to be using the schedule representation
of older versions of Pluto where bands were defined globally
across the entire schedule tree. It also has some support for
“reentrancy” [21], i.e., a conversion back and forth between
polyhedral representation and AST. The Graphite [20] inter-
nal representation is similar to Kelly’s, with the “syntactic”
label replaced by a “loop nest tree” (only for the original
schedule). The CHiLL [5] representation is also similar to
Kelly’s, except that partial schedules are single-dimensional
as in the 2d+ 1-schedules, with unimodular transformations
applied across partial schedules. Subtrees are identified by
sets of statements and a loop depth. Polly [13] essentially
uses union maps, but breaks them up over the statements.
Incremental transformations in AlphaZ [26] are performed
through a modification of the iteration domains. It is also
possible to specify an additional purely affine schedule func-
tion with strict lexicographic order.

4. SCHEDULE TREE REPRESENTATION
Based on our experience with the different kinds of sched-

ule representations, we designed a new representation that,
like the band forest, maintains an explicit tree structure.
Unlike the band forest, however, the schedule tree has dif-
ferent types of nodes that allow for an easier manipulation
and the ability to attach more information to the tree. In
particular, sequence and collection are represented explicitly
as nodes rather than being encoded in a band or implied by
the tree structure. Our description is still somewhat prelim-
inary, but our use of schedule trees in PPCG provides some
initial evidence of the usefulness of this representation.

4.1 Nodes
The following types of nodes are available in the new

schedule trees.

Context A context node introduces symbolic constants and
known constraints on those symbolic constants. The
introduced symbolic constants can be used in the de-
scendants of the context node. The context node typi-
cally appears as the root of the schedule tree, but as we
will see in Section 5, it can also be useful to introduce
additional context nodes in the tree. As a convenience
to the user, the outer context node may also be left
out, in which case it is assumed that the symbolic con-
stants used in the tree can take on any value.

Domain A domain node introduces the statement instances
that are scheduled by the descendants of the domain
node.

Filter A filter node selects a subset of the statement in-
stances introduced by outer domain nodes and retained
by outer filter nodes. Filter nodes are typically used
as children of set and sequence nodes (described next),
where the siblings select the other statement instances.
As we will see in Section 5, it can in some cases also
be useful to introduce other filters in the tree.

Sequence A sequence node expresses that the children of
the node should be executed in order. These children
must be filter nodes, with typically mutually disjoint
filters.

Set A set node is similar to a sequence node except that its
children may be executed in any order.

Band A band node contains a partial schedule on the state-
ment instances introduced by outer domain nodes and
retained by outer filter nodes. This partial schedule
may be piecewise quasi-affine, but is total on those
statement instances. Additionally, a band node con-
tains properties of the band and options that control
the AST generation. The set of properties includes
whether the band is tilable and which of the band di-
mensions may be executed in parallel. The AST gener-
ation options mainly control whether a band dimension
should be separated or whether it should be unrolled.

Mark A mark node allows the user to mark specific sub-
trees of the schedule tree.

Sequence and set nodes have one or more children. The
other types of nodes have at most one child.

The inclusion of context, domain and AST generation op-
tions in the schedule tree means that only a single object
needs to be passed to the AST generator. This is especially
important for the options. The original interface to the isl

AST generator allowed for a very generic specification of op-
tions based on constraints on the schedule dimensions. The
only purpose of this generic mechanism, however, was to
be able to express that some options should be applied to
a specific node of the schedule tree encoded in the union
map. By attaching the options directly to the band nodes,
the complexity of the generic option mechanism (mostly for
the user, but also for the implementation), can be avoided
completely. In particular, if the schedule is modified after
some options have been set, then there is no longer any need
to try and apply the same transformation to the options de-
scription as the local options automatically remain attached
to the correct band node.

5



Note that while the schedule tree now contains both do-
main information (in the domain nodes) and schedule in-
formation (in the band nodes), the information is still kept
in separate nodes so that, internally, the schedule is a to-
tal function on the domain. The explicit representation of
a sequence means that the scheduler does not need to en-
code the sequence as a piecewise constant partial schedule
only to have the AST generator identify this piecewise con-
stant partial schedule as a sequence. Note that this type
of node is only meant as a convenience for cases where the
scheduler or user wants to impose an explicit sequence. If
an automatic scheduler constructs a partial piecewise affine
schedule in one of its substeps that just happens to be piece-
wise constant, then the corresponding band node does not
have to be converted to a sequence node. The explicit rep-
resentation of a collection rather than forcing an arbitrary
order allows the user and the AST generator to reorder the
children, without having to re-analyze the dependences.

The basic schedule tree representation (without the ex-
tensions of Section 5) has the same expressivity as Kelly’s
abstraction, union maps and band forests. The main ad-
vantages are the ease of manipulation and the potential for
extensions. Note that some of the extensions of Section 5
may limit the kinds of operations that can be applied to the
tree. These operations then need to be applied to the tree
before such extended nodes are introduced.

4.2 Operations
The following operations are available to modify schedule

trees. It is important to note that none of these operations
modify the domain node(s). That is, even though the do-
main information is integrated in the schedule object, it is
still kept separate from the actual scheduling information.

• Insert a context, domain, filter or mark node at a given
position.

• Apply a piecewise quasi-affine transformation to a band
node. The input space of the transformation is equal
to the schedule space of the original partial schedule.
The output space of the transformation becomes the
new schedule space. This operation can be used to im-
plement any unimodular transformation on the band,
but also strip-mining and tiling within the band, pos-
sibly combined with index set splitting.

• Split a band node into two nested band nodes, each
node holding a part of the original output domain.

• Combine two nested band nodes into a single band
node. This is the opposite of a Split.

• Tile a band node. This operation is essentially the
same as tiling the band within the node through the
application of a piecewise quasi-affine transformation
and then splitting the node into a band corresponding
to the tile loops and a band corresponding to the point
loops.

• Fuse two bands. This operation pushes an explicit or-
der on a pair of bands down, combining the two bands
into a single band. This operation typically has the ef-
fect of loop fusion on AST generation. The bands need
to be grandchildren of the same sequence with adja-
cent (filter) parents or grandchildren of the same set.

sequence

. . . F1

B1 : S1

C1

F2

B2 : S2

C2

. . .

⇒

sequence

. . . F1 ∪ F2

B′ :

{
S1 if F1

S2 if F2

sequence

F1

C1

F2

C2

. . .

Figure 3: Fuse bands B1 and B2

B

C

⇒

sequence

F1

B

C

F2

B

C

Figure 4: Order the active statement instances at B
according to filters F1 and F2

Additionally, the schedule spaces of the bands need to
be the same since the two schedules will be combined
into a single schedule. The two parents are replaced
by a single filter node with as filter the union of the
filters. The two bands are replaced by a single band
with as partial schedule the partial schedules of the
original bands on the corresponding filters. The new
band has a single sequence child with as children the
original two filters with in turn as children the children
of the original bands (if any). This transformation is
shown schematically in Figure 3.

• Ordering. This operation takes a band node and two
filters that partition the active statement instances at
the band node as input. The tree is updated such
that the elements that satisfy the first filter are exe-
cuted before the elements that satisfy the second filter.
That is, the subtree rooted at the band is duplicated.
Each of the filters is inserted in one of the copies of
this subtree and subsequently attached as children of
a sequence node that replaces the original band. This
transformation is shown schematically in Figure 4 and
can be used to express a generalized form of loop dis-
tribution that allows for the separation of a subset of
the instances of a statement.

• Reorder the children of a sequence node.

• Sink a band. This operation moves a band node down
to the leaves of the subtree underneath its original po-
sition.

This section has shown how to apply each of the transfor-
mations of Section 2.2.2 on a schedule tree representation.

6



Note that we do not allow for the application of affine trans-
formations across bands. This restriction can be seen as a
form of type safety. Instead, the bands first need to be ex-
plicitly combined and/or fused into a single band node, after
which the transformation can be applied inside the single
band node. In the extreme case all bands are merged into a
single band node, in which case the schedule tree essentially
degenerates into a union map representation.

5. SCHEDULE TREE USE IN PPCG
In this section, we describe our experience with the use

of the schedule trees of Section 4 in PPCG [25], which is a
polyhedral parallelizing compiler that takes C code as in-
put and produces parallel CUDA code. The main steps
involve the extraction of a polyhedral model, dependence
analysis, Pluto-like scheduling, the identification of the out-
ermost tilable band, tiling this band, mapping the tile loops
to block identifiers and the point loops to thread identifiers,
the introduction of transfers to/from shared memory and
registers and the generation of an AST.

5.1 Problems in the original implementation
The main complication is the generation of the AST. This

AST contains both the kernel code that should be run on
the device and the host code that launches these kernels.
Generating this AST using a single call to an AST generator
is complicated since the host and thread identifiers, which
are symbolic constants for the kernel code, should not appear
in the host code. Moreover, the copying to/from shared
memory and registers and the associated synchronizations
need to be inserted in the right position in this AST.

In the original implementation of PPCG, these problems
were solved through the use of nested AST generation. In
particular, an outer call to the AST generator would gen-
erate the host code. During the construction of the leaves
of this AST, the AST generator would call back to PPCG,
which would call the AST generator again to generate the
outer loops of the kernel code along with the insertion points
for the copying code and the synchronizations. A series of
third, innermost calls to the AST generator would then gen-
erate the inner loops of the core kernel code or the actual
copying code or synchronizations.

Although the use of nested AST generation solved the
problem at hand, it also made the code very hard to under-
stand and debug. In particular, the piecewise construction
of the AST required non-obvious communication between
the different stages and problems encountered during inner
AST generations were difficult to impossible to reproduce in-
dependently since they would depend on the internal state
of the outer AST generations.

The main schedule representation used by the original ver-
sion of PPCG is the union map. The band forest produced by
the isl scheduler was only used to detect the outermost
tilable band and then immediately converted to a union
map. Because of the requirement of a single schedule space,
this map was then padded with zeros with the schedule di-
mensions mapped to block and threads aligned across the
different kernels. Different stages of the schedule with dif-
ferent transformations applied were then maintained to be
used in different operations at different levels of the AST
generation. Generalizing the implementation to handle split
tiling [12] only exacerbated these problems.

5.2 New implementation
The use of schedule trees resolves most of the problems

mentioned above. The schedule tree created by the scheduler
is incrementally modified to reflect the tiling, the mapping to
block and thread identifiers and the introduction of transfers
to/from shared memory and registers and is then passed as
a single entity to the AST generator. In case of unexpected
behavior, this single schedule tree can be investigated in
isolation, significantly improving the debugging experience.

In order to be able to express all transformations, we make
creative use of the various node types and also extend the
domain type. Let us consider the steps in a bit more detail.

• Outermost tilable loops are identified by running a vis-
itor on the tree that checks each band node for suit-
ability of mapping to kernel code. In particular, the
band should not only be tilable, it should also have at
least one parallel dimension since it will be mapped to
block and thread identifiers after tiling. Each time a
suitable node has been found, the remaining steps are
performed on this node (and its descendants) by mak-
ing local changes to the schedule tree. A mark node is
also introduced before the selected node such that the
kernels can be easily identified in the generated AST.

• Tiling the band is a matter of applying one of the op-
erations of Section 4.2. This tiling reduces the mem-
ory footprint of the point band, possibly enabling a
mapping to shared memory, and splits a single level of
parallel loops into two levels of parallel loops.

• Based on some defaults or user choices, taking into ac-
count the code inside the current subtree, appropriate
grid and block sizes are determined. An extra context
node is then inserted before the tile band that intro-
duces symbolic constants corresponding to the block
and thread identifiers, along with bounds on their val-
ues derived from the grid and block sizes. This con-
text node ensures that conditions on block and thread
identifiers that are implied by the grid or block sizes
are simplified away and that conditions involving those
identifiers are not hoisted beyond this point. The effect
of such an internal context node is then very similar
to the effect of a nested AST generation phase, except
that only a single schedule tree is needed.

• The actual mapping to block and thread identifiers is
performed by introducing filter nodes before the tile
band and before the point band. These filters select
the statement instances that are to be executed by the
block (or thread) identified by the symbolic constants
introduced by the context node. As always, these sym-
bolic constants have a fixed but unknown value. When
the code is actually run on the device, it is executed for
each possible value of the block and thread identifiers,
ensuring that all statement instances get executed.

• Without going into too much details about how the
copying to/from shared memory and registers is per-
formed, it should be clear that we typically want to
introduce copies from global memory before a certain
loop in the generated AST and copies back to global
memory after a certain loop. Theoretically, it would
be possible to add copying statement instances to the
original domain and to extend all band and filter nodes

7



between the root and the current node to ensure that
the copies are performed in the right place. This is,
however, not very convenient or transparent and it also
brings in a risk of overfitting. That is, in principle, we
only want to perform any copying from global memory
if the copied data is actually going to be used, but the
additional run-time tests that need to be performed
to check if any data is needed may in some cases be
more expensive than occasionally copying some data
that may not be needed. In particular, the evaluation
of the tests may require extra registers, which in turn
may result in register spilling and/or a reduction in
the number of blocks executed in parallel. (For copy-
ing back to global memory, we usually do want to be
exact, or at least not copy back any data that we have
not copied in first.)

Our solution is to extend the concept of domain nodes
to allow for the introduction of statement instances
relative to the current schedule dimensions. That is,
the iteration domain is allowed to refer to the sched-
ule dimensions of the outer band nodes. For example,
to generate the copy-in code to bring the data needed
by a given subtree, we may apply the concatenation
of the outer band schedules to the read access relation
to obtain the set of copying instances that need to be
executed relative to the current position in the tree.
These copying instances can then be introduced by an
additional domain node at the current position. In or-
der to reduce the risk of overfitting, we allow the AST
generator to generate an AST for the newly introduced
instances even if the outer part of the AST generated
thus far does not guarantee that at least one of the
original statement instances is executed. For exam-
ple, when copying data from global memory to shared
memory, we introduce copying instances not just for
the data elements that are needed, but for an entire
tile as that usually results in much simpler and more
efficient code. Due to the above relaxation, the copy-
ing may occasionally also be performed if none of the
copied elements are needed. For copying data back
to global memory, we only introduce instances cor-
responding to data elements that have actually been
written. The relaxation therefore has no effect in this
case.

The only disadvantage compared to nested AST genera-
tion is that the extra statements that refer to outer schedule
dimensions cannot exploit any potential separation in the
outer schedule dimensions. In particular, in case of nested
AST generation, if any separation occurs on the host AST,
then a separate kernel will be created for each part. Then,
each kernel may be simplified in the specific context of that
part of the host AST. In the case of schedule trees, however,
the kernels are defined on the schedule tree before any AST
generation. As a result, AST generation for these kernels
cannot take advantage of constraints derived from a poten-
tial separation. Instead, in case of separation, the separated
loops will launch the exact same kernel for different itera-
tions of the host code. This has not proved to be a problem
so far. If it would ever turn out to be a problem, one possible
solution would be to apply (part of) the separation phase of
the AST generation on the schedule trees themselves. This
phase could then be performed before the kernels are defined

C: { : n ≥ 8192 }

D: {S[i, j] : 0 ≤ i, j < n }

C: { : 0 ≤ b0, b1 < 256 ∧ 0 ≤ t0, t1 < 32 }

F: { S(i, j) : b0 =
⌊
i mod 8192

32

⌋
∧ b1 =

⌊
j mod 8192

32

⌋
}

S: { S(i, j)→ [bi/32c , bj/32c] }

D:

{ sync[];[[s0, s1]→ read[[s0, s1]→ A[a0, a1]]] :

s0 = ba1/32c ∧ s1 = ba0/32c∧
0 ≤ a0, a1 < n }

sequence

{ [[s0, s1]→ read[. . .]] }

F:

{ read[[s0, s1]→ A[a0, a1]] :

t0 = a0 mod 32 ∧
t1 = a1 mod 32 }

S:
{ read[[s0, s1]→ A[a0, a1]]

→ [a0 − 32s1, a1 − 32s0] }

{ sync[] } { S[i, j] }

F:

{S[i, j] :

t0 = i mod 32 ∧
t1 = j mod 32 }

S:
{ S[i, j]→

[i mod 32, j mod 32] }

Figure 5: Simple PPCG generated schedule tree for
matrix transpose. Node types: Context, Domain,
Filter, Schedule. The children of the sequence node
are filters

on the schedule trees.
Figure 5 shows a simple PPCG generated schedule tree for a

matrix transpose application. The outer context introduces
constraints on the parameters (n ≥ 8102) to simplify the
remaining expressions. The inner context introduces block
(b0, b1) and thread identifiers (t0, t1). In this simple exam-
ple, there are no band nodes in between the two context
nodes, but in general such band nodes would produce code
to be executed on the host. The filter matches statement
iterations to block identifiers and the band node schedules
the tile loops. Additional statements are then introduced
for reading data into shared memory and for synchroniza-
tion. The sequence node orders the copying before the syn-
chronization and the core computation. Further filter nodes
match statement instances to thread identifiers and the final
band nodes complete the schedule.

6. CONCLUSIONS AND FUTURE WORK
By analyzing the situations in which scheduling informa-

tion is used we showed that most schedules have an inherent
tree structure. Yet, we found that existing representations
model such tree structure only implicitly, if at all. In this
work, we presented the concept of an explicit schedule tree
and we propose the use of dedicated tree nodes for important
schedule properties. The proposed schedule trees not only
make complex schedules easier to modify and read, but with
their use in PPCG we also showed that they strongly simplify
the implementation of advanced transformation frameworks.

8



Having currently only converted the core of PPCG, we plan
to replace the union map schedules in pet [24], iscc [23] and
in the isl dataflow analysis by schedule trees. As explained
in Section 5, it may also be interesting to perform (part
of) the separation phase of AST generation on the schedule
trees. This may also avoid the need for “reentrancy”. We
may also introduce additional types of nodes or extensions
to represent for example parametric tiling.

We are also considering embedding some form of cluster-
ing in schedule trees. During part of the (manual or auto-
matic) scheduling process, we may want to handle groups
of statements in the same way. It may be useful to ex-
press this grouping directly in the schedule trees, possibly
through compression and expansion nodes that map several
statement instances to a single instance or vice versa. These
nodes should have the same benefit as the sequence nodes,
i.e., explicitly making information available so that it does
not have to be rediscovered and that it can easily be read
off by the user.

Acknowledgments. This work is partly funded by the Eu-
ropean FP7 project CARP id. 287767.

7. REFERENCES
[1] C. Ancourt and F. Irigoin. Scanning polyhedra with

DO loops. In Proceedings of the 3rd ACM SIGPLAN
Symposium on Principles & Practice of Parallel
Programming, Williamsburg, VA, April 1991.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In PACT ’04: Proceedings of
the 13th International Conference on Parallel
Architectures and Compilation Techniques,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In PLDI, 2008.

[4] C. Chen. Polyhedra scanning revisited. In PLDI, 2012.

[5] C. Chen, J. Chame, and M. Hall. Chill: A framework
for composing high-level loop transformations.
Technical Report 08-897, University of Southern
California, June 2008.

[6] B. Creusillet and F. Irigoin. Interprocedural array
region analyses. Int. J. of Parallel Programming, 24,
December 1996.

[7] A. Darte, Y. Robert, and F. Vivien. Loop
parallelization algorithms. In Compiler Optimizations
for Scalable Parallel Systems: Languages, Compilation
Techniques and Run Time Systems, volume 1808 of
Lecture Notes in Computer Science, pages 141–171.
Springer Verlag, 2001.

[8] P. Feautrier. Dataflow analysis of array and scalar
references. Int. J. of Parallel Programming, 20(1),
1991.

[9] P. Feautrier. Some efficient solutions to the affine
scheduling problem. Part II. multidimensional time.
Int. J. of Parallel Programming, 21(6), Dec. 1992.

[10] P. Feautrier. The Data Parallel Programming Model,
volume 1132 of LNCS, chapter Automatic
Parallelization in the Polytope Model.
Springer-Verlag, 1996.

[11] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic

composition of loop transformations for deep
parallelism and memory hierarchies. Int. J. Parallel
Program., 34(3), June 2006.

[12] T. Grosser, A. Cohen, P. H. Kelly, J. Ramanujam,
P. Sadayappan, and S. Verdoolaege. Split tiling for
gpus: automatic parallelization using trapezoidal tiles.
In GPGPU-6. ACM, 2013.

[13] T. Grosser, A. Groesslinger, and C. Lengauer. Polly -
performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing
Letters, 22(04), 2012.

[14] W. Kelly. Optimization within a unified
transformation framework. Technical Report
CS-TR-3725, Dept. of CS, Univ. of Maryland, 1996.

[15] W. Kelly and W. Pugh. A unifying framework for
iteration reordering transformations. In IEEE First
International Conference on Algorithms and
Architectures for Parallel Processing (ICAPP 95),
volume 1, Apr. 1995.

[16] V. Loechner and D. K. Wilde. Parameterized
polyhedra and their vertices. Int. J. of Parallel
Programming, 25(6), Dec. 1997.

[17] V. Maslov. Lazy array data-flow dependence analysis.
In H.-J. Boehm, B. Lang, and D. M. Yellin, editors,
POPL. ACM Press, 1994.

[18] L.-N. Pouchet. Interative Optimization in the
Polyhedral Model. PhD thesis, University of Paris-Sud
11, Orsay, France, Jan. 2010.

[19] W. Pugh and D. Wonnacott. Static analysis of upper
and lower bounds on dependences and parallelism.
ACM Trans. Program. Lang. Syst., 16, July 1994.

[20] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li,
T. Grosser, H. Jagasia, R. Ladelsky, S. Pop, J. Sjödin,
R. Upadrasta, et al. Graphite two years after: First
lessons learned from real-world polyhedral
compilation. In GCC Research Opportunities
Workshop (GROW’10), 2010.

[21] N. T. Vasilache. Scalable Program Optimization
Techniques in the Polyhedral Model. PhD thesis,
Université Paris Sud XI, Orsay, September 2007.

[22] S. Verdoolaege. isl: An integer set library for the
polyhedral model. In K. Fukuda, J. Hoeven,
M. Joswig, and N. Takayama, editors, Mathematical
Software - ICMS 2010, volume 6327 of Lecture Notes
in Computer Science. Springer, 2010.

[23] S. Verdoolaege. Counting affine calculator and
applications. In First International Workshop on
Polyhedral Compilation Techniques (IMPACT’11),
Chamonix, France, Apr. 2011.

[24] S. Verdoolaege and T. Grosser. Polyhedral extraction
tool. In Second International Workshop on Polyhedral
Compilation Techniques (IMPACT’12), Paris, France,
Jan. 2012.

[25] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez,
C. Tenllado, and F. Catthoor. Polyhedral parallel code
generation for CUDA. ACM Trans. Archit. Code
Optim., 9(4), Jan. 2013.

[26] T. Yuki, G. Gupta, D. Kim, T. Pathan, and
S. Rajopadhye. AlphaZ: A system for design space
exploration in the polyhedral model. In Proceedings of
the 25th International Workshop on Languages and
Compilers for Parallel Computing, 2012.

9


	Introduction
	Schedule Uses
	Original Execution Order
	Transformations
	Schedule Construction
	Schedule Modification

	AST Generation

	Schedule Representations
	Properties
	Comparison

	Schedule Tree Representation
	Nodes
	Operations

	Schedule Tree Use in PPCG
	Problems in the original implementation
	New implementation

	Conclusions and Future Work
	References

