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ABSTRACT
The Polyhedral model has proven to be a valuable tool for
improving memory locality and exploiting parallelism for op-
timizing dense array codes. This model is expressive enough
to describe transformations of imperfectly nested loops, and
to capture a variety of program transformations, including
many approaches to loop tiling. Tools such as the highly suc-
cessful PLuTo automatic parallelizer have provided empiri-
cal confirmation of the success of polyhedral-based optimiza-
tion, through experiments in which a number of benchmarks
have been executed on machines with small- to medium-scale
parallelism.

In anticipation of ever higher degrees of parallelism, we have
explored the impact of various loop tiling strategies on the
asymptotic degree of available parallelism. In our analysis,
we consider “weak scaling” as described by Gustafson, i.e.,
in which the data set size grows linearly with the number of
processors available. Some, but not all, of the approaches to
tiling provide weak scaling. In particular, the tiling currently
performed by PLuTo does not scale in this sense.

In this article, we review approaches to loop tiling in the
published literature, focusing on both scalability and imple-
mentation status. We find that fully scalable tilings are not
available in general-purpose tools, and call upon the polyhe-
dral compilation community to focus on questions of asymp-
totic scalability. Finally, we identify ongoing work that may
resolve this issue.

1. INTRODUCTION
The Polyhedral model has proven to be a valuable tool for
improving memory locality and exploiting parallelism for op-
timizing dense array codes. This model is expressive enough
to express a variety of program transformations, including
many forms of loop tiling, which can improve cache line uti-
lization and avoid false sharing [16, 37, 36], as well as in-
crease the granularity of concurrency.

For many codes, the most dramatic locality improvements
occur with time tiling, i.e., tiling that spans multiple itera-
tions of an outer time-step loop. In some cases, the degree
of locality can increase with the number of time steps in a
tile, providing scalable locality [39]. For non-trivial exam-
ples, time tiling often requires loop skewing with respect to
the time step loop [27, 39], often referred to as time skew-
ing [39, 38]. This transformation typically involves imper-
fectly nested loops, and was thus not widely implemented

before the adoption of the polyhedral approach. However,
the PLuTo automatic parallelizer [19, 6] has demonstrated
considerable success in obtaining high performance on ma-
chines with moderate degrees of parallelism by using this
technique to automatically produce OpenMP parallel code.

Unfortunately, the specific tiling transformations that have
been implemented and released in tools like PLuTo involve
pipelined execution of tiles, which prevents full concurrency
from the start. The lack of immediate full concurrency is
sometimes dismissed as a start-up cost that will be triv-
ially small for realistic problem sizes. While this may be
true for the degrees of parallelism provided by current multi-
core processors, this choice of tiling can impact the asymp-
totic degree of concurrency available if we try to scale up
data set size and machine size together, as suggested by
Gustafson [15]. Furthermore, Van der Wijngaart et al. [35]
have modeled and experimentally demonstrated the load im-
balance that occurs on distributed memory machines when
using the pipelined approach.

In this paper, we review the status of implemented and pro-
posed techniques for tiling dense array codes (including the
important sub-case of stencil codes) in an attempt to de-
termine whether or not the techniques that are currently
being implemented are well suited to machines with higher
demands for parallelism and control of memory traffic and
communication. The published literature on tiling for auto-
matic parallelization seems to be divided into two disjoint
categories: “practical” papers describing implemented but
unscalable techniques for automatic parallelizers for dense
array codes, and “theoretical” papers describing techniques
that scale well but are either not implemented or not inte-
grated into a general automatic parallelizer.

In Section 2 of this paper, we discuss that the approach cur-
rently used by PLuTo does not allow full scaling as described
by Gustafson [15]. In Section 4, we survey other tilings that
have been suggested in the literature, classify each approach
as fully scalable or not, and discuss its implementation sta-
tus in current automatic parallelization tools. We also ad-
dress recent work by Bondhugula et al. [3] on a tiling tech-
nique that we believe will be scalable, though asymptotic
scaling is not addressed in [3]. Section 5 presents our con-
clusions: we believe the scalable/implemented dichotomy is
an artifact of current design choices, not a fundamental lim-
itation of the polyhedral model, and can thus be addressed
via a shift in emphasis by the research community.



// update N pseudo-random seeds T times

// assumes R[ ] is initialized

for t = 1 to T

for i = 0 to N-1

S0: R[i] = (a*R[i]+c) % m

Figure 1: “Embarrassingly Parallel” Loop Nest.

2. TILING AND SCALABILITY
In his 1988 article “Reevaluating Amdahl’s Law” [15],
Gustafson observed that, in actual practice, “One does not
take a fixed size problem and run it on various numbers of
processors”, but rather “expands [the problem] to make use
of the increased facilities”. In particular, in the successful
parallelizations he described, “as a first approximation, the
amount of work that can be done in parallel varies linearly
with the number of processors”, and it is “most realistic to
assume run time, not problem size, is constant”. This form
of scaling is typically referred to as weak scaling or scal-
able parallelism, as opposed to the strong scaling needed to
give speed-up proportional to the number of processors for
a fixed-size problem.

Weak scaling can be found in many data parallel codes, in
which many elements of a large array can be updated simul-
taneously. Figure 1 shows a trivial example that we will use
to introduce our diagrammatic conventions (following [38]).
In Figure 2 each statement execution/loop iteration is drawn
as an individual node, with sample values given to symbolic
parameters. The time axis, or outer loop, moves from left
to right across the page. The grouping of nodes into tiles is
illustrated with variously shaped boxes around sets of nodes.
Arrows in the figure denote direction of flow of information
among iterations or tiles. Line-less arrowheads indicate val-
ues that are live-in to the space being illustrated. (When
comparing our figures to other work, note that presentation
style may vary in several ways: some authors use a time axis
that moves up or down the page; some draw data depen-
dence arcs from a use to a definition, thus pointing into the
data-flow like a weather vane; some illustrate tiles as rectan-
gular grids on a visually transformed iteration space, rather
than with varied shapes on the original iteration space.)

Figure 2 makes clear the possibility of both (weak) scalable
parallelism and scalable locality. In the execution of a tile
of size (τ × σ), i.e., τ iterations of the t (time) loop and σ
iterations of the i (data) loop, data-flow does not prevent P
processors from concurrently executing P such tiles. Each
tile performs O(σ × τ) computations and has O(σ) live-in
and live-out values; if each processor performs all updates of
one data element before moving to the next, O(τ) operations
can be performed with O(1) accesses to main memory.

Inter-iteration data-flow can constrain, or even prevent, scal-
able parallelism or scalable locality. For the code in Figure 1,
we can scale up parallelism by increasing N and P , or we
can scale up locality by increasing T with the machine bal-
ance. However, beyond a certain point (i.e., σ = 1), we can
no longer use additional processors to explore ever increas-
ing values of T for a given N . (An increase in CPU clock
speed might help in this situation, though beyond a certain
point it would likely not help performance for increasing N
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Figure 2: Iteration Space of Figure 1 with T=5, N=8,
tiled with τ = 5, σ = 4.

for a given T .)

As we show in the next two sections, scalable parallelism
may be constrained not only by the fundamental data-flow,
but also by the approach to parallelization.

3. PIPELINED PARALLELISM
In a Jacobi stencil computation, each array element is
updated as a function of its value and its neighbors’
values, as shown (for a one-dimensional array) in Fig-
ure 3. Thus, we must perform time skewing to tile the
iteration space (except in the degenerate case of τ = 1,
which prevents scalable locality). Figure 4 illustrates the
usual tiling performed by automatic parallelizers such
as PLuTo, though for readability our figure shows far
fewer loop iterations per tile. Nodes represent execu-
tions of statement S1; for simplicity, executions of S2

are not shown. (The same data-flow also arises from a
doubly-nested execution of the single statement A[t%2,i]

= (A[(t-1)%2,i-1]+2*A[(t-1)%2,i]+A[(t-1)%2,i+1])/4,
but some tools may not recognize the program in this form.)

Array data-flow analysis [11, 22, 23] is well understood for
programs that fit the polyhedral model, and can be used
to deduce the data-flow arcs from the original imperative
code. The data-flow arcs crossing a tile boundary describe
the communication between tiles; in most approaches to
tiling for distributed systems, inter-processor communica-
tion is aggregated and takes place between executions of
tiles, rather than in the middle of any tile. The topology of
the inter-tile data-flow thus gives the constraints on possible
concurrent execution of tiles. For Figure 4, concurrent ex-



for t = 1 to T

for i = 1 to N-2

S1: new[i] = (A[i-1]+2*A[i]+A[i+1])/4

for i = 1 to N-2

S2: A[i] = new[i]

Figure 3: Three Point Jacobi Stencil.
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Figure 4: Iteration Space of Figure 3 with T=5,
N=10, tiled with τ = 2, σ = 4.

ecution is possible in pipelined fashion, in which execution
of tiles progresses as a wavefront that begins with the lower
left tile, then simultaneously executes the two tiles border-
ing it (above and to the right), and continues to each wave
of tiles adjacent to the just-completed wave.

As has been noted in the literature, this is not the only
way to tile this set of iterations; however, other tilings are
not (currently) selected by fully-automatic loop parallelizers
such as PLuTo [19]. Even the semi-automatic AlphaZ sys-
tem [40], which is designed to allow programmers to exper-
iment with different optimization strategies, cannot express
many of these tilings. If such tools are to be considered
for extreme scale computing, we must consider whether or
not the tiling strategies they support provide the necessary
scaling characteristics.

3.1 Scalability
To support our claim that this pipelined tiling does not al-
ways provide scalable parallelism, we need only show that it
fails to scale on one of the classic examples for which it has
shown dramatic success for low-degree parallelism, such as
the easily-visualized one-dimensional Jacobi stencil of Fig-
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Figure 5: Wavefronts of Pipelined Tile Execution.

ure 3. We will first do so, and then discuss the issue in
higher dimensions.

For some problem sizes, the tiling of Figure 4 can come close
to realizing scalable parallelism: if P = N

σ+τ
and T

τ
is much

larger than P , most of the execution is done with P pro-
cessors. Figure 5 illustrates the first 8τ time steps of such
an example, with P = 8, σ = 2τ , and N = P (σ + τ) (the
ellipsis on the right indicates a large number of additional
time steps). The tiles executed in the first 12 waves are
numbered 1 to 12 for reference, and individual iterations
and data-flow are omitted for clarity. For all iterations af-
ter 11, this tiling provides enough parallelism to keep eight
processors busy for this problem size, and for large T the
running time approaches 1

8
of the sequential execution time

(plus communication/synchronization time, which we will
discuss later). If we double both N and P , a similar ar-
gument shows the running time approaches 1

16
of the now

twice-as-large sequential execution time, i.e., the same par-
allel execution time, as described by Gustafson.

However, as N and P continue to grow, the assumption
that T

τ
� P eventually fails, and scalability is lost. Con-

sider what happens in Figure 5 if T = 8τ , i.e., the ellipsis
corresponds to 0 additional time steps. At this point, dou-
bling N and P produces a figure that is twice as tall, but no
wider; parallelism is limited to degree 8, and execution with
16 processors requires 35 steps rather than the 23 needed for
Figure 5 when T = 8τ (note that the upper-right region is
symmetric with the lower-left). Thus, communication-free
execution time has increased rather than remaining con-
stant. Increasing T (rather than N) with P is no better,
and in fact no combination of N and T increase can allow
16 processors to execute twice the work of 8 in the same 23
wavefronts: adding even one full row or one full column of
tiles means 24 wavefronts are needed.

Figure 5 was, of course, constructed to illustrate a lack of
scalability. But even if we start with a more realistic problem



size, i.e., with N � P and T � P , the pipelined tiling still
limits scalability. Consider what happens we apply the tiling
of Figure 5 with parameters N = 10000σ, T = 1000τ, P =
100, in which over 99% of the tiles can be run with full
100-fold parallelism, and then scale up N and P together
by successive factors of ten. Our first jump in size gives
N = 100000σ, T = 1000τ, P = 1000, which still has full
(1,000-fold) parallelism in over 98% of the tiles.

After the next jump, to N = 1000000σ, T = 1000τ, P =
10000 there is no 10,000-fold concurrency in the problem.
Even if the application programmer is willing to scale up
T rather than just N , in an attempt to reach full machine
utilization, the execution for N = 38730σ, T = 25820τ, P =
10000 still achieves 10,000-fold parallelism in only 85% of the
109 tiles. No combination of N and T allows any 100,000-
fold parallelism on 1010 tiles with this tiling... to maintain
a given degree of parallelism asymptotically, we must scale
both N and T with P , contrary to Gustafson’s original def-
inition. While this may be acceptable for some application
domains, we do not presume it to be universally appropri-
ate, and thus see pipelined tiling as a potential restriction
on the applicability of time tiling.

It is not always realistic to scale the number of time steps T .
Bassetti et al. [4] introduce an optimization they call sliding
block temporal tiling. They indicate that in these relax-
ation algorithms such as Jacobi “[g]enerally several sweeps
are made”. In their experiments they use up to 8 sweeps.
Zhou et al. [41] use 16,384 in their modified benchmarks. Ex-
periments with the Pochoir compiler [34] used 200 time steps
because their cache oblivious performance optimization im-
proves temporal locality. In summary, the number of time
iterations in stencil computation performance optimization
research varies dramatically. Work from the BeBOP group
at Berkeley [8] discusses how often multiple sweeps over the
grid within one loop occur and indicate that it may not be
as common as those of us working on time skewing imagine.
This makes it even more important for tiling strategies to
provide scalable parallelism that does not require the num-
ber of time steps to be on par with the spatial domain.

3.2 Tile Size Choice and Communication Cost
The above argument presumes a fixed tile size, ignoring the
possibility of reducing the tile size to increase the number of
tiles. However, communication costs (either among proces-
sors or between processors and RAM) dictate a minimal tile
size below which performance will be negatively impacted
(see [38, 19] for further discussion).

Note that per-processor communication cost is not likely to
shrink as the data set size and number of processors is scaled
up: Each processor will need to send the same number of
tiles per iteration, producing per-processor communication
cost that remains roughly constant (e.g., if processors are
connected to nearest neighbors via a network of the same
dimensionality as the data set space) or rising (e.g., if pro-
cessors are connected via a shared bus).

Even if we ignore communication costs entirely (i.e. in the
notoriously unscalable PRAM abstraction), tile size cannot
shrink below a single-iteration (or single-instruction) tile,
and eventually our argument of Section 3.1 comes into play

in asymptotic analysis.

3.3 Other Factors Influencing Scalability and
Performance

Our argument focuses on tile shape, but a number of
other factors will influence the degree of parallelism actu-
ally achieved by a given tiling. As noted above, reductions
in tile size could, up to a point, provide additional paral-
lelism (possibly at the cost of performance on the individual
nodes).

The use of global barriers or synchronization is common
in the original code generators, but note that MPI code
generators are under development for both Pluto and Al-
phaZ. While combining different tilings and code generation
schemes raises practical challenges in implementation, we do
not see any reason why any of the tilings discussed in the
next section could not, in principle, be executed without
global barriers within the tiled iteration space.

High performance on each node also requires attention to a
number of other code generation issues, such as code com-
plexity and impact on vectorization and prefetching. Fur-
thermore, these issues could be exacerbated by changes in
tile shape [3, Section III.B]. Thus, different tiling shapes may
be optimal for different hardware platforms or even differ-
ent problem sizes, depending on the relative costs of limit-
ing parallelism vs. per-node performance. Both [3, Section
III.B] and [33] discuss these issues and the possibility of
choosing a tiling that is scalable in some, but not all, data
dimensions.

3.4 Higher-Dimensional Codes
While the two-dimensional iteration space of the three-point
Jacobi stencil is easy to visualize on paper, many of the
subtleties of tiling techniques are only evident in problems
with at least two dimensions of data and one of time. For
pipelined tiling, the conflict between scalability is essentially
the same in higher dimensions: for a pipelined tiling of a
hyper-rectangular iteration space of dimension d, eventually
the amount of work must grow by O(kd) to achieve paral-
lelism O(kd−1).

Conversely, in higher dimensions, the existence of a wave-
front that is perpendicular to the time dimension (or any
other face of a hyper-rectangular iteration space) is fre-
quently the sign of a parallelization that admits some form
of weak scalability. However, as we will see, the parallelism
of some tilings scales with only some of the spatial dimen-
sions.

4. VARIATIONS ON THE TILING THEME
The published literature describes many approaches to loop
tiling. In this section, we survey these approaches, group-
ing together those that produce similar (or identical) tilings.
Our descriptions focus primarily on the tiling that would be
used for the code of Figure 3, which is used as an intro-
ductory example in many of the descriptions. We illustrate
the tilings of this code with figures that are analogous to
our Figure 5, with gray shading highlighting a single tile
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Figure 6: Overlapped Tiling.

from time step two. We delve into the complexities of more
complex codes only as necessary to make our point.

For iterative codes with intra-time-step data-flow, the
tile shapes discussed below are not legal (or cannot be
legally executed in an order that permits scalable paral-
lelism). For example, consider an in-place update of a
single copy of a data set, e.g. the single statement A[i]

= (A[i-1]+2*A[i]+A[i+1])/4 nested inside t and i loops.
Since each tile must wait for data from tiles of with lower
values of i and the same value of t, pipelined startup is
necessary. While such code provides additional asymptotic
concurrency when both T and N increase, we see no way to
allow concurrency to grow linearly with the total work to be
done in parallel. Thus, pipelined tiling does not produce a
scalability disadvantage for such codes.

Note that our discussion below focuses on distinct tile
shapes, rather than distinctions among algorithms used to
deduce tile shape or size or the manner in which individual
tiles are scheduled or assigned to processors. For example we
do not specifically discuss the “CORALS” approach [32], in
which an iteration space is recursively subdivided into paral-
lelograms, avoiding the need to choose a tile size in advance
of starting the computation. Regardless of size, variation
in size, and algorithmic provenance, the information flow
among atomic parallelogram tiles still forces execution to
proceed along the diagonal wavefront, and thus still limits
asymptotic scalability.

4.1 Overlapped Tiling
A number of projects have experimented with what is com-
monly called overlapped tiling [26, 4, 2, 25, 10, 24, 19, 7,
20, 41]. In overlapped tiling for stencil computations, a
larger halo is maintained so that each processor can execute
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Figure 7: Trapezoidal Tiling.

more than one time step before needing to communicate
with other processors. Figure 6 illustrates this tiling. Two
individual tiles from the second wavefront have been indi-
cated with shading, one with gray and one with polkadots;
the triangular polkadotted and gray region is in both tiles,
and thus represents redundant computation. This overlap
means that all tiles along each vertical wavefront can be exe-
cuted in parallel while still improving temporal data locality.

In terms of parallelism scalability, overlapped tiling does
scale because all of the tiles can be executed in parallel. If a
two-dimensional tiling in a two-dimensional spatial part of a
stencil is used as the seed partition, then two dimensions of
parallelism will be available with no need to fill a pipeline.
This means that as the data scale, so will the parallelism.

The problem with overlapped tiling is that redundant com-
putation is performed. This leads to a trade-off between
parallel scalability and execution time. Tile size selection
must also consider the effect of the expanded memory foot-
print caused by overlapped tiling.

Auto-tuning between overlapped sparse tiling and non-
overlapped sparse tiling [29, 30] for irregular iteration spaces
has also been investigated by Demmel et al. [9] in the con-
text of iterative sparse matrix computations where the tiling
is a run-time reordering transformation [28].

4.2 Trapezoidal Tiling
Frigo and Strumpen [12, 13, 14] propose an algorithm for
limiting the asymptotic cache miss rate of “an idealized par-
allel machine” while providing scalable parallelism. Figure 7
illustrates that even a simplified version of their approach
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Figure 8: One data dimension and the time dimen-
sion in a diamond tiling [33]. The diamond extends
into a diamond tube in the second data dimension.

can enable weak scaling for the examples we discuss here
(their full algorithm involves a variety of possible decompo-
sition steps; our figure is based on Figure 4 of [14]). In our
Figure 7, the collection of trapezoids marked “1” can start
simultaneously; after these tiles complete, the mirror-image
trapezoids that fill the spaces between them, marked “2”,
can all be executed; after these steps, a similar pair of sets
of tiles “3” and “4” complete another τ time steps of com-
putation, etc. For discussion of the actual transformation
used by Frigo and Strumpen, and its asymptotic behavior,
see [14].

The limitation of this approach is not its scalability, but
rather the challenge of implementing it in a general-purpose
compiler. Tang et al. [34] have developed the Pochoir com-
piler, based on a variant of Frigo and Strumpen’s techniques
with a higher degree of asymptotic concurrency [34]. How-
ever, Pochoir handles a specialized language that allows only
stencil computations. Tools like PLuTo handle a larger do-
main of dense array codes; it may be possible to generalize
trapezoidal tiling to PLuTo’s domain, but we know of no
such work.

4.3 Diamond Tiling
Strzodka et al. [33, 31] present the CATS algorithm for cre-
ating diamond “tube” tiles in a 3-d iteration space. The dia-
monds occur in the time dimension and one data dimension,
as in Figure 8. The tube aspect occurs because there is no
tiling in the other space dimension. Each diamond tube can
be executed in parallel with all other diamond tubes within
a temporal row of diamond tubes. For example, in Figure 8
all diamonds labeled “1” can be executed in parallel, after
which all diamonds labeled “2” can be executed in parallel,
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Figure 9: Molecular tiling.

etc. Within each diamond tube, the CATS approach sched-
ules another level of wavefront parallelism at the granularity
of iteration points.

Although Strzodka et al. [33] do not use diamond tiles for 1-d
data/2-d iteration space, diamond tiles are parallel scalable
within that context. They actually focus on the 2-d data/3-
d iteration space, where asymptotically, diamond tiling only
scales for one data dimension. The outermost level of par-
allelism over diamond tubes only scales with one dimension
of data since the diamond tiling occurs across time and one
data dimension. On page 2 of [33], Strzodka et al. explic-
itly state that their results are somewhat surprising in that
asymptotically their behavior should not be as good as previ-
ously presented tiling approaches, but the performance they
observe is excellent probably due to the concurrent parallel
startup that the diamond tiles provide.

Diamond tiling is a practical approach that can perform bet-
ter than pipelined tiling approaches because it avoids the
pipeline fill and drain issue. The diamond tube also has
advantages in terms of intra-tile performance: fine-grained
wavefront parallelism and leveraging pre-fetchers. The dis-
advantages of the diamond tiling approach are that it has
not been expressed within a framework such as the poly-
hedral model (although it would be possible, just not with
rectangular tiles); that the approach does not cleanly extend
to higher dimensions of data (only one dimension of diamond
tiles are possible with other dimensions doing some form of
pipelined or split tiling); and that the outermost level of
parallelism can only scale with one data dimension.

4.4 Molecular Tiling
Wonnacott [38] described a tiling for stencils that allows true
weak scaling for higher-dimensional stencils, performs no re-



dundant work, and contains tiles that are all the same shape.
However, Wonnacott’s molecular tiles required mid-tile com-
munication steps, as per Pugh and Rosser’s iteration space
slicing [21] as illustrated in Figure 9. Each tile first executes
its send slice (labeled “S”), the set of iterations that produce
values that will be needed by another currently-executing
tile, and then sends those values; it then goes on to execute
its compute slice (“C”), the set of iterations that require no
information from any other currently-executing tile; finally,
each tile receives incoming values and executes its receive
slice (“R”), the set of iterations that require these data. In
higher dimensions, Wonnacott discussed the possibility of
extending the parallelograms into prisms (as diamonds are
extended into diamond tubes in the diamond tiling), but
also presented a multi-stage sequence of send and receive
slices to provide full scalability.

Once again, a transformation with potential for true weak
scaling remains unrealized due to implementation chal-
lenges. No implementation was ever released for iteration
space slicing [21]. For the restricted case of stencil com-
putations, these molecular tiles can be described without
reference to iteration space slicing, but they make extensive
use of modulo constraints supported by the Omega Library’s
code generation algorithms [18], and Omega has no direct fa-
cility for generating the required communication primitives.

The developers of PLuTo explored a similar split tiling [19]
approach, and demonstrated improved performance over the
pipelined tiling, but this approach was not used for the re-
leased implementation of PLuTo.

4.5 A New Hope
Recent work on the PLuTo system [3] has produced a tiling
that we believe will address the issue of true scalability with
data set size, though the authors frame their approach pri-
marily in terms of“enabling concurrent start-up”rather than
improving asymptotic scalability. For a one-dimensional
data set, this approach is essentially the same as the “dia-
mond tiling” of Section 4.3, but for higher-dimensional sten-
cils it allows scalable parallelism in all data dimensions.

Although a Jacobi stencil on a two-dimensional data set has
an“obvious” four-sided pyramid of dependences, a collection
of four-sided pyramids (or a collection of octahedrons made
from pairs of such pyramids) cannot cover all points, and
thus does not make a regular tiling. The algorithm of [3]
produces, instead, a collection of six-faced tiles that appear
to be balanced on one corner (these figures are shown with
the time dimension moving up the page). Various sculptures
of balanced cubes may be helpful in visualizing this tiling;
those with limited travel budgets may want to search the
internet for images of the “Zabeel park cube sculpture”. The
approach of [3] manages to construct these corner-balanced
solids in such as way that the three faces at the bottom of
the tile enclose the data-flow.

Experiments with this approach [3] demonstrate improved
results (vs. pipelined tiling) for current shared-memory sys-
tems up to 16 cores. The practicality of this approach on
such a low degree of parallelism suggests that the per-node
penalties discussed in our Section 3.3 are not prohibitively
expensive.

While the algorithm is described in terms of stencils, and
the authors only claim concurrent startup for stencils, it is
implemented in a general automatic parallelizer (PLuTo).
We belive it would be interesting to explore the full domain
over which this tiling algorithm provides concurrent startup.

The authors of [3] do not discuss asymptotic complexity, but
we hope that future collaborations could lead to a detailed
theoretical and larger-scale empirical study of the scalability
of this technique, using the distributed tile execution tech-
niques of [1] or [5].

4.6 A Note on Implementation Challenges
The pipelined tile execution shown in Figures 4 and 5 is of-
ten chosen for ease of implementation in compilers based on
the polyhedral model. Such compilers typically combine all
iterations of all statements into one large iteration space; the
pipelined tiling can then be seen as a simple linear transfor-
mation of this space, followed by a tiling with rectangular
solids. This approach works well regardless of choice of soft-
ware infrastructure within the polyhedral model.

The other transformations may be more sensitive to choice
of software infrastructure, or the subtle use thereof. At this
time, we do not have an exact list of which transformations
can be expressed with which transformation and code gen-
eration libraries. We are working with tools that allow the
direct control of polyhedral transformations from a text in-
put, such as AlphaZ [40] and the Omega Calculator [17],
in hopes of better understanding the expressiveness of these
tools and the polyhedral libraries that underlie them.

5. CONCLUSIONS
Current work on general-purpose loop tiling exhibits a di-
chotomy between largely unimplemented explorations of
asymptotically high degrees of parallelism and carefully
tuned implementations that restrict or inhibit scalable paral-
lelism. This appears to result from the challenge of general
implementation of scalable approaches. The pipelined ap-
proach requires only a linear transformation of the iteration
space followed by rectangular tiling, but does not provide
true scalable parallelism. Diamond tiling scales with only
one data dimension. Overlapped, trapezoidal, and molec-
ular tiling each pose implementation challenges (due to re-
dundant work, non-uniform tile shape/orientation, or non-
atomic tiles, respectively).

We believe automatic parallelization for extreme scale com-
puting will require a tuned implementation of a general tech-
nique that does not inhibit or restrict scalability; thus fu-
ture work in this area must address scalability, generality,
and quality of implementation. We are optimistic that on-
going work by Bondhugula et al. [3] may already provide an
answer to this to dilemma.
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