
Polyhedral	 Methods	 for	 Improving	
Parallel	 Update-‐in-‐Place	 	

IMPACT’14	
January	 20,	 2014,	 Vienna	

	
J.	 Guo,	 R.	 Bernecky,	 Jeyan	 T.,	 S-‐B.	 Scholz	

Clemens	 Grelck	
(University	 of	 HerKordshire,	 Snake	 Island	 Research,	 Oxford	 e-‐

Research	 Centre,	 Heriot-‐WaP	 University,	 University	 of	 Amsterdam)	

HP3	 Vision	

algorithm	

SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

MPI/OpenMP	

OpenCL	

VHDL	

μTC	

J	

High	 ProducYvity	
	 	 High	 Performance	
	 	 	 	 	 High	 Portability	

“Magic”	 Ingredients	

2	

HP3	

Purely	
FuncYonal	

No	 NoYon	
of	 Memory	

Enforcing	
Data	

Parallelism	

With-‐Loops	 in	 SaC	

a	 =	 with	 {	
	 	 	 	 	 	 	 	 	 	 ([1,1]	 <=	 iv	 <	 [3,3])	 :	 f(iv);	
	 	 	 	 	 	 	 }	 :	 genarray([5,8],	 def);	

3	

def	 def	 def	 def	 def	 def	 def	 def	

def	 f([1,1])	 f([1,2])	 f([1,3])	 def	 def	 def	 def	

def	 f([2,1])	 f([2,2])	 f([2,3])	 def	 def	 def	 def	

def	 f([3,1])	 f([3,2])	 f([3,3])	 def	 def	 def	 def	

def	 def	 def	 def	 def	 def	 def	 def	

Memory	 Management	

a	 =	 with	 {	
	 	 	 	 	 	 	 	 	 	 ([1,1]	 <=	 iv	 <	 [3,3])	 :	 e(iv);	
	 	 	 	 	 	 	 }	 :	 genarray([5,8],	 def);	
	 	
b	 =	 …	 a	 ………….	 a	 ……..	
	
c	 =	 ……….	 a	 ……..	 	

4	

allocate	
Iterate	 &	 fill	

free	

Memory	 Reuse	 Example	

5	

a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 f([1,1])	 f([1,2])	 f([1,3])	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 f([2,1])	 f([2,2])	 f([2,3])	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 f([3,1])	 f([3,2])	 f([3,3])	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

b	 =	 with	 {	
	 	 	 	 	 	 	 	 	 	 ([1,1]	 <=	 iv	 <	 [3,3])	 :	 f(iv);	
	 	 	 	 	 	 	 }	 :	 modarray(a);	

Can	 we	 reuse	 exisYng	 array	 a	 to	 represent	 new	 array	 b	 ?	
-‐  Smaller	 memory	 footprint	
-‐  Avoid	 copying	 overhead	
-‐  Depends	 on	 reference	 count	

Memory	 Reuse	 ?	

6	

a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 f([1,1])	 f([1,2])	 f([1,3])	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 f([2,1])	 f([2,2])	 f([2,3])	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 f([3,1])	 f([3,2])	 f([3,3])	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	 a[iv]	

Can	 we	 recycle	 a	 ?	
f(iv)	 =	 42	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	
f(iv)	 =	 c[iv+1]	 	 	 	 	 	 	 	 	 	 ✓

f(iv)	 =	 a[iv]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	
f(iv)	 =	 a[iv	 +	 [1,0]]	 	

f(iv)	 =	 a[iv	 +	 [3,0]]	 	 ✓	 	 	
f(iv)	 =	 a[0,0]	 	 	 	 	 	 	 	 	 	 	 	 ✓	

General	 Case	

7	

...	

a	

b	

c	

d	

a[i]	
b[i]	

c[i]	

a[i-‐20]	 +	 b[i-‐1]	 +	 c[i+10]	

0	 20	 40	

Which	 array	 (if	 any)	 can	 we	 recycle?	

ObservaYons	

8	

Polyhedral	 representa8ons	 lend	 themselves!	
	
Polyhedral	 tooling	 may	 be	 used!	

IdenYfying	 Read	 Data	 Spaces	

9	

with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A0[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
di↵erent iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A0[Iv] where A[Iv] is a global write access and A0[Iv] is an
in-place read. Essentially, it performs data copying from A0

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate i↵ the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loop Wl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two di↵erent accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A0[Iv], the data space DS of A0 copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A0 (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
a�ne access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an a�ne access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the a�ne descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7! RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7! CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A] RDS[A] [DS;
11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A0[Iv] be the in-place read of this copy
assignment;

15 Affine, DS Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A0] CDS[A0] [DS;
18 else
19 Terminate;

20 else
21 Continue;

22 RC ;;
23 foreach A with (A 7! CDS) 2 CDS do
24 if RDS[A] ✓ CDS[A] then
25 RC RC [{A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4

IdenYfying	 Copy	 Data	 Spaces	

10	

with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A0[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
di↵erent iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A0[Iv] where A[Iv] is a global write access and A0[Iv] is an
in-place read. Essentially, it performs data copying from A0

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate i↵ the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loop Wl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two di↵erent accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A0[Iv], the data space DS of A0 copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A0 (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
a�ne access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an a�ne access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the a�ne descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7! RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7! CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A] RDS[A] [DS;
11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A0[Iv] be the in-place read of this copy
assignment;

15 Affine, DS Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A0] CDS[A0] [DS;
18 else
19 Terminate;

20 else
21 Continue;

22 RC ;;
23 foreach A with (A 7! CDS) 2 CDS do
24 if RDS[A] ✓ CDS[A] then
25 RC RC [{A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4

IdenYfying	 Reuse	 Candidates	

11	

with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A0[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
di↵erent iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A0[Iv] where A[Iv] is a global write access and A0[Iv] is an
in-place read. Essentially, it performs data copying from A0

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate i↵ the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loop Wl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two di↵erent accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A0[Iv], the data space DS of A0 copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A0 (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
a�ne access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an a�ne access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the a�ne descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7! RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7! CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A] RDS[A] [DS;
11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A0[Iv] be the in-place read of this copy
assignment;

15 Affine, DS Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A0] CDS[A0] [DS;
18 else
19 Terminate;

20 else
21 Continue;

22 RC ;;
23 foreach A with (A 7! CDS) 2 CDS do
24 if RDS[A] ✓ CDS[A] then
25 RC RC [{A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4

Use	 the	 PolyLib	 for	 polyhedral	 operaYons:	
-‐  Union	 of	 data	 spaces	
-‐  Inclusion	 relaYonship	
-‐  Image	 of	 polytope	 under	 affine	 tranformaYon	

Example:	 LU	 DecomposiYon	

12	

F•ID. The result is the union of all such array access spaces
under di↵erent control paths. After all array accesses in Wl
have been examined, each entry (A 7! RDS) in table RDS
represents the total data space of A that is read by Wl , not
including those accessed by in-place reads. Similarly, each
entry (A 7! CDS) in table RDS represents the total data
space of A that is copied by Wl.

Algorithm 2: GetDataSpace (I, Iv, CP, SCiv)
Input: A loop iteration vector � I;

An access index vector � Iv;
A control path set � CP;
Symbolic constant vector � SCiv;

1 Affine False;
2 DS NULL;

3 F Access_Analysis(Iv, I, SCiv);
4 if F 6= NULL then
5 Affine True;
6 foreach CP 2 CP do
7 ID Domain_Analysis(I, CP, SCiv);
8 if ID 6= NULL then
9 DS DS [F • ID;

10 else
11 Affine False;
12 DS NULL;
13 Break;

Output: Affine � True if the iteration domain and
access are a�ne, False otherwise;

DS � Data space accessed, NULL if Affine
is False;

After computing all relevant data spaces, the algorithm
infers the set of valid reuse candidates. An array A is con-
sidered only if part of it is copied by Wl (i.e., there is an
entry (A 7! CDS) in tableCDS). This ensures the e↵ective-
ness of copy elimination if A is selected to be reused. Array
A may potentially be a reuse candidate if its read data space
is a subset of its copy data space. In other words, if A is
reused for in-place update, every read from A will return
the same result, irrespective of its relative execution order
with a write to the same array location. Therefore, iter-
ations can be executed in arbitrary order while preserving
determinism.

In our implementation, we build on functions from the
Polylib library to perform the various operations over poly-
hedra, such as computing the union of data spaces (e.g., [),
determining the inclusion relationship (e.g,, ✓) and finding
the image of a polytope under a�ne transformation (i.e., •).

4. PERFORMANCE IMPACT
We evaluated the e↵ectiveness of our polyhedral-model-

based, update-in-place optimization using two benchmarks:
LU Decomposition and Needleman-Wunsch [14], generating
sequential and Cuda codes, referred to here as SaC-seq
and SaC-cuda . Our experiments were conducted on two
Linux64 2.6.35 platforms: The first system, dubbed C1060,
comprises an earlier generation of GPU on a 2-core, 1.6G Hz
Aeon 5110, L1=32B, L2=4MB; the second system, dubbed
GTE480, comprises a GTE480 GPU on a 4-core 2.8G Hz

Intel i7, L1=64B, L2=256B, L3=8MB.

4.1 LU Decomposition
The kernel of the SaC implementation of LU Decomposi-

tion is shown in Figure 3. We observe that both with-loops

for (k = 0 ; k < N�1; k++) {
2 A = with {

([k+1,k] <= [i , j] < [N, k+1])

4 : A[i , j] /A[k , k] ;

} : modarray (A) ;

6 A = with {
([k+1,k+1] <= [i , j] < [N,N])

8 : A[i , j]�A[i , k]⇤A[k , j] ;

} : modarray (A) ;

10 }

Figure 3: SaC implementation of LU Decomposition.

in this algorithm can be performed in place. The only non-

Figure 4: LU Decomposition SaC-seq dissections

in-place read in the first with-loop is the selection A[k,k] in
line 4, which refers to an index outside the specified range.
Since we are dealing with a modarray-with-loop, all miss-
ing elements are inserted as index ranges over copy assign-
ments from A. Consequently, our analysis identifies A as a
reuse candidate for the with-loop in lines 2-5. Similarly,
the two non-in-place reads in line 8 are identified as reads
into copy assignment ranges leading to a further reuse of the
memory of a for the with-loop in lines 6-9. Note here, that
our previous technique described in [10] would not consider
any reuse possible here due to the occurance of non-in-place
reads in both cases.
Figures 4 and 5 show the runtime dissections of SaC-seq

and SaC-cuda, without in-place update, on several di↵er-
ent problem sizes. The total execution time is divided into
three components: compute time of the actual decomposi-
tion (i.e. column and sub-matrix computations), data copy-

5

RunYme	 Impact	 (single	 core)	

13	

Figure 5: LU Decomposition SaC-cuda dissections

ing time, and other overheads (mainly as a result of the
memory management overhead). As can be observed from
the dissections of SaC-seq runtime, the average percentages
of the three components are very consistent across all prob-
lem sizes on both platforms at 10% for overheads, 29% for
computation and 61% for data copying. The only exception
is for 1024⇥1024 matrix on C1060 where the overheads are
almost negligible. This is because allocating or freeing mem-
ory of size 1024 ⇥ 1024 ⇥ 8 = 8MB (assuming double data
type) is considerably faster than the other sizes on C1060.
By contrast, the SaC-cuda runtime dissections show that
the execution components with the highest percentages are
computation (54% on average) and overheads (52% on av-
erage) on C1060 and Gtx480 respectively. The two main
factors that cause the reduced significance of data copying
are: (i) Data copying between arrays in the GPU memory
is significantly faster than it is in the CPU memory due to
the much higher GPU memory bandwidth. This substan-
tially reduces the absolute data copying time and (ii) GPU
memory deallocation operation on Gtx480 is considerably
more expensive than its counterpart on either the host or
C1060.

Figure 6 shows the e↵ect on wall-clock runtime when us-
ing our polyhedral update-in-place code. On average, the
performance of SaC-seq is improved by 6.9⇥ and 9.2⇥ on
C1060 and Gtx480 respectively. These speedups, at first
glance, appear to be in contradiction to the dissection graphs
shown in Figure 4. Those graphs show that computation
takes approximately 29% of total execution time on both
platforms. Therefore, an average improvement of only 3.3⇥
is expected if both the overheads and data copying are elim-
inated by the optimization. Analysis revealed that polyhe-
dral in-place computations improved cache behavior, leading
to unexpected performance gains.
By contrast, the performance improvements of SaC-cuda

are more consistent with the corresponding runtime dissec-

1kx1k 2kx2k 3kx3k 4kx4k
0

2

4

6

8

10

12

14

Speedups of LUD with In-place Update (SAC-SEQ)

C1060

GTX480

Problem Sizes

S
p

e
e
d

u
p

s

Figure 6: LU speedups using update-in-place

Size SEQ SEQ CUDA CUDA MEM MEM
+PRA +PRA +PRA

1024 0.28 1.49 0.56 10.21 16 9
2048 0.19 1.33 0.97 11.22 66 34
4096 0.19 1.29 1.15 11.39 258 130

Table 1: Performance of the LUD Benchmark on the
Zen platform in GFLOPS and memory use in MB

tion graphs. The average speedups are 2.2⇥ and 6⇥ on
C1060 and Gtx480 respectively. The absence of cache hi-
erarchy in C1060 means a write will always access the global
memory directly regardless of whether the same element has
been read before or not. Therefore, in-place update does
provide the benefits as those described in the sequential case.
In the Gtx480, a 768B L2 cache was introduced to provide
fast data access for all processing cores (there is also an L1
cache but it is read-only). However, since the cache is often
shared among tens of thousands of concurrently executing
threads, the cache line loaded due to the access of an el-
ement is less likely to be present when the corresponding
write is issued. Therefore, write misses may still occur with
high frequency, a situation similar to writing to a di↵erent
array.
We show the absolute performance and memory require-

ments of the LUD benchmark in Table 1 as obtained from
the Zen platform (OS: Linux 2.6.35, CPU: Intel X5650i at
2.67GHz, GPU: nVidia C2070, Memory: 24GB, L1:32KB,
L2: 256KB and L3:12MB). The +PRA columns indicate the
performance when the re-use optimisation is enabled.
We can see an almost 7-fold increase in sequential per-

formance reflected in an increase from 190 MFLOPS to 1.3
GFLOPS. On the GPU, we see an even higher improvement
from roughly 1 GFLOP to 11 GFLOPS. The memory use
decreases by the amount needed for exactly one array of the

6

-‐noPRA	 -‐doPRA	

1024	 x	 1024	 0.28	 GFLOPS	 1.49	 GFLOPS	

2048	 x	 2048	 0.19	 GFLOPS	 1.33	 GFLOPS	

4096	 x	 4096	 0.19	 GFLOPS	 1.29	 GFLOPS	

Figure 5: LU Decomposition SaC-cuda dissections

ing time, and other overheads (mainly as a result of the
memory management overhead). As can be observed from
the dissections of SaC-seq runtime, the average percentages
of the three components are very consistent across all prob-
lem sizes on both platforms at 10% for overheads, 29% for
computation and 61% for data copying. The only exception
is for 1024⇥1024 matrix on C1060 where the overheads are
almost negligible. This is because allocating or freeing mem-
ory of size 1024 ⇥ 1024 ⇥ 8 = 8MB (assuming double data
type) is considerably faster than the other sizes on C1060.
By contrast, the SaC-cuda runtime dissections show that
the execution components with the highest percentages are
computation (54% on average) and overheads (52% on av-
erage) on C1060 and Gtx480 respectively. The two main
factors that cause the reduced significance of data copying
are: (i) Data copying between arrays in the GPU memory
is significantly faster than it is in the CPU memory due to
the much higher GPU memory bandwidth. This substan-
tially reduces the absolute data copying time and (ii) GPU
memory deallocation operation on Gtx480 is considerably
more expensive than its counterpart on either the host or
C1060.

Figure 6 shows the e↵ect on wall-clock runtime when us-
ing our polyhedral update-in-place code. On average, the
performance of SaC-seq is improved by 6.9⇥ and 9.2⇥ on
C1060 and Gtx480 respectively. These speedups, at first
glance, appear to be in contradiction to the dissection graphs
shown in Figure 4. Those graphs show that computation
takes approximately 29% of total execution time on both
platforms. Therefore, an average improvement of only 3.3⇥
is expected if both the overheads and data copying are elim-
inated by the optimization. Analysis revealed that polyhe-
dral in-place computations improved cache behavior, leading
to unexpected performance gains.
By contrast, the performance improvements of SaC-cuda

are more consistent with the corresponding runtime dissec-

1kx1k 2kx2k 3kx3k 4kx4k
0

1

2

3

4

5

6

7

8

Speedups of LUD with In-place Update (SAC-CUDA)

C1060

GTX480

Problem Sizes

S
p

e
e
d

u
p

s

Figure 6: LU speedups using update-in-place

Size SEQ SEQ CUDA CUDA MEM MEM
+PRA +PRA +PRA

1024 0.28 1.49 0.56 10.21 16 9
2048 0.19 1.33 0.97 11.22 66 34
4096 0.19 1.29 1.15 11.39 258 130

Table 1: Performance of the LUD Benchmark on the
Zen platform in GFLOPS and memory use in MB

tion graphs. The average speedups are 2.2⇥ and 6⇥ on
C1060 and Gtx480 respectively. The absence of cache hi-
erarchy in C1060 means a write will always access the global
memory directly regardless of whether the same element has
been read before or not. Therefore, in-place update does
provide the benefits as those described in the sequential case.
In the Gtx480, a 768B L2 cache was introduced to provide
fast data access for all processing cores (there is also an L1
cache but it is read-only). However, since the cache is often
shared among tens of thousands of concurrently executing
threads, the cache line loaded due to the access of an el-
ement is less likely to be present when the corresponding
write is issued. Therefore, write misses may still occur with
high frequency, a situation similar to writing to a di↵erent
array.
We show the absolute performance and memory require-

ments of the LUD benchmark in Table 1 as obtained from
the Zen platform (OS: Linux 2.6.35, CPU: Intel X5650i at
2.67GHz, GPU: nVidia C2070, Memory: 24GB, L1:32KB,
L2: 256KB and L3:12MB). The +PRA columns indicate the
performance when the re-use optimisation is enabled.
We can see an almost 7-fold increase in sequential per-

formance reflected in an increase from 190 MFLOPS to 1.3
GFLOPS. On the GPU, we see an even higher improvement
from roughly 1 GFLOP to 11 GFLOPS. The memory use
decreases by the amount needed for exactly one array of the

6

RunYme	 Impact	 (GPU)	

14	

-‐noPRA	 -‐doPRA	

1024	 x	 1024	 0.56	 GFLOPS	 10.21	 GFLOPS	

2048	 x	 2048	 0.97	 GFLOPS	 11.22	 GFLOPS	

4096	 x	 4096	 1.15	 GFLOPS	 11.39	 GFLOPS	

Memory	 Impact	 	

15	

-‐noPRA	 -‐doPRA	

1024	 x	 1024	 16	 MB	 9	 MB	

2048	 x	 2048	 66	 MB	 34	 MB	

4096	 x	 4096	 258	 MB	 138	 MB	

Conclusions	

•  Polyhedral	 model	 is	 an	 excellent	 means	 to	
formalise	 array	 accesses	

•  Even	 a	 dependency	 free	 setng	 benefits	 from	
the	 full	 power	

•  Reuse	 enables	 copy	 eliminaYon	
•  Leads	 to	 essenYal	 speedups/	 bridges	 the	 gap	
to	 classical	 for	 loops	

16	

