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ABSTRACT
Loop tiling is a loop transformation widely used to improve
spatial and temporal data locality, increase computation
granularity, and enable blocking algorithms, which are par-
ticularly useful when offloading kernels on platforms with
small memories. When hardware caches are not available,
data transfers must be software-managed: they can be re-
duced by exploiting data reuse between tiles and, this way,
avoid some useless external communications. An important
parameter of loop tiling is the sizes of the tiles, which impact
the size of the necessary local memory. However, for most
analyzes that involve several tiles, which is the case for inter-
tile data reuse, the tile sizes induce non-linear constraints,
unless they are numerical constants. This complicates or
prevents a parametric analysis. In this paper, we show that,
actually, parametric tiling with inter-tile data reuse is never-
theless possible, i.e., it is possible to determine, at compile-
time and in a parametric fashion, the copy-in and copy-out
data sets for all tiles, with inter-tile reuse, as well as the sizes
of the induced local memories, without the need to analyze
the code for each tile size.

1. INTRODUCTION
Loop tiling is a well-known loop transformation used to

improve data locality, increase computation granularity, and
control the use and size of local memories for out-of-core
computations. We refer to [24] for all details on its se-
mantics, validity conditions, and code generation. It was
first introduced as “supernode partitioning” [14], for a set of
perfectly nested loops, as a grouping of iterations into super-
nodes. Supernodes are atomic (i.e., can be executed without
any communication/synchronization with other supernodes
except for live-in/live-out data at beginning/end of a tile ex-
ecution), identical by translation, bounded, and they form
a partition of the whole iteration space. Validity conditions
were given in terms of dependence cones and hyperplane par-
titioning, which define tiles as hyper-rectangles (after some
possible change of basis) and establish a link with affine
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scheduling and the generation of permutable loops. Today,
tiling is also used for non-perfectly nested loops [5], thanks
to multi-dimensional affine functions: as for the perfect case,
some permutable dimensions can be used to perform tiling,
even if not all instructions have the same iteration domain.
Analysis and code generation may involve more complex
sets, but the principles are similar.

Loop tiling can be viewed as a composition of strip-mining
and loop interchange, after a preliminary change of basis. It
transforms n nested loops into n tile loops iterating over the
tiles, surrounding n intra-tile loops iterating within a tile.
Dependence analysis and code generation for loop tiling is
well-established in the polyhedral model [10], i.e., for a set of
nested for loops, writing and reading multi-dimensional ar-
rays and scalar variables, where loop bounds, if conditions,
and array access functions are affine expressions of surround-
ing loop counters and structure parameters. In this case,
loop iterations can be represented by a polyhedral iteration
domain. When tile sizes are numerical constants, paramet-
ric (in terms of program counters and structural parameters)
polyhedral optimizations (e.g., linear programming) can be
used although loop tiling transforms n loops into 2n loops.
Indeed, the image by tiling of a n-dimensional polyhedral
iteration domain can be expressed as a 2n-dimensional poly-
hedral iteration domain, because the set of points after tiling
with fixed sizes can be described by affine inequalities.1

In general, parametric tiling refers to the case where tile
sizes are parameters too. Parametric analysis within a tile is
in general feasible as the set of points in a tile is defined with
affine constraints from the tile sizes and the tile origin (first
point in the tile). However, when an analysis involves sev-
eral tiles, it becomes more intricate, if not unsolvable, as a
priori expressing the tiled space with tile sizes as parameters
induces quadratic constraints. For example, the tiling the-
ory developed in [23], the code generation schemes of [14, 11,
6], the data movement and scratch-pad optimizations of [16,
15, 4, 3, 19] are not parametric. Recently, efficient code gen-
eration for parametric tiling [20, 13] as well as some form of
symbolic scheduling for tiled codes [7] have been developed.

In this paper, we show that the exact and approximated
inter-tile data reuse techniques developed in [3] can be ex-
tended to the parametric case. The trick to get around a
quadratic formulation is to work with all possible tiles, not
just the tiles that are part of the iteration space partitioning
and whose origins belong to a lattice, but the difficulty is to
make sure that exactness and correctness are maintained.

1However, difficulties due to large coefficients are possible.
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2. PREREQUISITES

2.1 Notations and definitions
Vectors are written with arrows such as ~i, with compo-

nents i1, . . . , in. The vector ~0 (resp. ~1) has all components

equal to 0 (resp. 1) and ~a◦~b is the product (component-wise)

of ~a and ~b. We denote by � the lexicographic total order
and by ≤ the component-wise partial order on vectors: ~i ≤ ~j
if ~i and ~j have same dimension and ik ≤ jk for all k.

We will not elaborate on how to build and interpret the
different affine functions for tiling non-perfectly nested loops.
To simplify the discussion and notations, we only focus on
the n dimensions to be tiled. We assume that each state-
ment S with iteration domain DS (with iteration vector~i) is

tiled, after a first affine mapping ~i 7→ ~i′ = θ(S,~i), by canon-
ical tiles whose sizes are specified by a vector ~s. In other
words, a point ~i is mapped to the tile indexed by ~T where

Tk = b i
′
k

sk
c, or equivalently skTk ≤ (θ(S,~i))k < sk(Tk + 1),

for k ∈ [1..n]. Also, we restrict to the case where both the
original program and the tiled program are executed sequen-
tially.2 Several orders of iterations in the tiled program are
possible, we consider that the tiled code is executed follow-
ing the lexicographic order on the 2n-dimensional vectors
(~T , ~i′). The tiled iteration domain for statement S is then:

TS = {(~T , ~i′) | ∃~i ∈ DS , ~i′ = θ(S,~i), ~0 ≤ ~i′ − ~s ◦ ~T ≤ ~s−~1}

If θ is a one-to-one mapping between integer points andDS is
the set of integer points in a polyhedron,~i can be eliminated
and TS is also the set of integer points in a polyhedron.

Example. We will illustrate the different concepts and steps
of our technique with the kernel jacobi_1d_imper from Poly-
Bench [18], with a time loop, and tiled in two dimensions.

for (t = 0; t < M; t++) {
for (i = 1; i < N - 1; i++)

S1: B[i] = 0.33333 * (A[i-1] + A[i] + A[i+1]);
for (j = 1; j < N - 1; j++)

S2: A[j] = B[j];
}

The Pluto compiler [17] generates the following mapping:

θ(S1, (t, i)) = (t, 2t+ i, 0) θ(S2, (t, j)) = (t, 2t+ j + 1, 1)
DS1 = DS2 = {(t, i) | 0 ≤ t ≤M − 1, 0 ≤ i ≤ N − 2}

This amounts to shifting S2 by 1 in the j loop, to fusing the
i and j loops, as depicted in Fig. 1, then to skewing by 2 the
inner loop before tiling (tiles have size 2× 3 in Fig. 1). �

2.2 Inter-tile reuse
The inter-tile reuse problem we consider is the kernel off-

loading with optimized remote accesses presented in [3]. A
kernel is tiled and offloaded, tile by tile, to a computing ac-
celerator (a FPGA for [3]). Initially, all data are in remote
(external) memory, while all computations are performed

on the accelerator. Each tile ~T consists of three successive
phases: a loading phase where data are copied from external
memory to local memory, enabling burst communications,

2However, parallelism inside a tile is possible, as well as hi-
erarchical tiling to play with the extent of the tiled domain.
Extensions to parallel executions seem also possible by defin-
ing a partial execution order, but this is left for future work.

t

i
Non-empty 2 × 3 tiles
drawn w.r.t the original
space, S1: red, S2: green.

Are also shown some
flow dependences, due to
reads of B, at distance
(0, 1), and reads of A, at
distance (1, 0), (1,−1),
(1,−2) in the (t, i) space.

Figure 1: jacobi1d kernel and skewed tiling.

then a compute part where the original computations cor-
responding to the tile are performed on the local memory,
and finally a storing phase where data are copied to exter-
nal memory. In addition, all compute parts are done sequen-
tially on the accelerator, following the lexicographic order on
tile indices, and the same is true for loading phases (resp.
storing phases). However, loads/stores can be done con-
currently with computations of other tiles, enabling pipelin-
ing and execution similar to double buffering, even when
some data are both read and written, thanks to inter-tile
reuse. The problem is to define the loading and storing sets
Load(~T ) and Store(~T ) for each tile ~T so that a data ele-
ment is never loaded from external memory if it is already
available in local memory, i.e., it has already been loaded or
computed (as, in this latter case, the external memory is not
necessarily up-to-date). This inter-tile reuse is performed for
each tile strip (subspace of tiles corresponding to inner tile
dimensions). In [3], a tile strip is one-dimensional, but the
technique can be applied to multi-dimensional strips. This
choice however impacts the size of the local memory.

The procedure developed in [3] is based on parametric
linear programming [9]. It consists in performing loads (resp.
stores) as late (resp. as soon) as possible, i.e., a data element
is loaded just before the first tile that accesses it, if this
access is a read, and is stored just after the last tile that
writes it. Among all schemes that exploit a full inter-tile
reuse, this tends to reduce the size of the local memory. We
illustrate this technique on the jacobi_1d_imper example.

Example (cont’d). For the tiling of Fig. 1, a 1D tile strip is
vertical, indexed by T1 = b t

s1
c. To simplify explanations, we

only consider the array A (the array B is not live-in of a tile
strip). We compute the first operation (following the order
in the tiled code) that accesses A[m], i.e., with (i1, i2) = (t, i)
and parameters M , N , m, T1, we compute the lexicographic
minimum of (T2, i

′
1, i
′
2, k, i1, i2) such that:

{
−1 ≤ m− i2 ≤ 1, 0 ≤ i1 ≤M − 1, 1 ≤ i2 ≤ N − 2, k = 0,
i′1 = i1, i′2 = 2i1 + i2, 0 ≤ i′1 − 2T1 ≤ 1, 0 ≤ i′2 − 3I2 ≤ 2

∨{
m = i2, 0 ≤ i1 ≤M − 1, 1 ≤ i2 ≤ N − 2, k = 1, i′1 = i1,
i′2 = 2i1 + i2 + 1, 0 ≤ i′1 − 2T1 ≤ 1, 0 ≤ i′2 − 3T2 ≤ 2

The first set of constraints corresponds to reads in S1 and
specifies that A[m] is A[i-1], A[i], or A[i+1], that itera-
tions in tiles are valid, i.e., (T1, T2, i

′
1, i
′
2) ∈ TS , and k = 0

expresses the third component of θ(S1, (t, i)). The second
set of constraints corresponds to writes in S2 (with k = 1).
The lexicographic minimum is expressed as a disjunction of
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cases (a QUAST [9] or quasi affine solution tree). Then, all
solutions (i.e., leaves of the tree) that correspond to a write
operation are removed. Here, all first accesses are reads, no
simplification is needed. It remains to project out the vari-
ables i′1, i′2, i1, i2, k, to get a relation between tile index ~T
and array element m, which describes Load(~T ) as a union:

{m | 0 ≤ 2T1 ≤M − 1, 2 ≤ m ≤ N − 1, 1 ≤ m+ 4T1 − 3T2 ≤ 3}
∪
{m | 0 ≤ m ≤ 1, 3 ≤ N, 0 ≤ 2T1 ≤M − 1, −1 ≤ 4T1 − 3T2 ≤ 1}

The second set corresponds to loading the additional A[0]
and A[1] for the unique tile in the tile strip that contains
an iteration (t, 1) on its first column (squares in Fig. 1). �

As can be seen from the inequalities involved in the pre-
vious example with ~s = (2, 3) (and in the definition of TS),
considering the components of the size vector ~s as param-
eters generates quadratic constraints. In other words, this
formulation is inherently not linear in the tile sizes. The goal
of this paper is to show that, surprisingly, the problem can
nevertheless be solved, both for exact inter-tile reuse (as in
the previous example) and with approximations, thus fully
extending the work of [2] to parametric tiling.

3. DEALING WITH UNALIGNED TILES
The first key idea is to represent each tile not with its tile

index ~T defined earlier, but with the indices ~I of its origin
(first element in the tile in the lexicographic order). The
first difference is that tiles are scanned with loops with in-
crements equal to ~1 when ~T is used and ~s when ~I is used.
The second difference is that, when ~I is used instead of ~T ,
the set of elements ~i in a tile is affine in ~s: this is the set of
all ~i such that ~I ≤~i ≤ ~I +~s−~1. In other words, parametric
analysis inside a tile is possible. This representation is not
new, it is used for analysis in PIPS [12][Fig. 6] and for para-
metric code generation [20]. Of course, the non-linearity has

not disappeared yet. Indeed, the tile origins ~I are restricted
to the lattice L defined by ~I ∈ L iff ~I = ~s ◦ ~J for some inte-
ger vector ~J . Without these lattice constraints, the inter-tile
reuse problem would be affine in ~s. The second key idea is
to show how these quadratic constraints can be ignored.

Note that, with standard conditions for tiling (i.e., when
all dependence distances are non-negative along the dimen-
sions being tiled [14]), if a tiling is valid, then any transla-
tion of it is valid too. In other words, considering all tile
origins ~I = ~s◦ ~J + ~I0 for some vector ~I0 defines a valid tiling
too. This has the same effect as defining the tiling from the
shifted mapping ~i 7→ σ(S,~i)− ~I0 for all S. We say that two
tiles are aligned if they belong to the same tiling.

3.1 Exact approach with set equations
The formulation given in Section 2.2 as a linear program-

ming optimization is one possible approach to solve the prob-
lem. It was initially formulated in [3] as set equations:

• Load(~T ) = In(~T ) \ {In( ~T ′ ≺ ~T ) ∪Out( ~T ′ ≺ ~T )}
• Store(~T ) = Out(~T ) \Out( ~T ′ � ~T )

In(~T ) and Out(~T ) are the standard live-in and live-out sets

for tile ~T , as defined for example for array region analysis [8].

X( ~T ′ ≺ ~T ) denotes the union of all sets X( ~T ′) for all tiles ~T ′

executed before ~T (lexicographic order) in the same tile strip

as ~T . Expressing X( ~T ′ ≺ ~T ) from X( ~T ′) is done simply by

adding the constraint ~T ′ ≺ ~T and specifying that ~T ′ is in

Here ~s = (2, 2)~I <~s
~I ′~I ′ <~s

~I

~I

I2

I1
~I ′ ≺~s ~I ~I ≺~s ~I ′

~I

I2

I1

Figure 2: Orders v~s and �~s. Points are tile origins.

the strip where reuse is exploited. This reuse is obtained
thanks to set differences. Intuitively, one would expect to
subtract Load( ~T ′ ≺ ~T ) from Load(~T ) and Store(~T ′ � ~T )

from Store(~T ), but such recursive definitions are not usable.
We now consider all tiles, not just those whose origins

belong to the lattice L, but all with the same ~s. We define
two relations on tiles:
• ~I ′ <~s

~I iff ~I ′ ≺ ~I and ~I − ~I ′ ∈ L.
• ~I ′ ≺~s

~I iff, for some k ∈ [1..n], I ′i ≤ Ii for all i < k and

I ′k ≤ Ik − sk where n is the dimension of ~I and ~I ′.
Their standard reflexive extensions v~s and �~s are partial
orders. Fig. 2 shows all tile origins ~I ′ strictly smaller (in

blue) or larger (in red) than the tile origin ~I (in black), for
v~s and �~s. Tiles comparable for v~s are aligned with each
other. Also, when ~s = ~1, the orders �, �~s, and v~s are equal.

Property 1. The strict order ≺~s can be equivalently de-
fined as follows: ~I ′ ≺~s

~I iff, in the tiling induced by ~I (the

same is true with ~I ′), every point in the tile ~I ′ is executed be-

fore any point in the tile ~I (but ~I and ~I ′ may not be aligned).

With tile origins, the Load/Store equations can be rewritten:

• Load(~I) = In(~I) \ (In(~I ′ <~s
~I) ∪Out(~I ′ <~s

~I)) (1)

• Store(~I) = Out(~I) \Out(~I ′ =~s
~I) (2)

The key is to show that these sets can also be defined as:
• Load(~I) = In(~I) \ (In(~I ′ ≺~s

~I) ∪Out(~I ′ ≺~s
~I)) (3)

• Store(~I) = Out(~I) \Out(~I ′ �~s
~I) (4)

This is not obvious as the difference now also involves un-
aligned tiles that do not belong to the same tiling as ~I.
Nicely, these sets only involve affine constraints and can thus
be computed with a library such as isl [21]. Before proving
these formulas, we first illustrate their use with our example.

Example (cont’d). The following Load & Store sets were
computed thanks to the isl calculator iscc [22] with the
generic script of Fig. 3, for jacobi_1d_imper (see Fig. 1).

Load(~I) ={
A(m)

∣∣∣∣ 1 ≤ m+ 2I1 − I2 ≤ s2, s1 ≥ 1, I1 ≥ 0, m ≥ 1,
I1 ≤ −1 +M, I2 ≥ 2− s2 + 2I1, m ≤ −1 +N, N ≥ 3

∪{
A(m)

∣∣∣∣ m ≥ 1 + I2, m ≥ 1, M ≥ 1, m ≤ −1 +N, I1 ≤ −1,
I1 ≥ 1− s1, I2 ≥ 2− s2, N ≥ 3, m ≤ s2 + I2

∪{
A(1)

∣∣ I2 = 1 + 2I1 ∧ 0 ≤ I1 ≤ −1 +M, N ≥ 3, s1 ≥ 1, s2 ≥ 1
∪{
A(m)

∣∣ 0 ≤ m ≤ 1, I2 = 1 ≤ s2, 1− s1 ≤ I1 ≤ −1, M ≥ 1, N ≥ 3
∪{
A(0)

∣∣ 0 ≤ I1 ≤M − 1, N ≥ 3, s1 ≥ 1, 1 ≤ I2 − 2I1 ≥ 2− s2
∪{
A(0)

∣∣ 1− s1 ≤ I1 ≤ −1, M ≥ 1, N ≥ 3, I2 ≥ 2− s2, I2 ≤ 0
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Store(~I) ={
B(m)

∣∣∣∣ m ≥ 1, m ≥ 2− 2M + s2 + I2, m ≤ −2 +N,
I1 ≥ 1− s1, 2 ≤ m+ 2s1 + 2I1 − I2 ≤ 1 + s2, s1 ≥ 1

∪B(m)

∣∣∣∣∣∣
m ≥ 1, s1 ≥ 1, m ≤ −2 +N, I1 ≤ −1 +M,
m ≤ 1− 2M + s2 + I2, m ≥ 2− 2s1 − 2I1 + I2,
I1 ≥ 1− s1, M ≥ 1, m ≥ 2− 2M + I2

∪{
A(m)

∣∣∣∣ m ≥ 1, m ≥ 1− 2M + s2 + I2, m ≤ −2 +N,
I1 ≥ 1− s1, 1 ≤ m+ 2s1 + 2I1 − I2 ≤ s2, s1 ≥ 1

∪A(m)

∣∣∣∣∣∣
m ≥ 1, s1 ≥ 1, m ≤ −2 +N, I1 ≤ −1 +M,
m ≤ −2M + s2 + I2, m ≥ 1− 2s1 − 2I1 + I2,
I1 ≥ 1− s1, M ≥ 1, m ≥ 1− 2M + I2

The fact that the array B appears in the Store set may
be surprising as B is recomputed in each tile strip (this is
why it does not appear in the Load set). This is because
the script of Fig. 3 considers each tile strip in isolation. To
be able to remove B from the Store set, one would need a
similar analysis on tile strips to discover that B is actually
overwritten by subsequent tile strips. Then, only the last
tile strip should store B, in case it is live-out of the program.

It can be checked (e.g., with iscc) that the set Load(~I)

above is indeed a generalization of the set Load(~T ) derived
earlier for the canonical tiling with ~s = (2, 3). This is the
complete expression, parameterized by ~s, of all cases, in-
cluding incomplete tiles, and even tilings obtained by trans-
lation of L. Note that simply changing Strip (see Fig. 3)
into {[I_1,I_2]->[I_1’,I_2’]} gives 2D inter-tile reuse, i.e.,
in the whole space. Constraints on parameters or ~I can also
be added as in Params, e.g., to get simplified Load/Store
sets for complete tiles, or to only consider large tiles, etc.
Note however that isl uses coalescing heuristics to simplify
expressions and, depending on the constraints, the outcome
can be simpler or more complicated (although equivalent).
Here, replacing s1 ≥ 0 by s1 > 0 changes the expression. �

To prove that, when all sets In(~I) and Out(~I) are exact,
it is equivalent to use ≺~s instead of <~s in the Load/Store
formulas, we define the concept of pointwise functions. This
is exactly what we need to understand the problems, even
more subtle in the case of approximations, related to the
equality (or not) of some unions of images of sets (as in
Eqs. (1) and (3) for Load, and (2) and (4) for Store). If A is
a set, P(A) denotes the set of subsets of A (sometimes also
written 2A). Below, the function F is typically a function
such as Out, which maps a tile, i.e., a subset of the tile
strip (A), to a subset of all data elements (B).

Definition 1. Let A and B be two sets, C ⊆ P(A). The
function F : C → P(B) is pointwise iff there exists a func-
tion f : A → P(B) such that ∀X ∈ C, F (X) =

⋃
x∈X f(x).

If F and G are from C to P(B), we write F ⊆ G if ∀X ∈ C,
F (X) ⊆ G(X). The following identifies the “largest” f .

Property 2. For F : C ⊆ P(A) → P(B), let F◦ be the
pointwise function defined from f◦(x) =

⋂
Y ∈C, x∈Y F (Y ).

Then F◦ is the largest pointwise under-approximation of F ,
i.e., F◦ ⊆ F and, if F ′ is pointwise, F ′ ⊆ F ⇒ F ′ ⊆ F◦. In
particular, F is pointwise if and only if F = F◦.

Proof. LetX ∈ C and y ∈ F◦(X) = ∪x∈Xf◦(x): ∃xy∈ X
such that y ∈ f◦(xy). With Y = X in the definition of f◦,
we get f◦(xy) ⊆ F (X), thus y ∈ F (X), and F◦ ⊆ F . If F ′

# Inputs
Params := [M, N, s_1, s_2] -> { : s_1 >= 0 and s_2 >= 0 };
Domain := [M, N] -> { # Iteration domains

S_1[i_1, i_2] : 1 <= i_2 <= N-2 and 0 <= i_1 <= M-1;
S_2[i_1, i_2] : 1 <= i_2 <= N-2 and 0 <= i_1 <= M-1;

} * Params;
Read := [M, N] -> { # Read access functions

S_1[i_1, i_2] -> A[m] : -1 + i_2 <= m <= 1 + i_2;
S_2[i_1, i_2] -> B[i_2]; } * Domain;

Write := [M, N] -> { # Write access functions
S_1[i_1, i_2] -> B[i_2];
S_2[i_1, i_2] -> A[i_2]; } * Domain;

Theta := [M, N] -> { # Preliminary mapping
S_1[i_1, i_2] -> [i_1, 2 i_1 + i_2, 0];
S_2[i_1, i_2] -> [i_1, 1 + 2 i_1 + i_2, 1]; };

# Tools for set manipulations
Tiling := [s_1, s_2] -> { # Two dimensional tiling

[[I_1, I_2] -> [i_1, i_2, k]] -> [i_1, i_2, k] :
I_1 <= i_1 < I_1 + s_1 and I_2 <= i_2 < I_2 + s_2 };

Coalesce := { [I_1, I_2] -> [[I_1, I_2] -> [i_1, i_2, k]] };
Strip := { [I_1, I_2] -> [I_1, I_2’] };
Prev := { # Lexicographic order

[[I_1, I_2] -> [i_1, i_2, k]] -> [[I_1, I_2] -> [i_1’, i_2’, k’]] :
i_1’ <= i_1 - 1 or (i_1’ <= i_1 and i_2’ <= i_2 - 1)
or (i_1’ <= i_1 and i_2’ <= i_2 and k’ <= k - 1) };

TiledPrev := [s_1, s_2] -> { # Special ‘‘lexicographic’’ order
[I_1, I_2] -> [I_1’, I_2’] : I_1’ <= I_1 - s_1 or

(I_1’ <= I_1 and I_2’ <= I_2 - s_2) } * Strip;
TiledNext := TiledPrev^-1;
TiledRead := Tiling.(Theta^-1).Read;
TiledWrite := Tiling.(Theta^-1).Write;

# Set/relation computations
In := Coalesce.(TiledRead - (Prev.TiledWrite));
Out := Coalesce.TiledWrite;
Load := In - ((TiledPrev.In) + (TiledPrev.Out));
Store := Out - (TiledNext.Out);
print coalesce (Load % Params);
print coalesce (Store % Params);

Figure 3: Script iscc for the Jacobi1D example.

is pointwise and F ′ ⊆ F , then f ′(x) ∈ F ′(Y ) ⊆ F (Y ) for all
Y ∈ C such that x ∈ Y . Thus f ′(x) ⊆ f◦(x) by definition
of f◦. Finally, if F is pointwise, F ⊆ F◦, thus F = F◦ since
F◦ ⊆ F . Conversely, if F = F◦, F is pointwise with f◦.

Property 3. F : C → P(B) is pointwise iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).

Proof. Let A =
⋃

X∈C′ X and B =
⋃

X∈C′′ X. If F is
pointwise,

⋃
X∈C′ F (X) =

⋃
X∈C′

⋃
x∈X f(x) =

⋃
x∈A f(x),

the same for B. Thus, if A = B, the two unions are equal.
Now suppose that F is not pointwise. Property 2 shows

that there exist X ∈ C and y ∈ F (X) \ F◦(X), where
F◦(X) =

⋃
x∈X

⋂
Y ∈C,x∈Y F (Y ), i.e., ∀x ∈ X, ∃Yx ∈ C such

that x ∈ Yx and y /∈ F (Yx). By construction, X ⊆
⋃

x∈X Yx

thus
⋃

x∈X Yx = X∪(
⋃

x∈X Yx). But y /∈
⋃

x∈X F (Yx) while
y ∈ F (X) thus y ∈ F (X)∪(

⋃
x∈X F (Yx)), contradiction.

Property 3 is exactly what we need to prove the formulas.
The set A is the set of iterations in the tile strip to be ana-
lyzed. The set C is the set of all tiles (aligned or unaligned)

intersected with A. Since all tiles aligned with ~I form a par-
tition of A, ∪~I′≺~s

~I
~I ′ = ∪~I′<~s

~I
~I ′: it is the set of all points

executed before any point in ~I. In [3], all written values are

supposed to be live-out, so Out(~I) = Write(~I), the values

written in ~I. In general, if Liveout is the set of all elements
live-out of the tile strip, then the right formulas are:
• Load(~I) = In(~I) \ (In(~I ′ <~s

~I) ∪Write(~I ′ <~s
~I)) (5)

• Store(~I) = Liveout ∩ (Write(~I) \Write(~I ′ =~s
~I)) (6)
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The function Write is, by definition, pointwise, as it is the
union, for all points ~i in ~I, of the set of values written at it-
eration~i. Thus, in Eq. (6), one can replace =~s by �~s. Also,

even if ~I 7→ In(~I) may not be pointwise, any element read

but not written in ~I is live-in for ~I, thus In(~I) ∪Write(~I) =

Read(~I) ∪Write(~I). As the function Read ∪Write is point-
wise, <~s can be safely replaced by ≺~s in Eq. (5) too.

This concludes the proof for the exact case.

3.2 The case of approximations
There are at least four reasons why approximations of the

various sets In, Out, Load, Store may be used.
• The execution of S at iteration~i is not sure, e.g., when

it depends on a non-analyzable if condition.
• The access functions are not fully analyzable.
• The In/Out sets are approximated on purpose (e.g.,

they are restricted to polyhedra or hyper-rectangles).
• The Load/Store sets are approximated to make them

simpler, or to get transfer sets of some special form.
In the first two cases, the approximation is pointwise, so
the Read/Write functions remain pointwise. In the last two
cases, it is more likely that the function In ∪ Out is not
pointwise anymore. We now address these two situations.
We first recall the principles stated in [3] to handle approxi-
mations, assuming that the sets In, Out, and Out are given

such that In(~I) ⊆ In(~I) and Out(~I) ⊆ Out(~I) ⊆ Out(~I).

3.2.1 Non-parametric case
The first step is to define the Store sets, as exactly as

possible from the Out sets, i.e., data possibly written:
• Store(~I) = Liveout ∩ (Out(~I) \Out(~I ′ =~s

~I)) (7)

Then, any over-approximation Store(~I) of Store(~I) can be
used. Eq. (7) means that an element considered live-out of
the tile strip and possibly defined is always stored to external
memory, in case it is written at runtime. As some elements
which are stored may not be actually defined during the
execution, they are added to the set of input elements so
that their initial values are stored back instead of garbage:

• In
′
(~I) = In(~I) ∪ (Store(~I) \Out(~I)) (8)

The Load sets are then defined, as exactly as possible,

from the approximated In
′
, Out, and Out sets. Follow-

ing [3][Thm. 3], approximated loads are valid if for any tile ~I:

• Ra(~I) = In
′
(~I) \Out(~I ′ <~s

~I) ⊆ Load(~I ′ v~s
~I). (9)

• Out(~I ′ <~s
~I) ∩ Load(~I) = ∅. (10)

The first condition means that all data possibly read from
outside of the tile strip – the remote accesses Ra(~I) – have
to be loaded earlier. The second condition means that data
possibly defined earlier in the tile strip should not be loaded,
as this could overwrite some valid data. The following equa-
tion gives a non-recursive definition of Load(~I), simpler than
the formula given in [3][Thm. 6] (although equivalent):

• Ra~I ∩ ((In
′ ∪Out)(~I) \ (In

′ ∪Out)(~I ′ <~s
~I)) (11)

where Ra~I denotes the set of all remote accesses for the tile

strip, i.e., the union of all Ra(~I ′), as defined in Eq. (9), where
~I ′ and ~I belong to the same tiling. Prop. 4 proves that the
formula of Eq. (11) defines the loads as expected.

Property 4. The function ~I 7→ Load(~I) of Eq. (11) de-

fines valid loads, “exact” w.r.t. the In
′
, Out, and Out sets

(no useless or redundant loads), and done as late as possible.

In the next proof and later, we write ∆F the function

defined from a function F by ∆F (~I) = F (~I) \ F (~I ′ <~s
~I).

By induction, for all ~I, ∆F (~I ′ v~s
~I) = F (~I ′ v~s

~I) (but the

first one is a disjoint union) and, similarly, ∆F (~I ′ <~s
~I) =

F (~I ′ <~s
~I). This implies the recursive relation ∆F (~I) =

F (~I)\∆F (~I ′ <~s
~I). Also, ∆F (~I) = F (~I ′ v~s

~I)\F (~I ′ <~s
~I).

Proof. We now prove Property 4. We first prove that
the loads are valid. Eq. (10) is satisfied since Out(~I ′ <~s

~I)

is subtracted in Eq. (11). By defining F = In
′ ∪ Out, we

get Load( ~J) = Ra~I ∩ ∆F ( ~J) for all ~J aligned with ~I, thus

Load(~J ′ v~s
~J) = Ra~I ∩∆F (~J ′ v~s

~J) = Ra~I ∩ F (~J ′ v~s
~J).

As Ra( ~J) ⊆ Ra~I and Ra( ~J) ⊆ In
′
( ~J) ⊆ F ( ~J), then Ra( ~J) ⊆

Ra~I ∩ F (~J ′ v~s
~J), thus Eq. (9) is satisfied too. Note that

the intersection with Ra~I in Load(~I) is not needed for cor-
rectness but it makes sure there are no useless loads. Also,
Load( ~J) = Ra~I ∩ (F ( ~J) \ ∆F (~J ′ <~s

~J)) = (Ra~I ∩ F ( ~J)) \
Load(~J ′ <~s

~J), thus there are no redundant loads. Finally,

if y ∈ Load( ~J), either y ∈ In
′
( ~J) and y must be loaded be-

fore ~J as it may be read in ~J , or y ∈ Out( ~J) and it cannot
be loaded later or it will overwrite the value possibly written
in ~J . Loads are thus done as late as possible.

The mechanism implicit in Eq. (11) is finally simple: un-
like for the exact case, a remote access considered as live-in

for ~I (i.e., in In
′
(~I)) cannot be loaded just before ~I if it may

be written earlier (i.e., in Out(~I ′ <~s
~I)). Otherwise, the

load will erase the right value if, at runtime, it is actually
written earlier. Instead, the trick is to load the element be-
fore the first tile ~I ′ that may write it. This way, either the
value is defined locally and the read in ~I gets this value,
or it is not and the read gets the original value. Then any
over-approximation Load(~I) of this “exact” Load(~I) can be
used (even if it may generate some useless loads) as long as

it still satisfies Load(~I) ∩Out(~I ′ <~s
~I) = ∅.

3.2.2 Parametric case
Now, the goal is to reformulate Eq. (11) so that it can be

computed with ~s as parameter. The situation is much more
complex than for the exact case (Section 3.1) but, neverthe-
less, all situations can be handled thanks to an extensive use
of the concept of pointwise function.

We first consider the case where the accesses of each iter-
ation~i are approximated with write(~i) ⊆ write(~i) ⊆ write(~i)

and read(~i) ⊆ read(~i), with the corresponding pointwise
functions Write, Write, and Read. If Out, In, then Store are
directly derived from Write and Read, then, as for the exact

case, Out and In
′∪Out are pointwise too. Thus, a paramet-

ric Store(~I) can be computed with Eq. (7) with �~s instead

of =~s. The same is true for the central part of Load(~I) in
Eq. (11) with ≺~s instead of <~s. It remains to compute Ra~I

from Ra(~I) = In
′
(~I) \Out(~I ′ <~s

~I). As the tiles in L cover
the whole iteration space, Ra~I is the set of all data that are
maybe read (or written for stores) and possibly not written
before (i.e., live-in for the tile strip), for the schedule induced

by the tiling aligned with ~I. But if the mapping θ selected
for tiling was considered legal with the same pointwise ap-
proximation of reads and writes, then anti, flow, and output
dependences are preserved for any shifted tiling, thus Ra~I

does not depend on ~I and is even equal to the live-in data
for the tile strip when considering the original order of the
code. Thus, it can be easily computed, independently on ~s.
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The previous approach can be used when Load/Store sets
are computed “exactly” but from a pointwise approximation
of accesses. We now consider the general case where, in
addition to this pointwise approximation, even the sets Out,
In, Store, and Load can be over-approximated further, for
whatever reason. For example, Store(~I) can contain data
that are not even in Out or In, and thus not remote in the
strict sense. However, transfers still need to be correct. We

first consider how to handle Out in Eq. (7) and In
′ ∪Out in

Eq. (11), which, a priori, have no reason to be pointwise. We
deal with the computation or approximation of Ra~I later.

The key point is that loading earlier and storing later al-
ways keeps correctness. As exploited for Prop. 4, Load(~I)

has the form Ra~I ∩ ∆F with ∆F (~I) = F (~I) \ F (~I ′ <~s
~I),

thus ∆F (~I ′ v~s
~I) = F (~I ′ v~s

~I). If we define F ◦ pointwise

such that F ⊆ F ◦, then ∆F (~I ′ v~s
~I) ⊆ ∆F ◦(~I ′ v~s

~I), i.e.,
possibly more data are loaded (and no load occurs later),
thus the first validity condition of Eq. (9) is satisfied with

Ra~I∩∆F ◦. The same is true for Store(~I) with w~s, i.e., possi-
bly more data are stored but no store occurs earlier. Finally,
Eq. (10) is satisfied too as Out(~I ′ <~s

~I) ⊆ F (~I ′ <~s
~I) ⊆

F ◦(~I ′ <~s
~I), which is subtracted in ∆F ◦. Thus, such an

over-approximation mechanism is always valid.
We now show how to build such a function F ◦ with an

additional property that means that loads in ∆F that cor-
respond to “pointwise loads” are still loaded for the same tile
with ∆F ◦, i.e., not earlier. Indeed, the goal is to try to avoid
the naive solution where all data are loaded (resp. stored)
before (resp. after) the whole computation of the tile strip.

Property 5. Let C be the set of all tiles of size ~s in Zn

and F : C → P(B). Let F ◦ defined by F ◦(~I) = ∪~J, ~I∈~JF ( ~J),

where ~I ∈ ~J means that ~I belongs to the tile with origin ~J .
Then F ⊆ F ◦ and F ◦ is pointwise. Moreover, if y is such
that ∀~I, y ∈ F (~I) ⇒ y ∈ F◦(~I) (F◦ is defined in Prop. 2),

then ∀~I, y ∈ ∆F ◦(~I)⇒ y ∈ ∆F (~I), i.e., over-approximating
F by F ◦ does not load “pointwise” elements earlier.

Proof. Depending of the context, we use ~I to represent
a point in Zn but also the tile with origin ~I. Of course
F ⊆ F ◦ since ~I ∈ ~I. Now, let f◦ : Zn → P(B) with f◦( ~J) =

F ( ~J−~s+~1): ~J is the opposite corner in the tile whose origin

is ~J−~s+~1. Then, ∀~I ∈ Zn, ∪~J∈~If
◦( ~J) = ∪~J∈~IF ( ~J−~s+~1).

But ~J ∈ ~I iff ~I ∈ ~J ′ = ~J − ~s + ~1. Thus, the previous union
is equal to ∪ ~J′,~I∈ ~J′F (~J ′) = F ◦(I), i.e., F ◦ is pointwise.

Now, suppose that ∀~I, y ∈ F (~I) ⇒ y ∈ F◦(~I). If y ∈
F ◦(~I ′ v~s

~I) = ∪~I′v~s
~I
∪~J, ~I′∈~J

F (J), then y ∈ F ( ~J) for

some ~J and ~I ′ such that ~I ′ v~s
~I, ~I ′ ∈ ~J . Thus y ∈ F◦( ~J)

and y ∈ f◦(x) for some x ∈ ~J because F◦ is pointwise.

Since F◦ ⊆ F and since the union of tiles ∪~I′v~s
~I
∪~J, ~I′∈~J

~J

spans the same set of points as the union of tiles ∪~I′v~s
~I
~I ′,

this shows that y ∈ F (~I ′ v~s
~I). Remember that for any

function G, ∆G(~I) = G(~I ′ v~s
~I) \ G(~I ′ <~s

~I). Thus if

y ∈ ∆F ◦(~I), y ∈ F ◦(~I ′ v~s
~I) \ F ◦(~I ′ <~s

~I), which implies

y ∈ F (~I ′ v~s
~I) (as we just showed) and y /∈ F (~I ′ <~s

~I)

(because F ⊆ F ◦). Thus y ∈ ∆F (~I).

The same technique can be used for Store(~I) but with an

expression such as F ◦(~I) = ∪~J, ~J∈~IF ( ~J). It remains to see

what to do with the set Ra~I . We can compute, with ~s as

parameter, Ra(~I) = In(~I) \Out(~I ′ ≺~s
~I), thus replacing <~s

by ≺~s. We get a priori a smaller set, which could be prob-
lematic because of the intersection in Eq. (11). However, it
is still correct and actually, even more precise. Indeed, as

Out is exact, In
′
(~I) \ Out(~I ′ <~s

~I) = In
′
(~I) \ Out(~I ′ ≺~s

~I)
and what is actually important in Eq. (9) is that this set

is indeed loaded. Thus, it is enough to consider Ra(~I) =

In(~I) \ Out(~I ′ ≺~s
~I) in Eq. (9) as it is a superset. Finally,

to compute Ra~I =
⋃

~J, ~J−~I∈LRa( ~J), we just drop the con-

straint on the lattice L. If Ra is not pointwise, we get a
possibly larger set: this is suboptimal, but correct.

This completes the theory for parametric tiling with inter-
tile reuse and approximations. In practice, it needs to be
adapted to each approximation scheme. A possible approx-
imation consists in removing in all intermediate computa-
tions such as Out, Store, In′, all existential variables (pro-
jection) and to manipulate only integer points in polyhedra.
Another possibility is to rely on array region analysis tech-
niques [8]. This is left for future work.

4. DOWN TO LOCAL MEMORY SIZES
The interest of computing the Load/Store sets in a para-

metric fashion is that, now, the size of the resulting local
memory (as bounding box with modulo) can also be com-
puted in a parametric fashion. This is almost mandatory
in a context such as the one described in [3], for high-level
synthesis (HLS) from C to FPGA. Indeed, some manual
(though systematic) changes must be done to the tiled code
so that it is accepted by the HLS tool. Doing these changes
for all interesting tile sizes is not reasonable. Now, with
this parametric inter-tile reuse, combined with parametric
code generation [20], and buffer sizing [1], one should be
able to have a fully automatic scheme, with parametric tile
sizes. This also makes the design and use of analytical cost
models possible, in particular to explore hierarchical tiling,
which impacts the local memory size.

For buffer sizing, we also extended the approach of [1],
which requires lifetime information of array elements to be
able to compute memory mappings with memory reuse, to
the case where ~s is a parameter, and for partial orders of
computations, for example those expressing pipeline exe-
cutions. As for inter-tile reuse, we take into account all
tiles, not just those aligned with respect to a given lattice.
Again, one can make sure that no rough approximation is
performed that would result in an over-estimated memory
size. These results are out of the scope of this paper. We
only report here some examples, for two schedules, as an
illustration. The first one performs all computations in se-
quence: tiles are serialized and each performs its loads, then
its computations, then its stores before a new tile is com-
puted. The second one is a double-buffering-style sched-
ule on each tile strip defined as follows: if ~I1, ~I2, ~I3 are
three successive tiles for v~s, transfers are fully serialized as
Load(~I2) → Store(~I1) → Load(~I3) → Store(~I2) → . . . in
addition to the fact that tile computations are done sequen-
tially following v~s, and each tile ~I of course loads its set
Load(~I), then computes, then stores its set Store(~I).

Example (cont’d). Remember the jacobi_1d_imper code.
It has two parameters N and M that define the loop bounds.
With the proposed tiling, there are also two tile size param-
eters s1 and s2. There could be a fifth parameter to specify
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each tile strip, but we chose to derive mappings valid for
all tile strips (the same for all examples hereafter). After
Load/Store analysis, followed by memory folding with mod-
ulos, we get (after simplification) the following sizes for A

and B, for the sequential schedule:
• size(B) = min(N − 2, 2M + s2 − 1, 2s1 + s2 − 1)
• size(A) = min(N, 2M + s2, 2s1 + s2).

and, with the pipeline schedule:
• size(B) = min(N − 2, 2M + 2s2 − 2, 2s1 + 2s2 − 2).
• size(A) = min(N, 2M + 2s2, 2s1 + 2s2).

These expressions are actually expressed as disjunctions,
each term that contributes to the minimum being specified
by conditions on parameters. One can also of course easily
retrieve (this time in a parametric fashion) the expression of
the memory size for the product of 2 polynomials of [3]. �

We are working on a fully-automated implementation of
the described algorithm with isl. For the moment, we man-
ually adapted an iscc script for each PolyBench [18] exam-
ple. The results are given in Table 1. The transformations θ
were given by the isl scheduler, which gives results simi-
lar to those of Pluto [17]. We tiled the largest consecutive
tilable dimensions (underlined in Table 1) for which depen-
dences are nonnegative. Some examples were omitted, either
because the schedule provided by isl did not exhibit any
“tileability”3 – at least without preliminary transformations
such as array expansion –, or simply because they had too
many instructions4 or variables5 to fit in the table. More-
over, for each example, parameters were restricted so that
the domain contains at least one strip with at least two con-
secutive full tiles, and tile sizes are at least 2 (to avoid many
special cases that, again, would not fit in the table).

The results shown in the table are the array sizes after
memory folding. We computed a memory allocation com-
patible for all tile strips, depending on the parameters of
the program and the counters of the loops surrounding the
tiled loops. Another choice could have been to compute a
memory allocation depending on the strip, potentially sav-
ing space for boundary strips. The memory size was com-
puted for both sequential and pipelined (double buffering)
execution with inter-tile data reuse. We are still working on
the approximations, not provided in the table, as well as on
techniques to speed-up and simplify the expressions that are
obtained, i.e., both the expressions of intermediate sets such

as In
′

and the final ones such as Load and memory sizes.
Double buffering, as expected, usually doubles the local

memory size in terms of the innermost tile size. Some ar-
rays require almost all data to be live during a strip, and
thus cause the whole array to be stored into local memory
(e.g., x in trisolv). Furthermore, modulo allocation has
limitations. It is really apparent on floyd_warshall where
memory conflicts are spread in such a way that only a mod-
ulo bigger than k+ 1 and n− k on both dimensions is valid.
Thus, while the number of conflicting memory addresses is
proportional to the tile area, the allocation is not. A tighter
memory allocation could be obtained with a piecewise mod-
ulo allocation scheme, allocating accesses to path[i, k] and
path[k, j] differently from the accesses to path[i, j].

3durbin, ludcmp, cholesky and symm
4adi, fdtd-apml, gramschmidt, 2mm, 3mm, correlation, and
covariance
5bicg, gemver, and gesummv

5. CONCLUSION
In this work, we provided the first parametric solution for

generating the memory transfers needed when a kernel is off-
loaded to a distant accelerator, tile by tile after loop tiling,
and when all intermediate results are stored locally on the
accelerator. For such computations, there is a complete de-
coupling between loads and stores, and when a value has
been defined in a previous tile, it has to be loaded from the
local memory and not from the distant memory as this mem-
ory is not yet up-to-date. In other words, inter-tile reuse is
mandatory. This also saves external communications.

Our solution is parametric in the sense that we derive the
set of loads and stores from and to the distant memory with
the tile sizes as parameters. Although the direct formula-
tion is quadratic, we can still solve it in an affine way by
developing techniques that consider, in the analysis, all (un-
aligned) possible tiles obtained by translation and not just
those that belong to a tiling (partitioning) of the iteration
space. We were able to use a similar technique to also pa-
rameterize the computations of local memory sizes, thanks
to parametric lifetime analysis and folding with modulos,
even for pipeline schedules similar to double buffering.

Also, the whole analysis can handle approximations thanks
to the introduction of the concept of pointwise functions,
well suited to deal with unaligned tiles. We believe that this
technique can be used for other applications linked to the
extension of the polyhedral model as it turns out to be fairly
powerful. Our future work will be to derive efficient approx-
imation techniques, either because the program cannot be
fully analyzable, or because approximations can speed-up or
simplify the results of the analysis without losing much in
terms of memory transfers and/or memory sizes.
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Sample Schedule Sequential Memory Size Pipelined Memory Size

Stencils

fdtd-2d

S0(t,j)7→(t,t,t+j,0)

S1(t,i,j)7→(t,t+i,t+i+j,1)

S2(t,i,j)7→(t,t+i,t+i+j,3)

S3(t,i,j)7→(t,t+i+1,t+i+j+1,2)

hz[s1+s2,min(s1,s2)+s3]

ex[s1+s2,min(s1,s2)+s3]

ey[s1+s2,min(s1,s2−1)+s3]

_fict_[min(s1,s2)]

hz[s1+s2,min(s1,s2)+2s3]

ex[s1+s2,min(s1,s2)+2s3]

ey[s1+s2,min(s1,s2)+2s3]

_fict_[min(s1,s2)]

jacobi-1d-imper
S0(t,i) 7→(t,2t+i,0)

S1(t,j) 7→(t,2t+j+1,1)

A[2s1+s2]

B[2s1+s2−1]

A[2s1+2s2]

B[2s1+2s2−2]

jacobi-2d-imper
S0(t,i,j)7→(t,2t+i,2t+i+j,0)

S1(t,i,j)7→(t,2t+i+1,2t+i+j+1,1)

A[2s1+s2,min(2s1,s2+1)+s3]

B[2s1+s2−1,min(2s1,s2)+s3−1]

A[2s1+s2,min(2s1,s2+1)+2s3]

B[2s1+s2−1,min(2s1,s2+1)+2s3−2]

seidel-2d S0(t,i,j)7→(t,t+i,2t+i+j) A

[
s1+s2+1,

min(2s1+2,s1+s2,2s2+2)+s3

]
A

[
s1+s2+1,

min(2s1+2,s1+s2,2s2+2)+2s3

]
Medley

floyd-warshall S0(k,i,j)7→(k,i,j) path

[
max(k+1,n−k),

max(k+1,n−k)

]
path

[
max(k+1,n−k),

max(k+1,n−k,2s2)

]

reg-detect

S0(t,j,i,cnt)7→(t,j−i,t+i,t+cnt,2)

S1(t,j,i)7→(t,j−i,t+i,t,4)

S2(t,j,i,cnt)7→(t,j−i,t+i,t+cnt,3)

S3(t,j,i)7→(t,j−i,t+i,len+t,0)

S4(t,i)7→(t,−i,t+i,len+t,5)

S5(t,j,i)7→(t,j−i,t+i,len+t,1)

diff

s1+s2+s3−3,

min(s1+s3−2,s2),

min(s1,s3)+s4−1)


path

[
min(s1−1,s4)+s2+s3−1,

min(s1+s3−1,s2,s3+s4)

]

mean

[
s2+s3−1,

min(s2,s3−1)

]

sum_tang

[
s1+s2+s3−2,

min(s1+s3−1,s2)

]

sum_diff

s1+s2+s3−2,

min(s1+s3−1,s2),

min(s1,s3)+s4



diff

s1+s2+s3−3,

min(s1+s3−2,s2),

min(s1,s3)+s4−1)


path

[
min(s1,2s4)+s2+s3−1,

min(s1+s3,s2,s3+2s4)

]

mean

[
s2+s3−1,

min(s2,s3−1)

]

sum_tang

[
s1+s2+s3−2,

min(s1+s3−1,s2)

]

sum_diff

s1+s2+s3−2,

min(s1+s3−1,s2),

min(s1,s3)+s4


Linear algebra solvers

dynprog

S0(iter,i,j)7→(iter,i,0,j,4)

S1(iter,i,j)7→(iter,i,0,j,3)

S2(iter,i,j,k)7→(iter,k,j,i+j,1)

S3(iter,i,j)7→(iter,j,j,i+j,2)

S4(iter)7→(iter,len,len,len,0)

sum_c

min(s1,s2+s3−1),

s2+s3−2,

st


W

[
min(s1,s2)+s3−1,

min(s1,s2,s3)

]
c[len−1,len−2]

sum_c

min(s1,s2+2s3−1),

s2+2s3−3,

st


W

[
min(s1,s2)+2s3−1,

min(s1,s2,2s3)

]
c[len−1,len−2]

lu
S0(t,i)7→(k,k,j,1)

S1(t,i,j)7→(k,i,j,0)
A[n,n] A[n,n]

Linear algebra kernels

atax

S0(i) 7→(0,i,2)

S1(i) 7→(i,0,0)

S2(i,j) 7→(i,j,1)

S3(i,j) 7→(i,ny+j,3)

A[s1,ny]

x[s2]

y[ny]

tmp[s1]

A[s1,ny]

x[2s2]

y[ny]

tmp[s1]

doitgen

S0(r,q,p)7→(r,q,p,0,0)

S1(r,q,p,s)7→(r,q,p+s,s,1)

S2(r,q,p)7→(r,q,p+np,np,2)

A[s1,s2,np]

sum[s1,s2,s3+s4−1]

C4[s4,s3]

A[s1,s2,np]

sum[s1,s2,s3+2s4−1]

C4[2s4,s3]

gemm
S0(i,j) 7→(i,j,0,0)

S1(i,j,k)7→(i,j,k,1)

A[s1,s3]

B[s3,s2]

C[s1,s2]

A[s1,2s3]

B[2s3,s2]

C[s1,s2]

mvt
S0(i,j) 7→(1,i,j)

S1(i,j) 7→(0,i,j)

for S0 for S1

A[s1,s2] A[s2,s1]

x1[s1] x2[s1]

y_1[s2] y_2[s2]

for S0 for S1

A[s1,2s2] A[2s2,s1]

x1[s1] x2[s1]

y_1[2s2] y_2[2s2]

syr2k

S0(i,j) 7→(i,j,0,0)

S1(i,j,k)7→(i,j,k,1)

S2(i,j,k) 7→(i,j,k,2)

A[ni,s3]

B[ni,s3]

C[s1,s2]

A[ni,2s3]

B[ni,2s3]

C[s1,s2]

syrk
S0(i,j) 7→(i,j,0,0)

S1(i,j,k)7→(i,j,k,1)

A[ni,s3]

C[s1,s2]

A[ni,2s3]

C[s1,s2]

trisolv

S0(i) 7→(0,i,0)

S1(i,j) 7→(j,i,1)

S2(i) 7→(i,i,2)

A[s2,s1]

x[n]

c[s2]

A[2s2,s1]

x[n]

c[2s2]

trmm S0(i,j,k)7→(i,j+k,j)

A[1,min(k,s1+s2−1)]

B

[
max(ni−k,k+1),

min(ni,s1+k,s2+k)

] A[1,min(k,s1+2s2)]

B

[
max(ni−k,k+1),

min(ni,s1+k,2s2+k)

]

Table 1: Examples

8



Automatic transformations for communication
minimized parallelization and locality optimization in
the polyhedral model. In 17th International
Conference on Compiler Construction (CC’08), pages
132–146, Budapest, Hungary, Mar. 2008.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In ACM
International Conference on Programming Languages
Design and Implementation (PLDI’08), pages
101–113, Tucson, Arizona, June 2008.

[7] S. Boppu, F. Hannig, and J. Teich. Loop program
mapping and compact code generation for
programmable hardware accelerators. In 24th
International Conference on Application-Specific
Systems, Architectures and Processors (ASAP’13),
pages 10–17, Washington, DC, June 2013.

[8] B. Creusillet and F. Irigoin. Interprocedural array
region analyses. In Workshop on Languages and
Compilers for Parallel Computing, volume 1033 of
Lecture Notes in Computer Science, pages 46–60.
Springer, 1996.

[9] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.
Corresponding software tool PIP:
http://www.piplib.org/.

[10] P. Feautrier and C. Lengauer. The polyhedron model.
In D. Padua, editor, Encyclopedia of Parallel
Programming. Springer, 2011.

[11] G. I. Goumas, M. Athanasaki, and N. Koziris. An
efficient code generation technique for tiled iteration
spaces. IEEE Transactions on Parallel and Distributed
Systems, 14(10):1021–1034, 2003.

[12] S. Guelton, R. Keryell, and F. Irigoin. Compilation
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