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Overview: IMPACT’14

(Very) High Level Picture

1 FPGAs: Field-Programmable Gate Arrays
2 HLS: High-Level Synthesis (from C to RTL)
3 Synthesis: “from RTL to FPGA”
4 => A toolchain from C to hardware! (ex: Xilinx Vivado ISE)

I Our job: C to FPGA, using source-to-source C transfo.
I We focus on affine C programs :-)
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Overview: IMPACT’14

A Previous Work: PolyOpt/HLS
The current situation:

I Tremendous improvements on FPGA capacity/speed/energy

I But off-chip communications remains very costly, on-chip memory
is scarce

⇒ Our solution: automatic, resource-aware data reuse optimization
framework (combining loop transformations, on-chip buffers, and
communication generation)

I HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

I But still extensive manual effort needed for best performance

⇒ Our solution: complete HLS-focused source-to-source compiler

I Numerous previous research work on C-to-FPGA (PICO, DEFACTO,
MMAlpha, etc.) and data reuse optimizations

I But (strong) limitations in applicability / transformations supported
/ performance achieved

⇒ Our solution: unleash the power of the polyhedral framework (loop
transfo., comm. scheduling, etc.)
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Overview: IMPACT’14

Performance Results
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DGEMM: Communication Analysis

Figure 5: Communication time vs. Communication volume
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Figure 6: Total time vs. On-Chip Buffer Size Requirement, Pareto-optimal points

5.2.4 Complete Results
Table 2 summarizes the best version found by our framework,

for each tested benchmark. We report #PEs the number of replica-
tions of the full computation we have been able to place on a single
Virtex-6 FPGA as in the Convey HC-1, showing the level of coarse-
grain parallelization we have achieved. BRAM and LUT are totals
for the set of PEs placed on the chip.

Table 2: Characteristics of Best Found Versions
Benchmark tile size #PEs #BRAM #LUT
denoise 4×8×128 2 132 178544

segmentation 4×8×256 8 584 177288
DGEMM 8×256×32 16 320 112672
GEMVER 128×128 10 500 140710

Table 3 reports the performance, in GigaFlop per second, of nu-
merous different implementations of the same benchmark. out-of-
the-box reports the performance of a basic manual off-chip-only im-
plementation of the benchmark, without our framework. PolyOpt/HLS-
E reports the performance achieved with our automated framework.
Those are AutoESL results obtained with our fast DSE framework.
Hand-tuned reports the performance of a manually hand-tuned ver-
sion serving as our performance reference, from Cong et al. [17]. It
has been designed through time-consuming source code level man-
ual refinements, specifically for the HC-1ex machine. It demon-
strated that a 4-FPGA manual design for denoise and segmentation
systematically outperforms a CPU-based implementation, both in
terms of performance improvement (from 2× to 20×) and energy-
delay product (up to 2000×), therefore showing the great poten-
tial of implementing such 3D image processing algorithms on FP-
GAs [17].
We observe that for denoise (only 2 PEs were generated by Poly-

Opt/HLS) the final performance, despite being significantly better
than an off-chip-based solution, remains far from the manual design
(which uses 4 PEs). On one hand, the code we generate, and espe-
cially the loop structures, are more complex for denoise than, e.g.,
segmentation. This leads to under-performing execution for our au-

tomatically generated code. On the other hand, the reference man-
ual implementation uses numerous techniques not implemented in
our automatic framework, such as in-register data reuse, fine-grain
communication pipelining, and algorithmic modifications leading to
near-optimal performance for this version.
For segmentation, we outperform the manual design, despite the

clear remaining room for improvement our framework still has, as
shown by the denoise number. We mention that semi-automated
manual design can be performed on top of our framework, to address
optimizations we do not support, such as array partitioning.

Table 3: Side-by-side comparison
Benchmark out-of-the-box PolyOpt/HLS-E hand-tuned [17]
denoise 0.02 GF/s 4.58 GF/s 52.0 GF/s

segmentation 0.05 GF/s 24.91 GF/s 23.39 GF/s
dgemm 0.04 GF/s 22.72 GF/s N/A
gemver 0.10 GF/s 1.07 GF/s N/A

Finally Table 4 compares the latency as reported by AutoESL us-
ing our memory latency framework for fast DSE, against the wall-
clock time observed on the machine after full synthesis of the gen-
erated RTL. We report the performance of a single PE call executing
a subset (slice) of the full computation.

Table 4: AutoESL vs. full synthesis comparison (in cycles)
Benchmark AutoESL only full synthesis

denoise-1PE (1/32 slice) 23732704 25254164 (+6%)
segmentation-1PE (1/32 slice) 131984559 148878928 (+12%)
dgemm-1PE (1/64 slice) 5022287 5055335 (+1%)

6. CONCLUSION
High Level Synthesis (HLS) tools for synthesizing designs spec-

ified in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
HLS systems have now reached a level of advancement to be able
to generate RTL that comes quite close to hand generated designs.

Benchmark Description basic off-chip PolyOpt hand-tuned [17]

denoise 3D Jacobi+Seidel-like 7-point stencils 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 3D Jacobi-like 7-point stencils 0.05 GF/s 24.91 GF/s 23.39 GF/s

DGEMM matrix-multiplication 0.04 GF/s 22.72 GF/s N/A
GEMVER sequence of matrix-vector 0.10 GF/s 1.07 GF/s N/A

I Convey HC-1 (4 Xilinx Virtex-6 FPGAs), total bandwidth up to 80GB/s

I AutoESL version 2011.1, use memory/control interfaces provided by Convey

I Core design frequency: 150MHz, off-chip memory frequency: 300HMz
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Overview: IMPACT’14

Context of This Work

How to get good throughput?
1 Good management of off-chip communications, and on-chip data reuse
2 Effective on-chip computation module

I Previous work focused on tiling, comm. optimization, localization, and
“coarse-grain” parallelism exposure

I This work: focus on improving computation module (assume data is
on-chip)

I Question: are previous techniques enough?
I Question: can we design techniques to improve pipelining efficiency?
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Loop Pipelining: IMPACT’14

Loop Pipelining [1/3]

I Depth: number of cycles needed to complete one iteration
I Initiation Interval (II): number of cycles to wait before the next iteration

can start

II=3

Depth=8

I Total cycles: (LoopTripCount - 1) * II + Depth
I Reasons for II > 1

I Data dependence (typically loop-carried dependence)
I Resource constraints (typically the resource needed is still in use)

PKU / UCLA 6



Loop Pipelining: IMPACT’14

Loop Pipelining [2/3]

Example (dgemm)
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

#pragma AP pipeline II=1
for (k = 0; k < nk; ++k)

C[i][j] += alpha * A[i][k] * B[k][j];

This code has:
I inner loop marked for pipelining, target is 1
I but a loop-carried dependence
I Vivado finally uses II=6

PKU / UCLA 7



Loop Pipelining: IMPACT’14

Loop Pipelining [2/3]

Example (dgemm)
for (i = 0; i < ni; i++)
for (k = 0; k < nk; k++)

#pragma AP pipeline II=1
for (j = 0; j < nj; ++j)

C[i][j] += alpha * A[i][k] * B[k][j];

This code has:
I inner loop marked for pipelining, target is 1
I no loop-carried dependence
I Vivado finally uses II=1, a 6x speedup
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Loop Pipelining: IMPACT’14

Loop Pipelining [3/3]

Loop pipelining in our work:
I Critical performance impact on loop-dominated codes
I We focus on pipelining inner loops only

I Each inner loop is marked for pipelining

I Our goal: reach II=1 through loop transformations
I Parallelization (affine scheduling and ISS)
I Split loops with resource conflicts into multiple loops

PKU / UCLA 8



Affine Scheduling: IMPACT’14

Reminder: Tiling + Parallelization

First scheme: “Pluto” plus vectorization-like transfo.
1 Schedule/transform the code for maximal locality + tilability
2 Move one of the parallel dimension inner-most

I integrated in pluto
I complemented by a post-pass to perform loop permutation

3 Implemented in PolyOpt/HLS [FPGA’13]

What’s special for FPGAs?
I inner loop parallelization is NOT vectorization (simpler problem)
I trade-off latency vs. resource

I Tile size drives the (scarce!) on-chip BRAM usage
I Resource sharing happens when statements are fused
I Conservative scheduling: a single slow iteration slows the whole loop

PKU / UCLA 9



Affine Scheduling: IMPACT’14

How Good is This Approach?
Bmk. Description Version II Cycles CP(ns) LUT FF

2mm Matrix-multiply D=α*A*B*C+β*D
Orig 5 21512194 7.981 1612 1410

Affine 1 8335874 7.612 1782 1510

3mm Matrix-multiply G=(A*B)*(C*D)
Orig 5 31948803 8.174 1600 1552

Affine 1 636371 8.908 2580 2371

atax Matrix Transpose and Vector Mult
Orig 5 1511502 8.257 1385 1093

Affine 1 531852 7.726 1488 1174

bicg Kernel of BiCGStab Linear Solver
Orig 5 1255502 8.176 1438 1158

Affine 1 53185 7.763 1606 1428

doitgen Multiresolution Analysis Kernel
Orig 5 5607425 7.828 1126 1024

Affine 1 1114331 7.659 1769 1776

gemm Matrix-multiply C = α.A.B + β.C
Orig 6 12582925 7.701 1225 1089

Affine 1 2124418 8.062 1783 1753

gemver Vector Mult. and Matrix Addition
Orig 5 3250551 7.902 2778 2427

Affine 1 555991 7.791 3733 3656

gesummv Scalar, Vector and Matrix Mult
Orig 5 1260501 7.705 1652 1541

Affine 1 532737 7.705 1652 1541

mvt Matrix Vector Product and Transpose
Orig 6 3000016 7.496 1371 1108

Affine 1 265361 7.573 1897 1890

syrk Symmetric rank-k operations
Orig 6 12599316 7.808 1397 1217

Affine 1 2124418 8.028 1784 1793

syr2k Symmetric rank-2k operations
Orig 10 20987924 8.123 1675 1415

Affine 1 2126978 7.982 3055 3069
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Affine Scheduling + ISS: IMPACT’14

Room for Improvement

Bmk. Description Version II Cycles CP(ns) LUT FF
floyd-

Finding Shortest Paths in a Graph
Orig 8 16777218 5.827 1085 791

walshall Affine 8 16980993 5.889 1182 852

trmm Triangular matrix-multiply
Orig 5 5642753 7.398 1387 1229

Affine 5 3913057 7.418 2160 1964

trisolv Triangular Solver
Orig 5 637001 9.091 4418 2962

Affine 2 266002 9.035 4445 2992
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Affine Scheduling + ISS: IMPACT’14

A Detour to Vivado HLS

I Vivado HLS is a compiler :-)
I Very powerful, but fragile
I Limited support for high-level optimizations
I Conservative dependence/resource analysis
I Excellent report on optimizations attempted

I Our goal: transform the code to eliminate the reason for failing to meet
II=1, and pass information to Vivado

I Pragma for pipelining, with target II
I Pragma for lack of data dependence
I Pragma for Array Partitioning
I But no pragma for lack of resource conflict!

PKU / UCLA 12



Affine Scheduling + ISS: IMPACT’14

Exposing Inner Parallel Loops

I Fact: for many affine benchmarks, we can expose one parallel inner
loop with affine scheduling

I Fact: for some benchmarks partial and non-uniform dependences make
our tool fail

I Proposed solution:
I Goal: expose parallel inner loops for pipelining
I => develop a customized algorithm using scheduling+ISS
I Make our life “simple” by focusing only the problems observed

PKU / UCLA 13



Affine Scheduling + ISS: IMPACT’14

Proposed Algorithm
loops when possible. Our algorithm is initially called on each
inner-most loop which is not parallel.

DependenceSplit:
Input:

l: Polyhedral loop nest (SCoP)
Output:

l: in-place modification of l

1 D ← getAllDepsBetweenStatementsInLoop(l)
2 D ← removeAllLoopIndependentDeps(D, l)
3 parts ← {}
4 foreach dependence polyhedron Dx,y ∈ D do
5 Dy ← getTargetIterSet(Dx,y) ∩ Dl
6 if |Dy| < |Dl | then
7 parts ← parts

⋃ {Dy}
8 else
9 continue
10 end if
11 end do
12 l′ ← split(l, parts)
13 if sinkParallelLoops(l′) ̸= true

.or. parentLoop(l) = null then
14 l ← l′
15 return
16 else
17 DependenceSplit(parentLoop(l))
18 end if

Figure 6: ISS-Dep: Customized Splitting for Parallelism

Function getAllDepsBetweenStatementsInLoop from algo-
rithm DependenceSplit in Fig. 6 collects all dependence poly-
hedra between statements inside the loop (that is, all dependences
between statements outside that loop and statements inside it are
discarded). Function removeAllLoopIndependentDeps removes
all dependence polyhedra from the set which are describing loop-
independent dependences, therefore the output set contains only
loop-carried dependences for loop l. We note Dl the iteration do-
main of the “loop”, which is a polyhedron made of the affine in-
equalities of the loop bounds of l. Function getTargetIterSet
computes the set of target iterations in the polyhedron Dx,y so as
to obtain the set of iterations that are targets in the dependence. It
projects out the dimensions associated to x (the source), as illus-
trated in the previous section. The result is intersected with Dl to
obtain only the set of loop iterations of l which are target to a de-
pendence. |Dl | denotes the number of points in the polyhedron Dl ,
we do not perform any split if the loop-carried dependence touches
all iterations (that is, the loop is purely sequential).
split splits a loop into multiple loops, according to the set of

sub-domains (parts) which has been computed. To generate the
new loop structure we create the code scanning each polyhedron in
part using CLooG [8]. It returns an AST l′ with one loop (nest)
per element in part. To form the input to CLooG that preserves
the program semantics we proceed in three steps. First, for each
polyhedron Dy in parts we compute D ′y = convHull(Dy)∩Dl , the
convex hull of Dy. The result is a set part ′ of polyhedra, containing
all D ′y computed. We do this to ensure there is no hole in the sets
Dy, as projecting out dimensions of an integer polyhedron can lead
to a non-convex set. Computing the convex hull ensures D ′y is a
polyhedron. Second we compute a union of polyhedra I from Dl
and part ′. The objective is to create a set of disjoint subsets (one
per sub-loop to be generated) such that ∪iIi = Dl and ∩iIi = /0. We
take Dl into consideration as there may be iterations in the origi-
nal loop which are never target of a dependence, and therefore not
in any of the Dy. I is obtained by (1) updating each element in
part ′ to ensure that in the resulting set all elements are disjoint,
using intersection and difference between elements to compute the

points to remove in each D ′y, if any, to ensure disjointess; and (2)
creating the difference rem = Dl \∪i part ′i which is itself a union
of polyhedra, and set I = part ′ ∪ {rem}. We note that all these op-
erations are seamlessly supported in the Integer Set Library [29].
The third and final stage is to order the elements in I by increas-
ing lexicographic order of their first iteration (point), to reflect the
original order of the loop iterations and ensure the generated code
will follow the original execution order for the loop that is split. As
a result, our ISS algorithm by construction preserves the program
semantics. More advanced splitting techniques allowing for non-
convex splits are left for future work, our experiments showed that
this approach is sufficient for the benchmarks we have tested.

Finally, function sinkParallelLoops takes a sequence of loop
(nests), and for each of them detects parallel loops using polyhedral
dependence analysis and sinks them using loop permutation to the
inner-most loop level when applicable. The function returns true
if all inner-most loops are parallel in the generated loop (nest) l′
. If there are inner-most loops which are still not parallel, the full
algorithm is called again but on the parent loop, attempting to split
at this dimension instead. For instance for Trmm, this is needed as
in the original code loop k is purely sequential, but the surrounding
loop j can be split, leading to two loop nests after splitting, and the
newly created j loops are sink inwards, leading to a code similar
to Fig. 3. Function parentLoop returns the surrounding loop, or
null if the loop is already the outer-most loop inside the tile (that
is, the outer-most intra-tile loop).

We remark two aspects of our algorithm. First, by construction
of the split function, we preserve the order of each loop itera-
tion. That is, when splitting the loop, the semantics is necessarily
preserved. Second, one can see that aggressive split leads to nu-
merous loop nests being generated. This can pose a problem in
terms of resource usage on FPGA, as resource sharing typically oc-
curs between statements under the same inner loop. In practice,
with our approach, this did not prove to be a problem. We apply
the splitting as a post-processing, once affine transformations have
been used to minimize the number of loop-carried dependences at
the inner-most loop level. We have observed that there is only very
few dependences left (usually 1 in our benchmark suite), leading to
a very small number of split (usually 1, up to 3).

Example. In our Trmm example, the original iteration domain is
Dl : {(i, j,k) ∈ Z3 | 1≤ i < N∧0≤ j < N∧0≤ k < i}. There are
2 non-uniform RAW dependences with polyhedra represented as:

D1
S,S = {(i, j,k, i′, j′,k′) ∈ Z6 | (i, j,k) ∈Dl ∧

(i′, j′,k′) ∈Dl ∧ i = j′ ∧ j = k′ ∧ i < i′}
D2

S,S = {(i, j,k, i′, j′,k′) ∈ Z6 | (i, j,k) ∈Dl ∧
(i′, j′,k′) ∈Dl ∧ i = j′ ∧ j = k′ ∧ i = i′ j < j′}

The projected target iteration domains after eliminating all source
dimensions will be:

D1
y = {(i, j,k) ∈ Z3 | 1≤ i < N∧1≤ j ≤ i−1∧0≤ k < i}

D2
y = {(i, j,k) ∈ Z3 | 1≤ i < N∧ i = j∧0≤ k < i}

All the subdomains here is already convex and after split, the set
of disjoint subdomains to split are shown as follows:

I = { {(i, j,k) ∈ Z3 | 1≤ i < N∧1≤ j ≤ i−1∧0≤ k < i},

{(i, j,k) ∈ Z3 | 1≤ i < N∧ i = j∧0≤ k < i},

{(i, j,k) ∈ Z3 | 1≤ i < N∧ i+1≤ j ≤ N∧0≤ k < i},

{(i, j,k) ∈ Z3 | 1≤ i < N∧ j = 0∧0≤ k < i}}

I Works from inner-most
to outer-most level

I Always legal (split
does not change exec.
order)

I Split can re-merge
loops

PKU / UCLA 14



Affine Scheduling + ISS: IMPACT’14

Some Results and Comments

Bmk. Description Version II Cycles CP(ns) LUT FF
floyd-

Finding Shortest Paths in a Graph
Orig 8 16777218 5.827 1085 791

walshall
Affine 8 16980993 5.889 1182 852

ISS-Dep 2 4407041 5.645 1435 1481

trmm Triangular matrix-multiply

Orig 5 5642753 7.398 1387 1229
Affine 5 3913057 7.418 2160 1964

ISS-Dep 2 2101106 7.696 1374 1500

I Useful for only two cases in our experiments
I Severe trade-off in resource usage (split increases resource)
I ISS should be used with caution, only when needed
I Parallelism exposure is needed for next stage
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Transformation using Resource Constraints: IMPACT’14

Where Is My II=1?

I For 4 benchmarks, still II=2
I Reason (as per Vivado): memory port conflict

I Two accesses to the same array/bank in the same cycle
I Must wait 2 cycles before starting the next loop iteration

I A careful manual analysis showed:
I not all loop iterations have a conflict, only some
I it is often possible to split the iterations in two sets: one “conflict-free” and

another for the rest

PKU / UCLA 16



Transformation using Resource Constraints: IMPACT’14

Memory Port Conflict

I Rationale: memory port conflicts usually do not occur between each
loop iteration, but only between a subset of them

I when accessing the same banks: A[i], A[i+4], A[i+8], ... if we have
four banks

Definition (Bank conflict)

Given two memory add-resses x and y (assuming cyclic mapping of
addresses to banks using the % function). They access the same bank iff:

x % B = y % B (1)

with B the number of banks. It can be equivalently written:

∃k ∈ Z, x− y = B∗ k

PKU / UCLA 17



Transformation using Resource Constraints: IMPACT’14

Bank Conflict Set

Definition (Bank conflict set)

Given an inner-most loop l, whose iteration domain is Dl, and two references
F1

A and F2
A accessing the same array A. The bank conflict set CF1

A,F
2
A
⊆Dl is:

CF1
A,F

2
A

:
{
~xl ∈Dl | ∃k ∈ Z, lin

(
F1

A
)
− lin

(
F2

A
)
= k ∗B

}
With lin(x) the linearized form of x.
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Proposed Algorithm

ResourceSplit:
Input:

l: inner-most parallel affine loop
sz: size of arrays in l
B: number of banks available

Output:
l: in-place modification of l

1 lst ← {}
2 all ← /0
3 foreach array A ∈ l do
4 foreach distinct pair of references Fi

A,F j
A ∈ l do

5 C
Fi

A ,F j
A
← buildConflictSet(B,sizes(A),F1

A ,F2
A ,Dl)

6 lst ← lst
⋃ {CF1

A ,F2
A
}

7 all ← all ∪ CF1
A ,F2

A
8 end do
9 end do
10 rem ← Dl \ all
11 lst ← { lst, rem}
12 l′ ← codegen(lst)
13 l ← finalize(l, l′)

Figure 7: Customized Splitting Algorithm for HLS

there are multiple conflicts for a particular iteration, it will be put
in a separate loop nest than iterations with a lower number of con-
flict. This meets our goal, as intuitively the higher the number of
conflict per iteration, the larger the II. This procedure will auto-
matically create loops where the II can be one (no conflict), loops
where it can be two (one conflict), etc. taking into account the sur-
rounding loop iterators value that make the conflict occur ( j in our
example). Function finalize uses the loop structure generated by
CLooG and replaces the body of each loop generated by the body
of the original loop. Technically, for better performance, this func-
tion selectively merges certain loops in a single loop. Leaving out
the loops whose unique statement inside its body corresponds to the
domain rem in Fig. 7, we merge together all consecutive loops with
a single statement in their body. That is, if there are two different
conflicts occurring at consecutive (but non-intersecting) iteration
ranges, then these loops are merged into a single loop before being
ultimately replaced by the original loop body.

Putting it all together. Our flow to optimize computation func-
tions on FPGAs is as follows.
1. For each SCoP, apply the Tiling Hyperplane method, customized

for SIMD parallelism exposure [11, 26]. This is a requirement
for effective data reuse and off-chip communication generation
in our framework.

2. For each inner loop which still has loop-carried dependence, ap-
ply ISS-Dep until all inner loops are parallel, or no useful split
is found.

3. Mark all inner loops for pipelining, and synthesize the code us-
ing HLS. For each inner loop with II > 1, apply the algorithm
for bank conflict elimination through splitting, and use this mod-
ified code as input to HLS tools.
This approach, while significantly outperforming in some cases

previous work on PolyOpt/HLS [26] that was limited to only step
(1) above, still has potential room for improvement in terms of per-
formance. For instance we did not explore the impact of tile size in
the final computation performance, nor different trade-offs between
more aggressive array partitioning (increased BRAM) versus more
aggressive loop splitting (increased LUT/FF/DSP). Numerous sim-
plifications we did to ensure always-legal splitting can also lead to
missing parallelism opportunities. On the other hand, our approach
often achieves an II of 1 for at least some of inner loops that are

pipelined, as shown in ISS-Res rows in Sec. 6, where an II of 1.5
is reported when at least half of the inner-most loop iterations are
pipelined with an II of 1, the rest of the iterations being put in a
separate loop with II of 2.

6. EXPERIMENTAL RESULTS
In this section, we present our experimental results using a set of

computation kernels and applications. We first discuss the experi-
ments setup and evaluated benchmarks. Then, we show the perfor-
mance improvements of our proposed optimization technique.

6.1 Experimental Setup

Benchmark description. We use 15 linear algebra kernels and
applications from PolyBench/C 3.2 [3]. Double precision floating
point is used as the default data type in computations as in the orig-
inal code. Computations (tiles) operate on small datasets (array
sizes are typically 500 for single dimensional arrays and 128×128
for two-dimensional arrays) so that data fits in on-chip memory. A
description of each benchmark can be found in Table 1.

Program variants. For each benchmark, we compare the per-
formance of four different program variants. The first variant is the
original source code without any code transformation, serving as a
baseline for further improvements. The second variant is generated
by the polyhedral compiler infrastructure PolyOpt/HLS 0.2 (see [4]
for a similar framework), which itself is based on PoCC 1.2 [2]
to support affine loop transformations and loop tiling. The run-
ning time of the loop transformation computation in PolyOpt/HLS
includes solving several Parametric Integer Linear Programs [15],
which is done in no more than a few seconds for the tested bench-
marks. Our proposed algorithms for ISS are quasi-linear in the
number of polyhedra to process, and computes the result in a sec-
ond or less. Techniques in [34] are used to optimize the code gen-
eration for HLS. Index set splitting techniques introduced in this
paper are used to generate the last two variants, with ISS for loop
dependence used in the third variant and ISS for both loop de-
pendence and resource conflict used in the last variant. Methods
in [23] [35] are used to take advantage of array partitioning oppor-
tunities that current Vivado HLS fails to exploit. In all versions, the
innermost loops are marked for loop pipelining, and we also insert
compilation pragmas for all variables which are written in the par-
allel loop iteration, to prevent conservative dependence analysis.

Circuit generation. We use the Xilinx Kintex-7 FPGA device
as the target hardware platform. All program variants are fed into
Xilinx Vivado 2013.3 high-level synthesis, logic synthesis and phys-
ical implementation tools to generate bitstreams for FPGA. 10ns is
used as the timing constraints for all circuit generation steps.

Optimization metrics. We use FPGA-specific metrics to quan-
tify the quality of each circuit generated by different program vari-
ants. The number of LUTs, FFs and DSPs are used to reflect the
resource utilization of a design. All the resource utilization data
are reported by Xilinx Vivado tool after the place-and-route step.
Critical path delay and execution cycle are used to capture the per-
formance of a design. Critical path delay is extracted from the post
place-and-route Xilinx Vivado tool report while the execution cycle
is reported by a cycle-accurate SystemC simulator with the target
design and the testbench as the input. Switching activities of each
net are traced by the simulator using value change dump (VCD)
files for more accurate power estimation. Power data is reported by

I Works only on parallel
inner loops (always
legal)

I Codegen is ISL
codegen

I Finalize can
re-merge loops
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Some Discussions...

Bmk. Description Version II Cycles CP(ns) LUT FF
floyd-

Finding Shortest Paths in a Graph
Orig 8 16777218 5.827 1085 791

walshall
Affine 8 16980993 5.889 1182 852

ISS-Dep 2 4407041 5.645 1435 1481

trmm Triangular matrix-multiply

Orig 5 5642753 7.398 1387 1229
Affine 5 3913057 7.418 2160 1964

ISS-Dep 2 2101106 7.696 1374 1500

trisolv Triangular Solver

Orig 5 637001 9.091 4418 2962
Affine 2 266002 9.035 4445 2992

ISS-Res 1.5 219002 8.799 5360 3575

I ISS (dep or res) useful for three benchmarks
I Big resource increase! But good latency improv.
I Many open questions left, comparison missing
I Interesting “simple” approach: separate out problematic iterations
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Conclusions and Future Work

Take-home message:
I Vivado HLS is fragile, lots of room for improvement
I Index-Set Splitting can be very useful also for HLS
I Memory port conflict may be solved with simple splitting
I Trade-off latency vs. resource needs to be considered
I Better / more integrated solution should be designed
I Useful only in special cases (but really useful!)

Future work:
I Extensive comparison with other approaches (array partitioning, ...)
I Remove restrictions of the algorithms (legality)
I Single unified problem for throughput optimization
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