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With-‐Loops	  in	  SaC	  

a	  =	  with	  {	  
	  	  	  	  	  	  	  	  	  	  (	  [1,1]	  <=	  iv	  <	  [3,3]	  )	  :	  f(iv);	  
	  	  	  	  	  	  	  }	  :	  genarray(	  [5,8],	  def);	  

3	  

def	   def	   def	   def	   def	   def	   def	   def	  

def	   f([1,1])	   f([1,2])	   f([1,3])	   def	   def	   def	   def	  

def	   f([2,1])	   f([2,2])	   f([2,3])	   def	   def	   def	   def	  

def	   f([3,1])	   f([3,2])	   f([3,3])	   def	   def	   def	   def	  

def	   def	   def	   def	   def	   def	   def	   def	  



Memory	  Management	  

a	  =	  with	  {	  
	  	  	  	  	  	  	  	  	  	  (	  [1,1]	  <=	  iv	  <	  [3,3]	  )	  :	  e(iv);	  
	  	  	  	  	  	  	  }	  :	  genarray(	  [5,8],	  def);	  
	  	  
b	  =	  …	  a	  ………….	  a	  ……..	  
	  
c	  =	  ……….	  a	  ……..	  	  

4	  

allocate	  
Iterate	  &	  fill	  

free	  



Memory	  Reuse	  Example	  
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a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   f([1,1])	   f([1,2])	   f([1,3])	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   f([2,1])	   f([2,2])	   f([2,3])	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   f([3,1])	   f([3,2])	   f([3,3])	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

b	  =	  with	  {	  
	  	  	  	  	  	  	  	  	  	  (	  [1,1]	  <=	  iv	  <	  [3,3]	  )	  :	  f(iv);	  
	  	  	  	  	  	  	  }	  :	  modarray(	  a);	  

Can	  we	  reuse	  exisYng	  array	  a	  to	  represent	  new	  array	  b	  ?	  
-‐  Smaller	  memory	  footprint	  
-‐  Avoid	  copying	  overhead	  
-‐  Depends	  on	  reference	  count	  



Memory	  Reuse	  ?	  
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a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   f([1,1])	   f([1,2])	   f([1,3])	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   f([2,1])	   f([2,2])	   f([2,3])	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   f([3,1])	   f([3,2])	   f([3,3])	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	   a[iv]	  

Can	  we	  recycle	  a	  ?	  
f(	  iv)	  =	  42	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ✓	  	  	  	  	  	  	  	  	  
f(	  iv)	  =	  c[iv+1]	  	  	  	  	  	  	  	  	  	  ✓


f(	  iv)	  =	  a[iv]	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ✓	  
f(	  iv)	  =	  a[iv	  +	  [1,0]]	  	  


f(	  iv)	  =	  a[iv	  +	  [3,0]]	  	  ✓	  	  	  
f(	  iv)	  =	  a[0,0]	  	  	  	  	  	  	  	  	  	  	  	  ✓	  



General	  Case	  
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...	  

a	  

b	  

c	  

d	  

a[i]	  
b[i]	  

c[i]	  

a[i-‐20]	  +	  b[i-‐1]	  +	  c[i+10]	  

0	   20	   40	  

Which	  array	  (if	  any)	  can	  we	  recycle?	  



ObservaYons	  
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Polyhedral	  representa8ons	  lend	  themselves!	  
	  
Polyhedral	  tooling	  may	  be	  used!	  
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with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A0[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
di↵erent iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A0[Iv] where A[Iv] is a global write access and A0[Iv] is an
in-place read. Essentially, it performs data copying from A0

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate i↵ the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loop Wl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two di↵erent accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A0[Iv], the data space DS of A0 copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A0 (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
a�ne access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an a�ne access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the a�ne descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7! RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7! CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS  Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A] RDS[A] [DS;
11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A0[Iv] be the in-place read of this copy
assignment;

15 Affine, DS  Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A0] CDS[A0] [DS;
18 else
19 Terminate;

20 else
21 Continue;

22 RC ;;
23 foreach A with (A 7! CDS) 2 CDS do
24 if RDS[A] ✓ CDS[A] then
25 RC RC [ {A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4
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with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A0[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
di↵erent iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A0[Iv] where A[Iv] is a global write access and A0[Iv] is an
in-place read. Essentially, it performs data copying from A0

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate i↵ the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loop Wl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two di↵erent accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A0[Iv], the data space DS of A0 copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A0 (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
a�ne access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an a�ne access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the a�ne descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7! RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7! CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS  Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A] RDS[A] [DS;
11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A0[Iv] be the in-place read of this copy
assignment;

15 Affine, DS  Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A0] CDS[A0] [DS;
18 else
19 Terminate;

20 else
21 Continue;

22 RC ;;
23 foreach A with (A 7! CDS) 2 CDS do
24 if RDS[A] ✓ CDS[A] then
25 RC RC [ {A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4
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with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A0[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
di↵erent iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A0[Iv] where A[Iv] is a global write access and A0[Iv] is an
in-place read. Essentially, it performs data copying from A0

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate i↵ the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loop Wl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two di↵erent accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A0[Iv], the data space DS of A0 copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A0 (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
a�ne access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an a�ne access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the a�ne descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7! RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7! CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS  Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A] RDS[A] [DS;
11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A0[Iv] be the in-place read of this copy
assignment;

15 Affine, DS  Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A0] CDS[A0] [DS;
18 else
19 Terminate;

20 else
21 Continue;

22 RC ;;
23 foreach A with (A 7! CDS) 2 CDS do
24 if RDS[A] ✓ CDS[A] then
25 RC RC [ {A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4

Use	  the	  PolyLib	  for	  polyhedral	  operaYons:	  
-‐  Union	  of	  data	  spaces	  
-‐  Inclusion	  relaYonship	  
-‐  Image	  of	  polytope	  under	  affine	  tranformaYon	  



Example:	  LU	  DecomposiYon	  

12	  

F•ID. The result is the union of all such array access spaces
under di↵erent control paths. After all array accesses in Wl
have been examined, each entry (A 7! RDS) in table RDS
represents the total data space of A that is read by Wl , not
including those accessed by in-place reads. Similarly, each
entry (A 7! CDS) in table RDS represents the total data
space of A that is copied by Wl.

Algorithm 2: GetDataSpace (I, Iv, CP, SCiv)
Input: A loop iteration vector � I;

An access index vector � Iv;
A control path set � CP;
Symbolic constant vector � SCiv;

1 Affine  False;
2 DS  NULL;

3 F  Access_Analysis(Iv, I, SCiv);
4 if F 6= NULL then
5 Affine  True;
6 foreach CP 2 CP do
7 ID  Domain_Analysis(I, CP, SCiv);
8 if ID 6= NULL then
9 DS  DS [ F • ID;

10 else
11 Affine  False;
12 DS  NULL;
13 Break;

Output: Affine � True if the iteration domain and
access are a�ne, False otherwise;

DS � Data space accessed, NULL if Affine
is False;

After computing all relevant data spaces, the algorithm
infers the set of valid reuse candidates. An array A is con-
sidered only if part of it is copied by Wl (i.e., there is an
entry (A 7! CDS) in tableCDS). This ensures the e↵ective-
ness of copy elimination if A is selected to be reused. Array
A may potentially be a reuse candidate if its read data space
is a subset of its copy data space. In other words, if A is
reused for in-place update, every read from A will return
the same result, irrespective of its relative execution order
with a write to the same array location. Therefore, iter-
ations can be executed in arbitrary order while preserving
determinism.

In our implementation, we build on functions from the
Polylib library to perform the various operations over poly-
hedra, such as computing the union of data spaces (e.g., [),
determining the inclusion relationship (e.g,, ✓) and finding
the image of a polytope under a�ne transformation (i.e., •).

4. PERFORMANCE IMPACT
We evaluated the e↵ectiveness of our polyhedral-model-

based, update-in-place optimization using two benchmarks:
LU Decomposition and Needleman-Wunsch [14], generating
sequential and Cuda codes, referred to here as SaC-seq
and SaC-cuda . Our experiments were conducted on two
Linux64 2.6.35 platforms: The first system, dubbed C1060,
comprises an earlier generation of GPU on a 2-core, 1.6G Hz
Aeon 5110, L1=32B, L2=4MB; the second system, dubbed
GTE480, comprises a GTE480 GPU on a 4-core 2.8G Hz

Intel i7, L1=64B, L2=256B, L3=8MB.

4.1 LU Decomposition
The kernel of the SaC implementation of LU Decomposi-

tion is shown in Figure 3. We observe that both with-loops

for ( k = 0 ; k < N�1; k++) {
2 A = with {

( [ k+1,k ] <= [ i , j ] < [N, k+1])

4 : A[ i , j ] /A[ k , k ] ;

} : modarray ( A) ;

6 A = with {
( [ k+1,k+1] <= [ i , j ] < [N,N] )

8 : A[ i , j ]�A[ i , k ]⇤A[ k , j ] ;

} : modarray ( A) ;

10 }

Figure 3: SaC implementation of LU Decomposition.

in this algorithm can be performed in place. The only non-

Figure 4: LU Decomposition SaC-seq dissections

in-place read in the first with-loop is the selection A[k,k] in
line 4, which refers to an index outside the specified range.
Since we are dealing with a modarray-with-loop, all miss-
ing elements are inserted as index ranges over copy assign-
ments from A. Consequently, our analysis identifies A as a
reuse candidate for the with-loop in lines 2-5. Similarly,
the two non-in-place reads in line 8 are identified as reads
into copy assignment ranges leading to a further reuse of the
memory of a for the with-loop in lines 6-9. Note here, that
our previous technique described in [10] would not consider
any reuse possible here due to the occurance of non-in-place
reads in both cases.
Figures 4 and 5 show the runtime dissections of SaC-seq

and SaC-cuda, without in-place update, on several di↵er-
ent problem sizes. The total execution time is divided into
three components: compute time of the actual decomposi-
tion (i.e. column and sub-matrix computations), data copy-

5
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Figure 5: LU Decomposition SaC-cuda dissections

ing time, and other overheads (mainly as a result of the
memory management overhead). As can be observed from
the dissections of SaC-seq runtime, the average percentages
of the three components are very consistent across all prob-
lem sizes on both platforms at 10% for overheads, 29% for
computation and 61% for data copying. The only exception
is for 1024⇥1024 matrix on C1060 where the overheads are
almost negligible. This is because allocating or freeing mem-
ory of size 1024 ⇥ 1024 ⇥ 8 = 8MB (assuming double data
type) is considerably faster than the other sizes on C1060.
By contrast, the SaC-cuda runtime dissections show that
the execution components with the highest percentages are
computation (54% on average) and overheads (52% on av-
erage) on C1060 and Gtx480 respectively. The two main
factors that cause the reduced significance of data copying
are: (i) Data copying between arrays in the GPU memory
is significantly faster than it is in the CPU memory due to
the much higher GPU memory bandwidth. This substan-
tially reduces the absolute data copying time and (ii) GPU
memory deallocation operation on Gtx480 is considerably
more expensive than its counterpart on either the host or
C1060.

Figure 6 shows the e↵ect on wall-clock runtime when us-
ing our polyhedral update-in-place code. On average, the
performance of SaC-seq is improved by 6.9⇥ and 9.2⇥ on
C1060 and Gtx480 respectively. These speedups, at first
glance, appear to be in contradiction to the dissection graphs
shown in Figure 4. Those graphs show that computation
takes approximately 29% of total execution time on both
platforms. Therefore, an average improvement of only 3.3⇥
is expected if both the overheads and data copying are elim-
inated by the optimization. Analysis revealed that polyhe-
dral in-place computations improved cache behavior, leading
to unexpected performance gains.
By contrast, the performance improvements of SaC-cuda

are more consistent with the corresponding runtime dissec-
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Figure 6: LU speedups using update-in-place

Size SEQ SEQ CUDA CUDA MEM MEM
+PRA +PRA +PRA

1024 0.28 1.49 0.56 10.21 16 9
2048 0.19 1.33 0.97 11.22 66 34
4096 0.19 1.29 1.15 11.39 258 130

Table 1: Performance of the LUD Benchmark on the
Zen platform in GFLOPS and memory use in MB

tion graphs. The average speedups are 2.2⇥ and 6⇥ on
C1060 and Gtx480 respectively. The absence of cache hi-
erarchy in C1060 means a write will always access the global
memory directly regardless of whether the same element has
been read before or not. Therefore, in-place update does
provide the benefits as those described in the sequential case.
In the Gtx480, a 768B L2 cache was introduced to provide
fast data access for all processing cores (there is also an L1
cache but it is read-only). However, since the cache is often
shared among tens of thousands of concurrently executing
threads, the cache line loaded due to the access of an el-
ement is less likely to be present when the corresponding
write is issued. Therefore, write misses may still occur with
high frequency, a situation similar to writing to a di↵erent
array.
We show the absolute performance and memory require-

ments of the LUD benchmark in Table 1 as obtained from
the Zen platform (OS: Linux 2.6.35, CPU: Intel X5650i at
2.67GHz, GPU: nVidia C2070, Memory: 24GB, L1:32KB,
L2: 256KB and L3:12MB). The +PRA columns indicate the
performance when the re-use optimisation is enabled.
We can see an almost 7-fold increase in sequential per-

formance reflected in an increase from 190 MFLOPS to 1.3
GFLOPS. On the GPU, we see an even higher improvement
from roughly 1 GFLOP to 11 GFLOPS. The memory use
decreases by the amount needed for exactly one array of the
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-‐noPRA	   -‐doPRA	  

1024	  x	  1024	   0.28	  GFLOPS	   1.49	  GFLOPS	  

2048	  x	  2048	   0.19	  GFLOPS	   1.33	  GFLOPS	  

4096	  x	  4096	   0.19	  GFLOPS	   1.29	  GFLOPS	  



Figure 5: LU Decomposition SaC-cuda dissections

ing time, and other overheads (mainly as a result of the
memory management overhead). As can be observed from
the dissections of SaC-seq runtime, the average percentages
of the three components are very consistent across all prob-
lem sizes on both platforms at 10% for overheads, 29% for
computation and 61% for data copying. The only exception
is for 1024⇥1024 matrix on C1060 where the overheads are
almost negligible. This is because allocating or freeing mem-
ory of size 1024 ⇥ 1024 ⇥ 8 = 8MB (assuming double data
type) is considerably faster than the other sizes on C1060.
By contrast, the SaC-cuda runtime dissections show that
the execution components with the highest percentages are
computation (54% on average) and overheads (52% on av-
erage) on C1060 and Gtx480 respectively. The two main
factors that cause the reduced significance of data copying
are: (i) Data copying between arrays in the GPU memory
is significantly faster than it is in the CPU memory due to
the much higher GPU memory bandwidth. This substan-
tially reduces the absolute data copying time and (ii) GPU
memory deallocation operation on Gtx480 is considerably
more expensive than its counterpart on either the host or
C1060.

Figure 6 shows the e↵ect on wall-clock runtime when us-
ing our polyhedral update-in-place code. On average, the
performance of SaC-seq is improved by 6.9⇥ and 9.2⇥ on
C1060 and Gtx480 respectively. These speedups, at first
glance, appear to be in contradiction to the dissection graphs
shown in Figure 4. Those graphs show that computation
takes approximately 29% of total execution time on both
platforms. Therefore, an average improvement of only 3.3⇥
is expected if both the overheads and data copying are elim-
inated by the optimization. Analysis revealed that polyhe-
dral in-place computations improved cache behavior, leading
to unexpected performance gains.
By contrast, the performance improvements of SaC-cuda

are more consistent with the corresponding runtime dissec-
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Figure 6: LU speedups using update-in-place

Size SEQ SEQ CUDA CUDA MEM MEM
+PRA +PRA +PRA

1024 0.28 1.49 0.56 10.21 16 9
2048 0.19 1.33 0.97 11.22 66 34
4096 0.19 1.29 1.15 11.39 258 130

Table 1: Performance of the LUD Benchmark on the
Zen platform in GFLOPS and memory use in MB

tion graphs. The average speedups are 2.2⇥ and 6⇥ on
C1060 and Gtx480 respectively. The absence of cache hi-
erarchy in C1060 means a write will always access the global
memory directly regardless of whether the same element has
been read before or not. Therefore, in-place update does
provide the benefits as those described in the sequential case.
In the Gtx480, a 768B L2 cache was introduced to provide
fast data access for all processing cores (there is also an L1
cache but it is read-only). However, since the cache is often
shared among tens of thousands of concurrently executing
threads, the cache line loaded due to the access of an el-
ement is less likely to be present when the corresponding
write is issued. Therefore, write misses may still occur with
high frequency, a situation similar to writing to a di↵erent
array.
We show the absolute performance and memory require-

ments of the LUD benchmark in Table 1 as obtained from
the Zen platform (OS: Linux 2.6.35, CPU: Intel X5650i at
2.67GHz, GPU: nVidia C2070, Memory: 24GB, L1:32KB,
L2: 256KB and L3:12MB). The +PRA columns indicate the
performance when the re-use optimisation is enabled.
We can see an almost 7-fold increase in sequential per-

formance reflected in an increase from 190 MFLOPS to 1.3
GFLOPS. On the GPU, we see an even higher improvement
from roughly 1 GFLOP to 11 GFLOPS. The memory use
decreases by the amount needed for exactly one array of the

6

RunYme	  Impact	  (GPU)	  

14	  

-‐noPRA	   -‐doPRA	  

1024	  x	  1024	   0.56	  GFLOPS	   10.21	  GFLOPS	  

2048	  x	  2048	   0.97	  GFLOPS	   11.22	  GFLOPS	  

4096	  x	  4096	   1.15	  GFLOPS	   11.39	  GFLOPS	  



Memory	  Impact	  	  

15	  

-‐noPRA	   -‐doPRA	  

1024	  x	  1024	   16	  MB	   9	  MB	  

2048	  x	  2048	   66	  MB	   34	  MB	  

4096	  x	  4096	   258	  MB	   138	  MB	  



Conclusions	  

•  Polyhedral	  model	  is	  an	  excellent	  means	  to	  
formalise	  array	  accesses	  

•  Even	  a	  dependency	  free	  setng	  benefits	  from	  
the	  full	  power	  

•  Reuse	  enables	  copy	  eliminaYon	  
•  Leads	  to	  essenYal	  speedups/	  bridges	  the	  gap	  
to	  classical	  for	  loops	  

16	  


