
Tiling for Dynamic Scheduling

Ravi Teja Mullapudi
Department of Computer Science and

Automation
Indian Institute of Science
Bangalore 560012, India

ravi.mullapudi@csa.iisc.ernet.in

Uday Bondhugula
Department of Computer Science and

Automation
Indian Institute of Science
Bangalore 560012, India

uday@csa.iisc.ernet.in

ABSTRACT
Tiling is a key transformation used for coarsening the granularity of
parallelism and improving locality. It is known that current state-
of-the-art compiler approaches for tiling affine loop nests make use
of sufficient, i.e., conservative conditions for the validity of tiling.
These conservative conditions, which are used for static schedul-
ing, miss tiling schemes for which the tile schedule is not easy to
describe statically. However, the partial order of the tiles can be ex-
pressed using dependence relations which can be used for dynamic
scheduling at runtime. Another set of opportunities are missed due
to the classic reason that finding valid tiling hyperplanes is often
harder than checking whether a given tiling is valid.

Though the conservative conditions for validity of tiling have
worked in practice on a large number of codes, we show that they
fail to find the desired tiling in several cases – some of these have
dependence patterns similar to real world problems and applica-
tions. We then look at ways to improve current techniques to ad-
dress this issue. To quantify the potential of the improved tech-
niques, we manually tile two dynamic programming algorithms –
the Floyd-Warshall algorithm, and Zuker’s RNA secondary struc-
ture prediction and report their performance on a shared memory
multicore. Our 3-d tiled dynamically scheduled implementation of
Zuker’s algorithm outperforms an optimized multi-core implemen-
tation GTfold by a factor of 2.38. Such a 3-d tiling was possible
only by reasoning with more precise validity conditions.

Keywords
Tiling, Polyhedral model, Automatic parallelization

1. INTRODUCTION
On modern architectures, memory latency and bandwidth have

become a major limiting factor in achieving good performance.
The cost of moving data from main memory is orders of magnitude
higher than the cost of computation. This disparity between com-
munication and computation costs has prompted a paradigm shift
in algorithm design. To achieve good scalability on current and
future architectures, algorithms must account for communication

IMPACT 2014
Fourth International Workshop on Polyhedral Compilation Techniques
Jan 20, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://impact.gforge.inria.fr/impact2014

costs. Models for cache behavior or the I/O complexity of algo-
rithms have existed for a long time [2, 13, 1, 20]. However, design-
ing algorithms for better locality even with simple memory models
is a challenging task. Another facet of architectures today is the in-
creasing parallelism they offer. Exploiting parallelism while main-
taining locality makes the task even more daunting. There have
been many recent works in designing algorithms which achieve
good bounds for IO complexity and parallelism [4, 10, 6].

Tiling [19, 28] is a traditional transformation that has been used
to improve locality and coarsen the granularity of computation.
State-of-the-art polyhedral compilers like Pluto [25] automatically
parallelize and tile affine loop nests while minimizing communi-
cation. Although current approaches find effective tiling transfor-
mations for a number of affine loop nests, there are cases where
desired transformations are missed. The validity of tiling is al-
most always ensured by only tiling bands of loops on which de-
pendences have non-negative components. Such a condition is eas-
ily expressed and linearized for optimization purposes to find valid
tiling hyperplanes using machinery from integer linear program-
ming. However, there are tiling strategies which do not satisfy
the “non-negative dependence components only” property, but par-
tition the iteration space into tiles which eventually have a valid
schedule, i.e., there is no cycle in the dependence graph of tiles.
In this paper, we look at such scenarios and see how current tech-
niques could be improved with more precise conditions for the va-
lidity of tiling.

Our paper is organized as follows. We first give a brief overview
of the state-of-the-art techniques for performing tiling in the poly-
hedral framework, in particular, the Pluto algorithm. We show its
limitations by giving concrete examples where the Pluto algorithm
misses good partitions, and then discuss techniques which might
help finding the missed tiling. We discuss our ideas for finding
better partitions and give directions for further exploration. We
experimentally demonstrate the performance benefits one can ex-
pect, by manually implementing tiling transformations on two dy-
namic programming algorithms – Floyd-Warshall All Pairs Short-
est Paths and Zuker’s optimal RNA folding algorithm. We conclude
by pointing out other shortcomings of current approaches which
need to be addressed to match performance of manually tuned ver-
sions.

2. BACKGROUND
The polyhedral model is a mathematical framework to primar-

ily represent and transform affine loop nests. Affine data accesses
are those array accesses where the index expressions can be repre-
sented as affine functions of loop iterators and program parameters.
An affine loop nest is a sequence of arbitrarily nested loops with
affine array accesses and affine loop bounds. A polyhedral repre-

1

sentation can easily be extracted from such nests. S = {s1, s2, . . . , sn}
is the set of statements in an affine loop nest, n being the number of
statements. The execution of each statement s can be captured by
a polyhedron whose dimension is the number of loops surrounding
the statement plus the number of program parameters: we call this
the domain of s and denote it by Ds. Each point in Ds is a dy-
namic instance of statement s, represented by the iteration vector
~is containing values of surrounding loop iterators from outermost
to innermost.

The generalized dependence graph (GDG) is a multi-graph which
captures dependences between statements of an affine loop nest.
The vertices of the GDG are statements of an affine loop nest.
Edges denote dependence relations between statements. The set
of edges in the GDG is denoted by E. Dependence polyhedra are
a compact and accurate representation of dependences between dy-
namic instances of two statements. If e is an edge from statement
s to statement t in the GDG, the dependence polyhedron Pe is an
integer set that captures when a particular ~it depends on ~is.

A hyperplane is an n − 1 dimensional affine subspace of an n
dimensional space. It partitions the n dimensional space into two
half-spaces. A hyperplane for a statement s is of the following
form:

φs(~is) = ~h· ~is + h0. (1)

h0 is the translation or the constant shift component. The ~h it-
self can be used to represent a family of hyperplanes to which it
is normal. Hyperplanes are used to describe affine schedules or
partitions. Polyhedral approaches use hyperplanes to specify tiling
directions or tile shapes [19, 3].

3. LIMITATIONS OF CURRENT METHODS
Automatic approaches for tiling iteration spaces have to verify

that the tiling transformation does not violate dependences in the
original program. These validity constraints are used either while
finding tiling hyperplanes or while checking if a given tiling is
valid. The validity constraint proposed by Irigoin and Triolet [19]
(HD ≥ 0) only allows for non-negative dependence components
along the hyperplane normals. H is a matrix whose rows are nor-
mals to faces of the hyperplanes. D is a matrix whose columns
are data dependence vectors. Although the condition is conserva-
tive, it results in tiling with the desirable properties of being valid
independent of the choice of tile sizes and origin.

The validity condition in the book by Xue [29] (bHDc < ~0)
checks for lexicographic non-negativity of inter-tile dependences.
Satisfaction of this condition naturally implies that the tiles can be
scanned in the lexicographic order with respect to directions given
by the tiling hyperplanes themselves. This is clearly less conserva-
tive and thus more powerful since it allows tile-space dependences
to have negative components as long as they are lexicographically
positive. However, such a condition makes it harder to find or ar-
rive at a tiling that satisfies it. It specifies validity for the chosen
tile sizes and tile origin. It is hard to linearize and incorporate this
condition into the hyperplane search itself. It can nevertheless be
used easily to verify validity given the tiling hyperplanes and tile
sizes.

3.1 Pluto algorithm
The Pluto algorithm [7] for automatic parallelization of affine

loop nests uses an extension of validity constraints proposed by
Irigoin and Triolet [19] while searching for valid tiling hyperplanes.
It is also equivalent to the time partitioning constraint used by Lim
and Lam [22], and in another context, similar to the forward com-
munication property used by Griebl [15, 14]. We now briefly de-

scribe the Pluto algorithm and show the kind of cases where it
misses valid tiling opportunities.

The Pluto approach iteratively finds statement-wise scheduling
hyperplanes, level by level. A dependence is considered satisfied at
a level if it has a positive component along the hyperplane normal
at that level. Validity constraints shown in (2) are added for all
dependences that have not been satisfied by tilable bands found
up to that level. This makes sure that the dependences have non-
negative components along all yet to be found hyperplanes. The
dependences satisfied by previous levels are only removed when
no hyperplane is found satisfying these constraints, i.e., a new tile
band needs to be created. For a dependence edge e ∈ E, from
statement s to t, the validity constraint is given by:

φt(~it)− φs(~is) ≥ 0 , 〈~is, ~it〉 ∈ Pe (2)

Constraints are also added to ensure that the current set of statement-
wise hyperplanes are linearly independent of hyperplanes found for
previous levels. Linear independence constraints guarantee that the
hyperplanes found result in a one-to-one mapping. At each level,
there might be multiple hyperplanes that satisfy the constraints. A
cost function that can be encoded is shown in (3).

δe(~is, ~it) = φt(~it)− φs(~is) , 〈~is, ~it〉 ∈ Pe, e : s→ t (3)

δe is a factor involved in the reuse distance or communication vol-
ume, and minimizing its maximum value across all relevant depen-
dence edges has proved to be often effective. Details on how the
cost function is minimized can be found in [7]. Once the statement-
wise tiling hyperplanes are found, they are grouped into tilable
bands and the bands are tiled. A set of hyperplanes belongs to
a tilable band at depth k if all the dependences not satisfied un-
til level k have non-negative components along hyperplanes in the
band, i.e., the loops corresponding to the hyperplanes can be per-
muted without violating any dependences.

For the iteration space shown in Example 1, the Pluto algorithm
will find the scheduling hyperplanes φ1

s1,s2 = (1, 0) and φ2
s1,s2 =

(0, 1). However, it does not lead to the tiling shown in Example 1
since the loops representing hyperplanes φ1 and φ2 are not per-
mutable. So they do not belong to a tilable band. Figure 1 shows
an interesting feature of the tiling using hyperplanes φ1 and φ2.
The tile size in the φ1 direction cannot be one more than the tile
size in φ2 direction, otherwise the tiling becomes invalid. Such re-
strictions are not captured by current approaches. The dependence
graph for the tiles in Example 1 is shown on the right. It is not
possible to give a single affine multi-dimensional schedule in loop
and tile iterators for the dependence graph.

The iteration space for Example 2 is similar to the first one ex-
cept that there is an anti-dependence. The Pluto algorithm fails to
2-d tile this iteration space as well, but given the structure of the de-
pendences it would seem 2-d tiling is unfeasible. The tiling shown
in Example 2 has a valid schedule; it should be noted that the tiles
along the diagonal are split into two pieces. The tile dependence
graph for the tiling is shown on the right. The graph is acyclic,
hence the tiles have a valid schedule.

In both the examples, the 2-d tiling shown will lead to better
reuse of array A and task granularity for dynamic scheduling. The
tiling shown for the two examples demonstrates two key aspects for
improving current approaches. In Example 1 the scheduling hyper-
planes computed by Pluto are good, but the condition for using
them to tile is too strict. Tiling for Example 2 shows how splitting
can help tile spaces with complex dependences. The traditional va-
lidity constraints HD ≥ 0 and bHDc < ~0 will report the tiling
shown in the examples to be invalid since the tile dependences are

2

φ1

φ2

i

j

for (i = 0; i < N; i++){
for (j = 0; j < N; j++) {

A[j] = A[j] + B[i]; s1
if (i == j)

B[i+1] = A[j]; s2
}

}

φ1
s1,s2 = (1, 0), φ2

s1,s2 = (0, 1)
(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Example 1: Tiling enabled by relaxing validity constraints. The iteration space for the loop nest is shown on the left; Iterations of s2 are
shown as larger points along the diagonal. The tile dependence graph is shown on the right

φ1

φ2

i

j

for (i = 0; i < N; i++){
for (j = 0; j < N; j++) {

if (j > i)
A[j] = A[j] + A[i]; s1

if (j < i)
A[j] = A[j] + A[i]; s2

}
}

φ1
s1,s2 = (1, 0), φ2

s1,s2 = (0, 1) (0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(0, 0)

(1, 1)

(2, 2)

Example 2: Tiling enabled by selective splitting of tiles. The iteration space for the loop nest is shown on the left. Flow dependences and
anti-dependences are shown in different colors, and transitively covered anti-dependences are not shown. The tile dependence graph is shown
on the right

φ1

φ2

i

j

Figure 1: Tiling becomes invalid due to the choice of the tile sizes
along each hyperplane, the tiles shown depend on each other

negative even in the lexicographical sense. The main challenge in
coming up with such tiling schemes is ensuring that the tile depen-
dence graph is cycle-free. We elaborate on this when we discuss
our method for relaxing the validity criteria.

3.2 Other techniques
Index Set Splitting [16] (ISS) partitions the iteration space and

enables finding different schedules for the partitions. The rationale
is that some dependences might be sparse in the iteration space,
but constrain the schedule for the entire iteration space. Example 3
shows such a dependence. Partitioning the iteration space to isolate
such sparse dependences, and computing different schedules for the
partitions might expose more parallelism. Although the objective
of ISS is to extract more parallelism and is orthogonal to tiling, the
techniques for partitioning can potentially be used to break cycles
in the tile dependence graph. To compute the partitions, ISS [16]
uses composition and transitive closure of dependence relations,
which might not be affine or even decidable in the general case [26].
This leads to approximations which might span the entire iteration
space rendering the technique ineffective.

Folding [30] techniques try to make non-uniform dependences
shorter or uniform, and have been used to enable time tiling of sten-
cils on periodic domains [24]. The iteration space in Example 1 can
be folded along the diagonal, and the folded iteration space can be
2-d tiled. However, it might not always be feasible to find a fold
that enables tiling.

Although the techniques we have seen help in enabling tiling in
specific cases like stencils, a general approach for both uniform
and non-uniform dependences is lacking. In the next section, we
discuss our ideas on building a general approach.

3

4. DIRECTIONS
Coming up with static affine schedules for the tile dependence

graphs in both Example 1 and 2 is not very straightforward. There
is no set of hyperplanes that can generate a valid schedule for the
tiles. Index set splitting techniques can be used to partition the
iteration space, and affine schedules can be computed for each par-
tition. However, once a tiling is found and proved to be valid, inter-
tile dependence relations can be computed. Such dependence re-
lations can be used to build a task graph for dynamic scheduling
at runtime [5]. Dynamic scheduling of tasks has been shown to be
more effective than static scheduling for at least certain codes [8,
9, 5]. This is primarily due to better load balance and use of point-
to-point synchronization. Also, dynamic scheduling with exact de-
pendence relations exposes more parallelism than static scheduling
approaches. This is illustrated in Example 3. Static scheduling
results in sequential execution of iterations along φ2, due to the
non-uniform dependence. However, dynamic scheduling with ex-
act dependences will allow for parallel execution of iterations along
φ2. The downside of using dynamic scheduling is the overhead in-
curred in using a task scheduling runtime when the task granularity
is fine, i.e., when tile sizes are small. A careful choice of tile size
is required to balance parallelism, locality, and runtime overhead.

φ1

φ2

Example 3: Iteration space where a sparse dependence constrains
the static schedule

4.1 Tiling validity revisited
Given a set of hyperplanes {φ1, . . . , φk} and tile sizes τi for

φi, k dimensional tiles can be formed by aggregating hyperplane
instances along each φi separated by τi. The subscript for φk

is dropped for convenience when referring to any statement-wise
tiling hyperplane at level k.

When φk
s is used as a tiling hyperplane with tile size τk, the

resulting tiles can be characterized by their coordinates that we call
tile coordinates. If T k

s is such a tile coordinate associated with
φk
s , then the tile itself is characterized by addition of the following

constraints to the statement’s domain:

τk ∗ T k
s ≤ φk

s (~is) ≤ τk ∗ (T k
s + 1)− 1. (4)

DEFINITION 1 (VALID TILING). A set of hyperplanes φ1, φ2,
. . . , φk with tile size τi for φi, is a valid tiling of an iteration space
if the dependence graph of k-dimensional tiles formed by the hy-
perplanes with their respective tile sizes is cycle-free.

The above is well-known. The non-existence of a cycle implies
that the tiles can be scheduled, if not statically, dynamically with
each tile executed atomically. Given dependence relations between
the tiles, their transitive closure can be computed to check if there
is a cycle in the tile dependence graph. As pointed out earlier, com-
puting the exact transitive closure on parametric relations (at com-
pile time) is undecidable in the general case. If transitive closure
can be computed exactly, validity of tiling can be determined pre-
cisely. While finding partitions or tiling in an iterative fashion, the
following Theorem 1 that we state below can be used. To the best
of our knowledge, this result does not appear in prior art.

THEOREM 1. {φ1, . . . , φk} with tile size τi for φi is a valid
tiling of an iteration space, if {φ1, . . . , φk−1} is a valid tiling and
φk is a valid one-dimensional tiling of each k − 1 dimensional tile
formed by {φ1, . . . , φk−1}

PROOF. Let φk with size τk be a valid tiling of each k − 1 di-
mensional tile formed by {φ1, . . . , φk−1}, and {φ1, . . . , φk−1} be
a valid tiling of the entire iteration space. If {φ1, . . . , φk} is an
invalid tiling of the iteration space, there must be a cycle between
the k dimensional tiles. The k dimensional tiles that form a cycle
cannot all be from the same k − 1 dimensional tile. The k dimen-
sional tiles in the cycle should be from at least two distinct k − 1
dimensional tiles formed by {φ1, . . . , φk−1}; so there exists a cy-
cle between k − 1 dimensional tiles formed by {φ1, . . . , φk−1}.
This leads us to a contradiction as {φ1, . . . , φk−1} is a valid tiling.
Figure 2 illustrates the contradiction.

A consequence of the above theorem is that it is suitable for use
in algorithms that iteratively find tiling hyperplanes. At level k,
checking for the validity of k-dimensional tiling within each k − 1
dimensional tile defined by the previous k − 1 hyperplanes will
suffice. In addition, though the computation of a transitive closure
or its approximation is an expensive operation, computing it on the
dependence relations localized to partitions of an iteration space
can improve accuracy.

φ1

φ2

Figure 2: 2-d tiles (formed by φ1, φ2) from different 1-d tiles
(formed by φ1) can have a dependence cycle only if the 1-d tiles
have a dependence cycle

4.2 Iterative tiling for dynamic scheduling
We first introduce notation to represent tile dependences in a re-

stricted space. The inter-tile dependence polyhedron between k-
dimensional tiles formed by 〈φ1, . . . , φk〉 due to e is denoted by
P k
e . It is computed by projecting out dimensions inner to φk (for

both source and target statements) from the dependence polyhedron
for edge e in the transformed space [5]. Each point in the polyhe-
dron P k

e is of the form 〈〈T 1
s , . . . , T

k
s 〉, 〈T 1

t , . . . , T
k
t 〉〉 where e is

from statement s to statement t.

DEFINITION 2 (RESTRICTED TILE DEPENDENCE). Qk
e is a sub-

set of P k
e restricted to the same k − 1 dimensional tile defined by

the k − 1 tiling hyperplanes outer to φk. Qk
e thus captures de-

pendences between only those k-dimensional tiles which are in the
same k−1 dimensional tile formed by 〈φ1, . . . , φk−1〉. If e is from
statement s to statement t, then

Qk
e = P k

e ∧

 ∧
1≤l≤k−1

T l
s = T l

t

 .

Given statement-wise scheduling hyperplanes that Pluto finds,
Algorithm 1 provides an iterative approach, which constructs a

4

valid tiling for dynamic scheduling. The main phases in the algo-
rithm are those of validity checking and tiling correction. For the
cycle checking phase, an approximate or exact transitive closure of
tile dependence relations can be used. If the absence of cycles at
level k cannot be proved, the tile size for that level is halved and
tiling at that level is retried. When the tile size drops to one, the
dimension is considered not tilable and we do not tile it. Note that
both the validity checking step and the tiling correction step can
be more accurate and sophisticated. We are currently investigating
better approximations for cycle checking and methods to incorpo-
rate splitting in the correction step. Splitting can not only be used
to break cycles in the tile dependence graph, but also improve the
parallelism as shown in split tiling [17].

Algorithm 1: Iterative tiling for dynamic scheduling
Input : Statement-wise scheduling hyperplanes

φ1s, φ
2
s, . . . , φ

maxdim
s for all s ∈ S; Tile sizes

τ1, τ2, . . . , τmaxdim; Dependence Polyhedra Pe for all
e ∈ E the set of edges in the GDG.

1 for k = 1 to maxdim do
2 while τk > 1 do

// 1. Check validity of tiling at level k.
3 for each e ∈ E do
4 Compute Qk

e for dependence e : s→ t.
// C is the set of tiles that might be in a cycle

5 C = CycleCheck(Qk
e for each edge e ∈ E)

6 if C = ∅ then
// Tiling is valid, move to next level

7 break
// 2. Attempt to correct tiling

8 τk = bτk/2c

4.3 A conservative cycle check
Computing transitive closure or even its approximation can be

quite expensive, using a simpler conservative method for cycle check-
ing can reduce the computation costs. Also the transitive closure
can only be computed when the tile dependence relations are known.
So it cannot be used as a validity criteria while searching for tiling
hyperplanes. Due to Theorem 1, we need to check for cycles only
within each k − 1 dimensional tile.

Tiles formed by φk in each k−1 dimensional tile can be viewed
as points on a one-dimensional line. T k

s gives the tile coordinates of
statement s on this line. Inter-tile dependences can now be thought
of as going forward or backward along the line. An inter-tile de-
pendence 〈T k

s , T
k
t 〉 is called a backward dependence if T k

t depends
on T k

s and T k
t < T k

s . Similarly, it is called a forward dependence
if T k

t depends on T k
s and T k

t > T k
s . A cycle can be formed among

points on this line only if there is at least one point T k
s for which

one of the following conditions holds true:

1. There is a backward dependence 〈T k
s , T

k
t 〉 and a forward de-

pendence 〈T k
s′ , T

k
t′〉 such that T k

t′ = T k
s where s, t, s′, t′ ∈

S. We call this backward violation (BV).

2. There is a forward dependence 〈T k
s , T

k
t 〉 and a backward de-

pendence 〈T k
s′ , T

k
t′〉 such that T k

t′ = T k
s where s, t, s′, t′ ∈

S. We call this forward violation (FV).

We denote the set of k dimensional tiles in the same k − 1 di-
mensional tile that satisfy conditions BV and FV by Bk and F k

respectively. If the sets Bk and F k are empty, there is no cycle be-
tween the k dimensional tiles. The conditions BV and FV should
be checked for every pair of tile dependences within each k − 1
dimensional tile strip. This translates to computing the setsBk and

Tk
Forward face

Backward face

Figure 3: Representing inter-tile dependences at level k as a line
graph, the forward dependences are shown above the line and the
backward ones below.

F k considering every pair of restricted tile dependence polyhedra
at level k. Given two restricted tile dependence polyhedra Qk

e and
Qk

e′ where e, e′ ∈ E, Bk
e,e′ and F k

e,e′ are tiles that satisfy BV and
FV respectively for inter-tile dependences e, e′ within each k − 1
dimensional tile, then:

Bk
e,e′ =

{
〈T 1

s , . . . , T
k
s 〉 | ∃T l

t , ∃T l
s′ , ∃T l

t′ , (T
k
s ≥ T k

t + 1) ∧

(T k
s′ ≤ T k

t′ − 1) ∧1≤l≤k (T l
t′ = T l

s) ∧

〈〈T 1
s , . . . , T

k
s 〉, 〈T 1

t , . . . , T
k
t 〉〉 ∈ Qk

e , e : s→ t

〈〈T 1
s′ , . . . , T

k
s′〉, 〈T 1

t′ , . . . , T
k
t′〉〉 ∈ Qk

e′ , e
′ : s′ → t′

}
F k
e,e′ =

{
〈T 1

s , . . . , T
k
s 〉 | ∃T l

t ,∃T l
s′ , ∃T l

t′ , (T
k
s ≤ T k

t − 1) ∧

(T k
s′ ≥ T k

t′ + 1) ∧1≤l≤k (T l
t′ = T l

s) ∧

〈〈T 1
s , . . . , T

k
s 〉, 〈T 1

t , . . . , T
k
t 〉〉 ∈ Qk

e , e : s→ t

〈〈T 1
s′ , . . . , T

k
s′〉, 〈T 1

t′ , . . . , T
k
t′〉〉 ∈ Qk

e′ , e
′ : s′ → t′

}
Algorithm 2 uses Bk

e,e′ and F k
e,e′ to compute the set of tiles that

possibly participate in cycles. This algorithm can be used as an
over-approximation for the cycle checking step in line 7 of Algo-
rithm 1. Algorithm 2 also gives the tiles that satisfy BV or FV –
this information can be used by the correction step to split or merge
tiles. In Example 2, the output of Algorithm 2 will be the diagonal
tiles.

Algorithm 2: Approximate cycle detection

Input : Tile dependence polyhedra at level k Qk
e for all e ∈ E

the set of edges in the GDG.
Output: Set of tiles that might be part of a cycle
// Bk set of tiles that satisfy B at level k.
// Fk set of tiles that satisfy F at level k.

1 Bk = ∅, Fk = ∅
2 for each pair 〈Qk

e , Q
k
e′ 〉 e, e

′ ∈ E // e can be equal to e′

3 do
4 Compute Bk

e,e′ , Fk
e,e′ using Qk

e and Qk
e′

5 Bk = Bk
e,e′ ∪B

k

6 Fk = Fk
e,e′ ∪ F

k

7 return Bk ∪ Fk

Figure 4 shows the working of Algorithm 1 on Example 1. We
choose equal tile sizes in both directions. The conservative cycle
checking we propose will be able to prove validity of tiling in this
case. In the second phase shown in Figure 4b, there is no tile for
which either condition BV or FV is satisfied.

5

j

i

φ1

(a) φ1 partitions the iteration space into tiles.
The tile dependence graph is shown on the left

j

i

φ1

φ2

(b) Tiles formed by φ2 within each tile formed
by φ1. The tile dependence graphs for the bot-
tom row of tiles shown below, top row of tiles
above and the middle row of tiles to the left

Figure 4: Working of Algorithm 1 on Example 1, given hyper-
planes φ1 and φ2 with the same tile sizes for both

4.4 Finding partitioning hyperplanes
Algorithm 1 uses scheduling hyperplanes computed by Pluto

to construct a tiling for dynamic scheduling. Although this al-
ready improves the space of tiling solutions, using scheduling hy-
perplanes computed with conservative validity conditions itself lim-
its the solution space. Instead, a valid tiling can be constructed it-
eratively using an approach similar to the first phase of Pluto. This
might result in a better partitioning than the two-phased approach,
since the partitioning hyperplanes can have the effect of index set
splitting. An approach would be to use a more powerful validity
condition for an edge e ∈ E from statement s to statement t in
place of the one used by Pluto. Let Rk

e be the updated dependence
polyhedron for edge e obtained by adding tiling constraints given
by (4) for φ1, φ2, . . . , φk−1 have been added to Pe. Then, we can
use the following tiling validity constraint for φk:

φk
t (~it)− φk

s (~is) ≥ 0 ,

〈~is, ~it〉 ∈

Rk
e ∧

 ∧
1≤l≤k−1

T l
s = T l

t

 .
(5)

The above in effect only considers dependences that do not go
across two distinct tiles formed when previously found hyperplanes
are tiled. This directly follows from Theorem 1. All hyperplanes

from previous levels are known and tile sizes are compile-time con-
stants. Constraints for linear independence with previously found
hyperplanes are added, similar to the Pluto approach, and its cost
function remains unchanged.

The choice of tile size at an outer level can effect validity at in-
ner levels. In Algorithm 1 and the modified hyperplane search,
only the tile size at the current level is altered in an attempt to find
a valid tiling. Keeping the tile size choices at outer levels fixed
might lead to a weaker tiling transformation. This is a limitation
of our approach. A method for backtracking and correcting tile
sizes at outer levels is needed for further improvement. However,
such backtracking methods can lead to a combinatorial explosion.
Good heuristics for backtracking need to be developed to make the
method robust to tile size choices. The validity condition in (5)
is still the traditional condition used by Pluto. Linearizing the ap-
proximate cycle checking constraints and using them in hyperplane
search is an interesting avenue for future work.

5. APPLICATIONS
Examples 1 and 2 are artificially constructed iteration spaces

which highlight the shortcomings of current tiling approaches. The
dependence patterns in the example loop nests are exhibited by real
algorithms like Floyd-Warshall’s All-Pairs Shortest-Paths [12] and
Zuker’s [31] optimal RNA secondary structure prediction.

5.1 Floyd-Warshall’s All-Pairs Shortest-Paths
Listing 1 shows the loop nest for the All-Pairs Shortest-Paths

dynamic programming algorithm. Automatic loop parallelization
of this code fails due to the loop carried dependences along inner
loops i and j. A full array expansion corresponding to the Floyd-
Warshall recurrence is shown in Listing 2. This code exposes more
parallelism and can be 3-d tiled using Algorithm 1, but the increase
in storage requirement is unacceptable.

for(k = 0; k < N; k++) {
for(i = 0 ; i < N; i++) {

for(j = 0; j < N; j++) {
D[i][j] = MIN(D[i][k] + D[k][j], D[i][j]);

}
}

}

Listing 1: Kernel for Floyd-Warshall’s All-Pairs Shortest-Paths

for(k = 0; k < N; k++) {
for(i = 0 ; i < N; i++) {

for(j = 0; j < N; j++) {
D[k+1][i][j] = MIN(D[k][i][k] + D[k][k][j], D[k][i

][j]);
}

}
}

Listing 2: Kernel for Floyd-Warshall’s All-Pairs Shortest-Paths
with full array expansion

Listing 3 shows how to selectively copy the parts of D that are
read by the next iteration of k, to reduce storage requirement. Now,
the i and j loops can be 2-d tiled and marked parallel – this is the
tiling found with traditional validity constraints. The dependence
patterns in the 3-d iteration space formed by loops shown in List-
ing 3 are similar to Example 1. One can visualize this by projecting
the 3-d iteration space on the plane j = 0 or i = 0. Algorithm 1
which uses our improved validity criteria can find 3-d tiling for both

6

the kernels in Listing 2 and Listing 3. The 3-d tiling of Listing 3 is
similar to the 2-d tiling in Example 1 – it allows reuse of D along
the k loop as well.

for(k = 0; k < N; k++) {
for(i = 0 ; i < N; i++) {

for(j = 0; j < N; j++) {
/*C[0][*] and R[0][*] are initialized
to D[*][0] and D[0][*] respectively*/

D[i][j] = MIN(C[k][i] + R[k][j], D[i][j]);
if (i == k + 1)

R[k+1][j] = D[i][j];
if (j == k + 1)

C[k+1][i] = D[i][j];
}

}
}

Listing 3: Using additional arrays R and C to remove false
dependences in the All-Pairs Shortest-Paths kernel

for(k = 0; k < N; k++) {
for(i = 0 ; i < N; i++) {

for(j = 0; j < N; j++) {
if (i < k && j < k)

D[i][j] = MIN(D[i][k] + D[k][j], D[i][j]);
if (i > k && j < k)

D[i][j] = MIN(D[i][k] + D[k][j], D[i][j]);
if (i < k && j > k)

D[i][j] = MIN(D[i][k] + D[k][j], D[i][j]);
if (i > k && j > k)

D[i][j] = MIN(D[i][k] + D[k][j], D[i][j]);
}

}
}

Listing 4: All-Pairs Shortest-Paths kernel after removing spurious
writes

Instead of performing the selective copy transformation and us-
ing additional arrays, properties of the algorithm can be used to
eliminate some of the spurious writes. The array D[i][j] denotes
the distance from node i to j. For the code in Listing 1, the writes
toD[i][j] when i = k or j = k will not change the value ofD[i][j],
MIN(D[i][j] +D[i][i], D[i][j]) = D[i][j] and MIN(D[i][j] +
D[j][j], D[i][j]) = D[i][j] since the distance of a node to itself
cannot be negative. Listing 4 shows the code with the spurious
writes removed. This is very similar to the iteration space shown
in Example 2. Our current methods will not be able to perform
3-d tiling, but the tiles that need to be split can be identified using
Algorithm 2.

5.2 Zuker’s optimal RNA secondary structure
prediction

Zuker’s optimal RNA secondary structure prediction is a com-
plex dynamic programming algorithm. A full description of the
recurrence equations and their analysis is beyond the scope of this
paper. Lavenier et al. [21] provide an excellent overview of the al-
gorithm and its mapping to a GPU architecture. Our approach is
quite similar to theirs. There are two loop nests in the algorithm
with O(n3) and O(k2n2) complexities where n is the RNA string
size and k is a parameter. A low value of k is used in practice mak-
ing theO(n3) loop more interesting for larger sequences. We focus
on theO(n3) loop nest and 3-d tile it. TheO(k2n2) loop nest also
has significant reuse and is the subject of future investigation. We
illustrate the key ideas of our tiling transformation using a simpler
loop nest shown in Example 4.

for (i = 0; i < N; i++){
for (j = 0; j < i+1; j++) {

A[i] = A[i] + A[i-j]; s1
}

}

φ1

φ2

i

j

Example 4: Tiling enabled by merging of tiles; complete depen-
dences are shown only for the iterations in the third row of tiles
along i to avoid cluttering the diagram

The code shown in Example 4 does a sum(+) reduction for each
i and stores it in A[i]. The uniform dependences in the φ2 direc-
tion form a reduction chain. Operations along each chain can be
reordered. The tiling shown in Example 4 is invalid due to cyclic
dependences between the left and right tile in each row; the dia-
gram shows this for the third row of tiles. However, due to the
reduction along φ2, the left and right tile can be merged into one
thereby eliminating cycles. The tiles in the middle are executed in
the reduction order followed by the merged tile in each row. This
2-d tiling improves reuse of arrayA in both i and j directions. Note
that Algorithm 2 can identify the left and the right tiles since they
have both dependences going out and coming in from the same
face. The O(n3) loop in Zuker’s algorithm has the same depen-
dence patterns as Nussinov’s algorithm shown in Listing 5. The
innermost loop k computes a reduction for each i, j and stores it
in S[i][j]. A projection of the iteration space for Nussinov’s algo-
rithm on the plane i = 0 or j = 0 will show dependence patterns
similar to Example 4. Similar to Example 4, the 3-d tile with the
lowest k and the tile with the highest k have cyclic dependences
and they are merged.

for (i = N-1; i >= 0; i--) {
for (j = i+1; j < N; j++) {

for (k = 0; k < j-i; k++) {
S[i][j] = MAX(S[i][k+i] + S[k+i+1][j], S[i][j]);

}
S[i][j] = MAX(S[i][j], S[i+1][j-1] +

can_pair(RNA[i],RNA[j]));
}

}

Listing 5: Nussinov’s Algorithm

5.3 Performance evaluation
We have used Intel Concurrent Collections (CnC) to implement

3-d tiling similar to that proposed by Venkataraman et al. [27] and

7

Lavenier et al. [21] for the for All-Pairs Shortest-Paths algorithm
and Zuker’s algorithm respectively. These implementations quan-
tify the performance benefit one can expect from good tiling trans-
formations. In the CnC programming model, the data required for
a task is explicitly specified. This allows for the same program
with minor modifications to run seamlessly both on shared and dis-
tributed memory. We have only focused on high level tiling trans-
formations in our implementations. An important transformation
which has not been discussed in the paper is data tiling. We tiled
the data to match the iteration space tiling in our implementations.
This is not an additional transformation that we use to improve per-
formance, but the programming model (CnC) requires the user to
specify data required for the computation. Specifying data depen-
dences at the granularity of each element would have led to very
poor performance. However, the data tiling transformation does
improve locality and we have not analyzed its individual impact on
performance. Both the 3-d and 2-d tiled implementation of the All-
Pairs Shortest-Paths algorithm are part of samples distributed with
Intel CnC [11].

We did a scaling study of the 3-d tiled implementations on a
shared memory multi-core architecture. The experimental setup
is a four socket machine with an AMD Opteron 6136 (2.4 GHz,
128 KB L1, 512 KB L2, 6 MB L3 cache) in each socket. The mem-
ory architecture is NUMA. So, numactl is used to bind threads and
pages appropriately for all our experiments. The compiler used for
the experiments is Intel C compiler (icc) 13.0.1. All benchmarks
are compiled with “-O3 -ansi-alias -ipo” optimization flags.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32

S
p
e
e
d
u
p
 o

v
e
r

s
e
q

Number of threads

CnC 2d tiled
CnC 3d tiled

floyd – seq time is 231s

Figure 5: Speedup over a naive sequential implementation

The graph floyd in Figure 5 shows scaling for both 3-d tiled
and 2-d tiled implementations of Floyd-Warshall’s All-Pairs Shortest-
Paths. The sequential version of floyd we used as our baseline
is shown in Listing 1. Both the 2-d tiled and 3-d tiled CnC ver-
sions scale well but 3-d tiling outperforms 2-d tiling as the number
of threads increase. The main factor driving the performance gains
is good temporal locality of data in the tiled implementations, i.e.,
reuse along the k loop of code in Listing 1. Even in the 2-d tiled
case where only the i and j loops are tiled, the runtime schedules
the tiles that access the same data very close in both space (on the
same processor) and time. So, even 2-d tiling shows super-ideal
speedup. The 3-d tiling performs even better since the inter-tile
reuse in the case of 2-d tiling is converted into intra-tile reuse.
Moreover, the number of tasks the runtime system has to handle
dramatically reduces when moving from 2-d to 3-d tiling. We used
tile sizes 256× 256 and 128× 128× 128 for the 2-d and 3-d tiled
experiments respectively. The tile sizes used give the best perfor-
mance for both implementations. For a problem size ofN = 4096,
this translates to 4096 × 16 × 16 and 32 × 32 × 32 tasks for the
2-d and 3-d tiled implementations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16 32

S
p
e
e
d
u
p
 o

v
e
r

s
in

g
le

 t
h
re

a
d

Number of threads

GTfold
CnC 3d tiled

zuker – single thread time is 253s

Figure 6: Speedup over single thread GTfold

GTfold [23] is an optimized multi-core implementation of RNA
secondary structure prediction algorithms. We optimized the Zuker’s
algorithm implementation in GTfold using a 3-d tiling transfor-
mation. The graph zuker in Figure 6 shows scaling of GTfold
and our 3-d tiled CnC implementation of Zuker’s algorithm. Our
CnC implementation outperforms the GTfold implementation [18]
by 2.38×. The GTfold implementation does not perform tiling to
improve temporal locality. They optimize memory layout of the
arrays to improve spatial locality. Our implementation tiles the in-
nermost k loop in Listing 5 which gives better temporal reuse of
S. Note that our implementation performs worse than GTfold for
a single thread but scales better as the number of threads increases.
Due to the complex 3-d tiling transformation, task kernels become
complex. We believe this coupled with runtime overheads for task
and data management lead to lower single thread performance.

6. CONCLUSIONS
We have shown that validity constraints for tiling used by current

approaches are too conservative, and miss desirable tiling opportu-
nities. We proposed validity constraints which are less restrictive,
and gave an iterative approach to construct tilings using improved
validity constraints. The iterative method improves the space of
tiling solutions, but still does not cover cases which require tile
splitting. Use of index set splitting to break cycles in the tile depen-
dence graph can enable tiling in a wider range of scenarios. Even
if a complex tiling is found, the approximate cycle checking we
propose might not be able to prove its validity. Better approxima-
tions for transitive closure or alternate geometric methods may be
required to establish validity. We have experimentally shown that
tiling transformations driven by more accurate validity conditions
are essential for good scaling on some problems. Our 3-d tiled
implementation of Zuker’s algorithm outperformed an optimized
multi-core implementation, GTfold, by a factor of 2.38.

Acknowledgments
We would like to thank the program committee and chairs of IM-
PACT 2014 for their detailed reviews and comments.

7. REFERENCES
[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model

for hierarchical memory. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages
305–314. ACM, 1987.

[2] A. Aggarwal, J. Vitter, et al. The input/output complexity of
sorting and related problems. Communications of the ACM,
31(9):1116–1127, 1988.

8

[3] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops.
In ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, pages 39–50, 1991.

[4] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear algebra.
SIAM Journal on Matrix Analysis and Applications,
32(3):866–901, 2011.

[5] M. Baskaran, N. Vydyanathan, U. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Compiler-assisted dynamic scheduling for effective
parallelization of loop nests on multicore processors. In ACM
SIGPLAN PPoPP, pages 219–228, 2009.

[6] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons,
V. Ramachandran, S. Chen, and M. Kozuch. Provably good
multicore cache performance for divide-and-conquer
algorithms. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
501–510. Society for Industrial and Applied Mathematics,
2008.

[7] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
transformations for communication-minimized
parallelization and locality optimization in the polyhedral
model. In Compiler Construction, pages 132–146. Springer,
2008.

[8] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. Dague: A generic distributed
dag engine for high performance computing. Parallel
Computing, 38, 2012.

[9] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. Van
De Geijn. Supermatrix out-of-order scheduling of matrix
operations for smp and multi-core architectures. In
Proceedings of the nineteenth annual ACM symposium on
Parallel algorithms and architectures, pages 116–125. ACM,
2007.

[10] R. A. Chowdhury and V. Ramachandran. Cache-efficient
dynamic programming algorithms for multicores. In
Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, pages 207–216.
ACM, 2008.

[11] Intel Concurrent Collections for C++ 0.9.
http://software.intel.com/en-us/articles/intel-concurrent-
collections-for-cc.

[12] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345–, June 1962.

[13] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Foundations of Computer
Science, 1999. 40th Annual Symposium on, pages 285–297.
IEEE, 1999.

[14] M. Griebl. Automatic Parallelization of Loop Programs for
Distributed Memory Architectures. University of Passau,
2004. Habilitation thesis.

[15] M. Griebl, P. Feautrier, and A. Größlinger. Forward
communication only placements and their use for parallel
program construction. In LCPC, pages 16–30, 2005.

[16] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting.
International Journal of Parallel Programming,
28(6):607–631, 2000.

[17] T. Grosser, A. Cohen, P. H. Kelly, J. Ramanujam,
P. Sadayappan, and S. Verdoolaege. Split tiling for GPUs:
automatic parallelization using trapezoidal tiles. In
Proceedings of the 6th Workshop on General Purpose

Processor Using Graphics Processing Units, pages 24–31.
ACM, 2013.

[18] GTfold:Scalable Multicore Code for RNA Secondary
Structure Prediction. http://gtfold.sourceforge.net/.

[19] F. Irigoin and R. Triolet. Supernode partitioning. In ACM
SIGPLAN Principles of Programming Languages, pages
319–329, 1988.

[20] H. Jia-Wei and H. Kung. I/O complexity: The red-blue
pebble game. In Proceedings of the thirteenth annual ACM
symposium on Theory of computing, pages 326–333. ACM,
1981.

[21] D. Lavenier, G. Rizk, S. Rajopadhye, et al. GPU accelerated
RNA folding algorithm. GPU Computing Gems, 2011.

[22] A. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine transforms. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pages 201–214,
1997.

[23] A. Mathuriya, D. A. Bader, C. E. Heitsch, and S. C. Harvey.
Gtfold: a scalable multicore code for RNA secondary
structure prediction. In Proceedings of the 2009 ACM
symposium on Applied Computing, pages 981–988. ACM,
2009.

[24] N. Osheim, M. Strout, D. Rostron, and S. Rajopadhye.
Smashing: Folding space to tile through time. In Languages
and Compilers for Parallel Computing, pages 80–93.
Springer, 2008.

[25] PLUTO: A polyhedral automatic parallelizer and locality
optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[26] W. Pugh and E. Rosser. Iteration space slicing and its
application to communication optimization. In Proceedings
of the 11th international conference on Supercomputing,
pages 221–228. ACM, 1997.

[27] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya. A
blocked all-pairs shortest-paths algorithm. Journal of
Experimental Algorithmics (JEA), 8:2–2, 2003.

[28] J. Xue. Loop tiling for parallelism. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[29] J. Xue. Loop tiling for parallelism. Springer, 2000.
[30] Y. Yaacoby and P. R. Cappello. Converting affine recurrence

equations to quasi-uniform recurrence equations. In VLSI
Algorithms and Architectures, pages 319–328. Springer,
1988.

[31] M. Zuker and P. Stiegler. Optimal computer folding of large
RNA sequences using thermodynamics and auxiliary
information. Nucleic acids research, 9(1):133–148, 1981.

9

