
Memory Allocations for
Tiled Uniform Dependence Programs ∗

Tomofumi Yuki
Colorado State University

Fort Collins
Colorado, U.S.A.

yuki@cs.colostate.edu

Sanjay Rajopadhye
Colorado State University

Fort Collins
Colorado, U.S.A.

Sanjay.Rajopadhye@colostate.edu

ABSTRACT
In this paper, we develop a series of extensions to schedule-
independent storage mapping using Quasi-Universal Occu-
pancy Vectors (QUOVs) targeting tiled execution of poly-
hedral programs. By quasi-universality, we mean that we
restrict the “universe” of the schedule to those that corre-
spond to tiling. This provides the following benefits: (i)
the shortest QUOVs may be shorter than the fully univer-
sal ones, (ii) the shortest QUOVs can be found without any
search, and (iii) multi-statement programs can be handled.
The resulting storage mapping is valid for tiled execution by
any tile size.

1. INTRODUCTION
In this paper, we discuss storage mappings for tiled pro-

grams, especially for the case when tile sizes are not known
at compile time. When the tile sizes are parameterized,
most techniques for storage mappings [6, 13, 15, 20] cannot
be used due to the non-affine nature of parameterized tiling.
However, we cannot combine parametric tiling with memory
re-allocation if we cannot find a legal allocation for all legal
tile sizes.

One approach that can find storage mappings for paramet-
rically tiled programs is the Schedule-Independent Storage
Mapping proposed by Strout et al. [19]. For programs with
uniform dependences, schedule-independent memory allo-
cation finds storage mappings that are valid for any legal
execution of the program, including tiling by any tile size.
We present a series of extensions to schedule-independent
mapping for finding legal and compact storage mappings for
polyhedral programs with uniform dependences.

Schedule-Independent Storage Mapping is based on what
are called Universal Occupancy Vectors (UOVs), that char-
acterize when a value produced can safely be overwritten.
As originally defined by Strout et al, UOVs are fully uni-
versal, where the resulting allocations are valid for any legal
schedule. In this paper, we restrict the UOVs to smaller
universes and exploit their properties to efficiently find good
UOVs. In the remainder of this paper, we call such UOVs
that are not fully universal Quasi-UOVs (QUOVs) to distin-
guish them from fully universal ones. Using QUOVs, we can
find valid mappings for tiled execution by any tile size, but
not necessarily valid for other legal schedules. This leads to
more compact storage mappings for cases when fully univer-
sal allocation is an overkill.

∗This work was funded in part by the National Science Foun-
dation, Award Numbers: 1240991 and 0917319

The restriction on the universality leads to the following:

• QUOVs may be shorter than the shortest UOV. Since
the universe of possible schedules is restricted, valid
storage mappings may be more compact. We use Man-
hattan distance as the length of UOVs as a cost mea-
sure when we describe optimality of a projective mem-
ory allocation.

• The shortest QUOV for tiled loop programs can be an-
alytically found, and the dynamic programming algo-
rithm presented by Strout et al. is no longer necessary.

• Imperfectly nested loops can be handled. The origi-
nal method assumed single statement programs (and
hence perfectly nested loop programs.) We extend the
method by taking statement orderings, often expressed
in the polyhedral model as constant dimensions, into
account. This is possible because we focus on tiled ex-
ecution, where tiling applies the same schedule (except
for ordering dimensions) to all statements.

The input to our analysis is a program in polyhedral
representation, which can be obtained from loop programs
through array data-flow analysis [7, 14]. Our methods can
be used for loop programs in single assignment form; an
alternative view used in some of the prior work [19, 20].

In addition, we present a method for isolating boundary
cases based on index-set splitting [9]. UOV-based allocation
assumes that every a dependence is active at all points in
the iteration space. In practice, programs have boundary
cases where certain dependences are only valid at iteration
space boundaries. We take advantage of the properties of
QUOVs we develop to guide the splitting.

2. BACKGROUND
In this section, we present the background necessary

for this paper. We first introduce the terminology used,
and then present an overview of Universal Occupancy Vec-
tors [19].

2.1 Polyhedral Representations
Polyhedral representations of programs primarily consist

of statement domains and dependences. Statement domains
represent the set of iteration points where a statement is
executed. In polyhedral programs, such sets are described
by a finite union of polyhedra.

In this paper, we focus on programs with uniform depen-
dences, where the producer and the consumer differ by a
constant shift. We characterize these dependences using a

vector, which we call data-flow vector, drawn the producer
to the consumer. For example, if a value produced by an
iteration [i, j] is used by another iteration [i+ 1, j + 2], the
corresponding data-flow vector is [1, 2].

2.2 Schedules and Storage Mappings
The schedules are represented by affine mappings that

map statement domains to a common dimensional space,
where the lexicographic order denotes the order of execu-
tion. In the polyhedral literature, statement orderings are
commonly expressed as constant dimensions in the schedule.
Furthermore, one can represent arbitrary orderings of loops
and statements by adding d + 1 additional dimensions [8],
where d is the dimensionality of statement domains in the
programs1. To make the presentation consistent, we assume
such schedules are always used, resulting in a 2d+ 1 dimen-
sional schedule.

The storage mappings are often represented as a combi-
nation of affine mappings and dimension-wise modulo fac-
tors [13, 16, 19].

2.3 Tiling
Tiling is a well known loop transformation that was orig-

inally proposed as a locality optimization [12, 17, 18, 22]. It
can also be used to extract coarser grained parallelism, by
partitioning the iteration space to tiles (blocks) of compu-
tation, some of which may run in parallel [12, 17].

Legality of tiling is a well established concept defined over
contiguous subsets of the schedule dimensions (in the range
of the scheduling function; scheduled space), also called
bands [3]. These dimensions of the schedules are tilable,
and are also known to be fully permutable [12].

The range space of the schedules given to statements in
a program all refers to the common space, and thus have
the same number of dimensions. Among these dimensions,
a dimension is tilable if all dependences are not violated
(i.e., the producer is not scheduled after the consumer, but
possibly be scheduled to the same time stamp,) with a one-
dimensional schedule using only the dimension in question.
Then any contiguous subset of such dimensions forms a legal
tilable band.

We call a subset of dimensions in an iteration space to
be tilable, if the identity schedule is tilable for the corre-
sponding subset. The iteration space is fully-tilable if all
dimensions are tilable.

2.4 Universal Occupancy Vectors
A Universal Occupancy Vector (UOV) [19] is a vector that

denotes the “distance after which” when a value may safely
be overwritten in the following sense. When an iteration
z is executed, its value is stored in some memory location.
Another iteration z′ can reuse this same memory location
if all iterations that use the value produced by z have been
executed. When a storage mapping is such that z and z′

are mapped to the same memory location, the difference of
these points, z′ − z, is called the occupancy vector.

Universal Occupancy Vector is a specialization of such vec-
tors, where all iterations k that use z are guaranteed to be
executed before z′ in any legal schedule. Since most machine
models assume that, within a single assignment statement,

1Note that for uniform dependence programs, all statement
domains have the same number of dimensions.

reads happen before writes in a given time step, z′ may also
use the value produced by z.

Additionally, we introduce a notion of scoping to UOVs.
We call a vector v to be an UOV with respect to a set of de-
pendences I, if the vector v satisfies the necessary property
to be an UOV for a subset of all points k that use the value
produced by z with one of the dependences in I.

Once the UOV is computed, the mapping that corre-
sponds to the projection of the statement domain along the
UOV is a legal storage mapping. If the UOV crosses more
than one integer points, then an array that corresponds to
a single projection is not sufficient. Instead, multiple ar-
rays are used in turn, implemented using modulo factors.
The necessary modulo factor is the GCD of elements of the
UOV.

The trivial UOV; a valid, but possibly suboptimal UOV
is computed as follows.

1. Construct the set of data-flow vectors corresponding to
all the dependences that use the result of a statement.

2. Compute the sum of all data-flow vectors in the con-
structed set.

The above follows from a simple proposition shown below,
and an observation that the data-flow vector of a dependence
is a legal UOV with respect to that dependence.

Proposition 1 (Sum of UOVs). Let u and v be, re-
spectively, the UOVs for two sets of dependences U and V.
Then u+ v is a legal UOV for U ∪ V.

Proof. The value produced at z is dead when z + u can
legally be executed with respect to the dependences in U ,
and similarly for V at z + v. Since there is a path from z to
z + u + v by following the edges z + u and z + v (in either
order), the value produced at z is guaranteed to be used by
all uses, z + u and z + v, when z + u + v can legally be
executed.

The optimality of UOVs without any knowledge of size
or shape of the iteration space is captured by the length of
the UOV. However, the length that should be compared is
not the Euclidean length, but the Manhattan distance. We
discuss the optimality of UOV-based allocations and other
projective allocations in Section 7.

3. OVERVIEW OF OUR APPROACH
UOV-based allocation give legal mappings even for sched-

ules that cannot be implemented as loops. For example,
even a run-time work stealing scheduler can use UOV-based
allocation. However, this is obviously an overkill if we only
consider schedules that can be implemented as loops.

The important change in perspective is that we are not
interested in schedule-independent storage mappings, al-
though the concept of UOV is used. We are only interested
in using UOV-based allocation in conjunction with tiling.
Thus, our allocation is partially schedule-dependent. The
overview of our storage mapping strategy is as follows:

1. Extract polyhedral representations of programs (array
expansion.)

2. Perform schduling and apply the schedules as transfor-
mations to the iteration space2. After the transforma-
tion, lexicographic scan of the resulting iteration space

2This can be viewed as pre-processing to code generation [2].

respects the schedules. The resulting space should be
(partially) tilable to take advantage of our approach.

3. Apply UOV-guided index-set splitting (Section 6.)
This step attempts to isolate boundaries of statement
domains that negatively influence storage mappings.

4. Apply QUOV-based allocation (Section 4.) Our pro-
posed storage mapping based on extensions to the
UOVs are applied to each statement after the split-
ting. Although inter-statement sharing of arrays may
be possible, such optimization is beyond the scope of
this paper.

The order of presentation does not follow the above for
two reasons. One is that the UOV-guided splitting is an
optional step that can further optimize memory usage. In
addition, splitting introduces multiple statements to the pro-
gram, and requires our extension to handle multiple state-
ments presented in Section 5.

4. QUOV-BASED ALLOCATION FOR
TILED PROGRAMS

In this section, we present a series of formalism to ana-
lytically find the shortest QUOV. We first develop a lemma
that can eliminate dependences while constructing UOVs.
We then apply the lemma to find the shortest QUOVs in
different contexts.

4.1 Relevant Set of Dependences for UOV
Construction

The trivial UOV, which also serves as the starting point
for finding the optimal UOV, is found by taking the sum
of all dependences. However, this formulation may lead to
significantly inefficient starting points. For example, if two
dependences with data-flow vectors [1, 0] and [2, 0] exist, the
former dependence may be ignored during UOV construc-
tion since a legal UOV-based allocation using only the latter
dependence is also guaranteed to be legal for the former de-
pendence.

We may refine both the construction of the trivial UOV
and the optimality algorithm by reducing the set of depen-
dences considered during UOV construction. The optimal-
ity algorithm presented by Strout et al. [19] searches a space
bounded by the length of trivial UOV using dynamic pro-
gramming. Therefore, reducing the number of dependences
to consider will improve both the trivial UOV and the dy-
namic programming algorithm.

The main intuition is that if a dependence can be tran-
sitively expressed by another set of dependences, then it is
the only dependence that needs to be considered. This is
formalized in the following lemma.

Lemma 1 (Dependence Subsumption). If a depen-
dence f can be expressed as compositions of dependences in
a set G, where all dependences in G are used at least once in
the composition, then a legal UOV with respect to f is also
a legal UOV with respect to all elements of G.

Proof. Given a legal UOV with respect to a single de-
pendence f , the value produced at z is preserved at least
until z′ defined by f(z′) = z, can be executed. Let the set
of dependences in G be denoted as gx, 1 ≤ x ≤ |G|. Since
composition of uniform functions is associative and commu-
tative, there is always a function g∗ obtained by composing

dependences in G, such that f = g∗ ◦ gx for each x. Thus,
all points z′′, gx(z′′) = z, are executed before z′ for all
x. Therefore, a legal UOV with respect to f is guaranteed
to preserve the value produced at z until all points that
directly depend on z by a dependence in set G have been
executed.

Finding a composition in the above can be implemented as
an integer linear programming problem. The problem may
also be viewed as determining if a set of vectors are linearly
dependent when restricted to positive combinations. The
union of all sets G, called subsumed dependences, found in
the initial set of dependences can be ignored when construct-
ing the UOV.

Applying Lemma 1 may significantly reduce the num-
ber of dependences to be considered. However, the triv-
ial UOV of the remaining dependences may still not be
the shortest UOV. For example, consider data-flow vectors
[1, 1], [1,−1], [1, 0]. Although the vectors are independent
by positive combinations, the trivial UOV [3, 0] is clearly
longer than another UOV [2, 0]. Further reducing the set
of dependences to consider requires a variation of Lemma 1
that allows f also to be a composition of dependences. This
leads to complex operations, and the dynamic programming
algorithm for finding optimal UOV by Strout et al. [19] may
be a better alternative. Instead of finding the shortest UOV
in the general case, we show that such UOV can be found
very efficiently for a specific context, namely tiling.

4.2 Finding the Shortest QUOV for Tiled Pro-
grams

When UOV-based allocation is used in the specific con-
text of tiling, the shortest QUOV can be analytically found.
If we know that the program is to be tiled, we can add
dummy dependences to restrict the universality of the stor-
age mapping, while maintaining tilability. In addition, we
may assume that the dependences are all non-positive (for
the tilable dimensions) as a result of pre-scheduling step to
ensure the legality of tiling. For the remainder of this sec-
tion, the“universe”of UOVs is one of the following restricted
universes: fully tilable, fully sequential, and mixed sequen-
tial and tilable.

Note that the expectation is that “tilable” iteration spaces
are tiled in a later phase. We analyze iteration spaces that
will be tiled using QUOV, and then apply tiling. We also
assume that the iteration points are scanned in the lexico-
graphic order within a tile.

Theorem 1 (Shortest QUOV, Fully Tilable).
Given a set of dependences I in a fully tilable space, the
shortest QUOV u for tiled execution is the element-wise
maxima of data-flow vectors of all dependences in I.

Proof. Let the element-wise maxima of all data-flow vec-
tors be the vector m, and fm be a dependence with data-flow
vector m. For unit vectors ud in each of the d dimensions, we
introduce dummy dependences fd with data-flow vector ud.
Because these dependences have non-negative components,
the resulting space is still tilable. For all dependences in I
there exists a sequence of compositions with the dummy de-
pendences to transitively express fm. Using Lemma 1, the
only dependence to be considered in UOV construction can
therefore be reduced to fm, which has the trivial UOV of m.

It remains to show that no QUOV shorter than m exists
for the set of dependences I. The shortest QUOV is defined

`

i

j Data-flow Vectors

Dummy Vectors

Element-wise Maxima

Bounds by Maxima

Points with
M. Distance 4

Figure 1: Illustration of Theorem 1 for the set of depen-
dences with data-flow vectors [2, 0], [2, 1], [1, 2], and [0, 2].
The element-wise maxima of the data-flow vectors corre-
spond to the shortest UOV. The value produced by the bot-
tom left iteration is used by the destination of the data-flow
vectors. The data-flows induced by dummy dependences
guarantees that the iteration pointed by the element-wise
maxima is only executed after all iterations that depend on
the bottom left. None of the other iterations with the same
Manhattan distance (4) can be reached, since it requires
backward data-flow along at least one of the axes.

by the closest3 point from z that can be reached from all
uses of z by following the dependences. Since the choice of
z does not matter, let us use the origin, ~0, to simplify our
presentation. This allows us to use the data-flow vectors
interchangeably with coordinate vectors.

Then, the hyper-rectangle with diagonal m includes all
I, and all bounds of the hyper-rectangle are touched by
at least one dependence. Since all dependences in a fully
tilable space are restricted to have non-negative data-flow
vectors, no points within the hyper-rectangle can be reached
by following dependences. Thus, it is clear that m is the
closest common point that can be reached by those that
touch the bounds.

The theorem is illustrated in Figure 1, and is contrasted
with the trivial UOV used by Strout et al. [19] in Figure 2.

The basic idea of inserting dummy dependences to restrict
the possible schedule can be used beyond tilable schedules.
One important corollary for sequential execution is the fol-
lowing.

Corollary 1 (Sequential Execution). Given a set
of dependences I in an n-dimensional space where lexico-
graphic scan of the space is a legal schedule. Let m be the
lexicographic maximum of the data-flow vectors of all depen-
dences in I. Then the shortest QUOV u for lexicographic
execution is either m or the vector [m1 + 1, 0, · · · , 0] where
m1 is the first element of m.

Proof. For sequential execution, we may introduce
dummy dependences to any lexicographically preceding
point. Then the dependence, with a data-flow vector whose
first element is m1 can can subsume other dependences with
lower values in the first element according to Lemma 1 by
introducing appropriate dummy dependences.

3Shortest and closest are both in terms of Manhattan dis-
tance.

i

j

Dynamic Programming Search Space

Trivial UOV
Shortest QUOV

Data-flow Vectors

Shortest UOV

Figure 2: Comparison against the trivial UOV computed
as proposed by Strout et al. [19] for the same set of de-
pendences as in Figure 1. The trivial UOV is [5, 5] and it
becomes the radius on the bounds of the search space for
the dynamic programming algorithm proposed by Strout et
al. [19]. In contrast, Theorem 1 gives the shortest QUOV
by simply computing the element-wise maxima of the data-
flow vectors. Furthermore, the shortest fully universal UOV
is twice as long as the shortest QUOV, since the unit length
dummy dependences cannot be assumed. The search space
is bounded by a sphere since Euclidean distance is used by
Strout et al. [19], but can be adapted to Manhattan distance.

For the remaining dependences there are two possibilities:

• We may use dummy dependences of the form
[1, ∗, · · · , ∗] to let a dependence with data-flow vector
[m1 + 1, 0, · · · , 0] subsume all remaining dependences.

• We may use m as the QUOV following Theorem 1.

It is obvious that when the former options is used, [m1 +
1, 0, · · · , 0] is the shortest. The optimality of the latter case
follows from Theorem 1. Thus, the shortest UOV is the
shortest among these two options.

Note that m can be shorter than [m1+1, 0, · · · , 0] only when
m = [m1, 0, · · · , 0]. In addition, although the above coro-
rally can be applied to tilable iteration spaces, the tilability
may be lost due to memory-based dependences introduced
by the allocation.

The allocation given by the above corollary is not
schedule-independent at all. It is an analytical solution
to the storage mapping of uniform dependence programs,
where the schedule is the lexicographic scan of the iteration
space.

The following corollary can trivially be established by the
combination of the above.

Corollary 2 (Sequence of Tilable Spaces).
Given a set of dependences I in a space where a subset of

for (i=0:N)

S1[i] = foo();

for (j=0:N)

S2[j] = bar(S1[j]);

(a) When θS1 = (i→ 0, i, 0) and θS2 = (j → 1, j, 0).

for (i=0:N)

S1[i] = foo();

S2[i] = bar(S1[i]);

(b) When θS1 = (i→ 0, i, 0) and θS2 = (j → 0, j, 1).

Figure 3: Two possible schedules for statements S1 and S2.
Note that statement S1 in Figure 3a requires O(N) memory
whereas it only requires a scalar in Figure 3b, although the
code shown is still in single assignment.

the dimensions are tilable, and lexicographic scan is legal for
other dimensions, the shortest QUOV u for tiled execution
of the tilable space, and sequential execution of the rest is
the combination of vectors computed for each contiguous
subset of either sequential or tilable spaces.

Note that the above corollary only takes effect when there
are sequential subsets with at least two contiguous dimen-
sions. When a single sequential dimension is surrounded
by tilable dimensions, its element-wise maxima and lexico-
graphic maxima are equivalent.

Using the above, the shortest QUOV for sequential, tiled,
or a hybrid combination, can be computed very efficiently.

5. HANDLING OF PROGRAMS WITH
MULTIPLE STATEMENTS

In many programs, there are multiple statements depend-
ing on each other. The original formulation of UOVs are for
single statement programs [19]. In this section, we show that
the concept can be adapted to multi-statement programs,
knowing that we restrict the universe to tiled execution of
the iteration space.

5.1 Limitations of UOV-based Allocation
Allocations based on UOVs have a strong property that

they are valid for any legal schedule. Here, the schedule is
not limited to affine schedules in the polyhedral model, and
time stamps to each operation can be assigned arbitrarily, as
long as they respect the dependences. The concept of UOV
applies to reuse among writes to a single common space,
and relies on the fact that every iteration writes to the same
space (or array.) Different statements may write to different
arrays, in programs with multiple statements, and hence
UOV cannot be directly used.

For example, consider a program with two statements S1

and S2:

• DS1 = {i|0 ≤ i ≤ N}

• DS2 = {j|0 ≤ j ≤ N}

where the dependence is such that iteration x of S1 must
executed before x of S2.

Figure 3 illustrates two possible schedules and its implica-
tions on memory usage. Note that we do not discuss storage

mapping for S2, since it is not used within the code frag-
ment above. A fully universal UOV-based allocation would
have to take account for such variations of a schedule, but
such extension may not even make sense. When two state-
ments are scheduled differently, the dependence between two
statements in the scheduled space may no longer be uniform.

When we apply the concept of UOV for tiling, we are
no longer interested in arbitrary schedules. We first apply
all non-tiling scheduling decisions before performing stor-
age mapping. Therefore, the only change in the execution
order comes from a tiling transformation viewed as a post-
processing, so the same “schedule” applied to all statements
involved. This allows us to extend the concept of UOVs to
imperfectly nested loops.

5.2 Handling of Statement Ordering
When the ordering dimensions are represented as constant

dimensions, the elements in the UOV require special han-
dling. In the original formulation there is only one state-
ment, and thus every iteration point writes to the same
array. When multiple statements exist in a program, the
iteration space of a statement is a subset of the combined
space, and are made disjoint by statement ordering dimen-
sions. Thus, not all points in the common space correspond
to a write, and this affects how the UOV is interpreted.

Consider the program in Figure 3b. The only dependence
involving S1 has data-flow [0, 0, 1], and since it is the only
dependence, it is the shortest UOV. Literal interpretation
of this vector as UOV means that the iteration z + [0, 0, 1]
can safely overwrite the value produced by z. However, this
interpretation does not make sense in the context of by-
statement allocation, since statement S2 at z+[0, 0, 1] writes
to a different array.

We handle multi-statement programs by removing d out
d + 1 constant dimensions for the purpose of UOV-based
analysis. We apply the following rule to remove constant
dimensions by transferring the information carried by these
dimensions to others. Let v be a data-flow vector of a depen-
dence in the scheduled space. We first apply the following
rule to the vector v:

• For each constant dimension x > 0, where vx > 0, set
vx−1 = max(vx−1, 1)

Once the above rule is applied, all the constant dimensions,
except for the first one, are removed to obtain d + 1 di-
mensional data-flow vector. We repeatedly apply the above
to all dependences in the program, resulting with a set of
data-flow vectors with d+ 1 dimensions.

We justify the above rule in the following. When the con-
stant dimension of the data-flow is greater than 0, it means
that some textually later statement uses the produced value.
With respect to this particular dependence, the memory lo-
cation may be reused once this textually later statement has
been executed. However, there is always exactly one itera-
tion of a specific statement in a constant dimension, since it
is an artificial dimension for statement ordering. Therefore,
the earliest possible iteration that can overwrite the memory
location in question is in the next iteration of the immediate
surrounding loop dimension.

For example, the only dependence of S1 in Figure 3b is
[0, 0, 1]. The value produced by S1 at i is used by S2 at
i, but only overwritten by another iteration of S1 at i +
1. Therefore, we transfer the dependence information to a

for (t=0:T)

for (i=0:N)

A[i] = foo(A[i]); //S1

for (i=1:N)

A[i] = bar(A[i-1], A[i]); //S2

Figure 4: Example to illustrate influences of boundary
cases. Note that the value produced by S1 is last used by
S2 of the same outer loop iteration, except for when i = 0,
in which case it is used again by S1 at [t+ 1, 0].

preceding dimension.
Projecting a d+1 dimensional domain along a vector does

indeed produce a domain with d dimensions. This is be-
cause in the presence of imperfect nests, d dimensional stor-
age may be required for d dimensional statements even with
uniform dependences. Consider the code in Figure 3a. The
only use of S1 is by S2 with data-flow [1, 0, 0] in the sched-
uled space. Applying the rule described above removes the
last dimension, yielding [1, 0] as the QUOV. Projecting the
statement domain of S1 (in the scheduled space with d con-
stant dimensions removed) along the vector [1, 0] gives a two-
dimensional domain: {i, x|0 ≤ i ≤ N∧x = 0}. Although the
domain is two-dimensional, it is effectively one-dimensional
because of the equality in the constant dimension.

It is also important to note a special case when the UOV
takes the form: [0, · · · , 0, 1]. When the last constant di-
mension is the only non-zero entry, it is obvious that the
statement requires only a scalar, since its immediately con-
sumed.

6. UOV GUIDED INDEX SET SPLITTING
In the polyhedral representation of programs there are

usually boundary cases that behave differently from the rest.
For instance, the first iteration of a loop may read from
inputs, whereas successive iterations use values computed
by previous iterations.

In the polyhedral model, storage mapping is usually com-
puted for each statement. With pseudo-projective alloca-
tions, the same allocation must be used for all points in the
statement domain. Thus, dependences that only exist at the
boundaries influence the entire allocation.

For example, consider the code in Figure 4. The value
produced by S1 at [t, i] is last used by S2 at [t, i+1] for i > 0.
However, the value produced by S1 at [t, 0] is last used by S1

at [t + 1, 0]. Thus, the storage mapping for S1 must ensure
that a value produced at [t, i] is live until [t + 1, i] for all
instances of S1. This clearly leads to wasteful allocations,
and our goal is to avoid them.

One solution to the problem is to apply a form of index set
splitting [9] such that the boundary cases and common cases
have different mappings. In the example above, we wish to
use piece-wise mappings for S1 at [t, i] where the mapping is
different for two disjoint sets i = 0 and i > 0. This reduces
the memory usage from an array of size N + 1 to 2 scalars.

Once, the pieces are computed, application of piece-wise
mappings can done through splitting the statements (nodes)
as defined by the pieces, and then applying a separate map-
ping to each of the statements after split. Thus, the only
interesting problem that remain is finding meaningful splits.

In this section, we present an algorithm for finding the

split with the goal of minimizing memory usage. The algo-
rithm is guided by Universal Occupancy Vectors and works
best with UOV-based allocations. The goal of our index
set splitting is to isolate boundaries that require longer life-
time than the main body. Thus, we are interested in a sub-
domain of a statement with a different dependence pattern
than that in the rest of the statement’s domain. We focus on
boundary domains that contain at least one equality. The
approach may be generalized to boundary planes of constant
thickness using Thick Face Lattices [11].

The original index-set splitting [9] aimed at finding better
schedules. The quality of a split is measured by its influence
on possible schedules: whether different scheduling functions
for each piece yields a better schedule.

In our case, the goal is different. Our starting point is
the program after affine scheduling, and we are now inter-
ested in finding storage mappings. When the dependence
pattern is the same at all points in the domain, splitting
cannot improve the quality of the storage mapping. Since
the dependence pattern is the same, the same storage map-
ping will be used for all pieces (with a possible exception of
the cases when the split introduces equalities or other prop-
erties related to shape of the domains). Because two points
that may have been in the nullspace of the projection may
now be split into different pieces, the number of points that
can share the same memory location may be reduced as the
result of splitting.

Thus, as a general measure of quality, we seek to ensure
that a split influences the choice of storage mapping for each
piece. The obvious case when splitting is useless is when a
dependence function at a boundary is also in the main part.
We present Algorithm 1 based on this intuition to reduce
the number of splits.

The intuition of the algorithm is that we start with all
dependences with equalities in their domain as candidate
pieces. Then we remove some of the dependences where
splitting does not improve the allocation from candidate
pieces. The obvious case is when the same dependence func-
tion exists in the non-boundary cases (i.e., dependences with
no equalities in their domain). In addition, more sophisti-
cated exclusion is performed using Theorem 1.

The algorithm can also be easily adapted for non-uniform
programs. It may also be specialized/generalized by adding
more dependence elimination rules to Step 2. This requires
a method similar to Lemma 1 for other memory allocation
methods.

Example
Let us describe the algorithm in more detail with an ex-
ample. The statement S1 in Figure 4 has three data-flow
dependences:

• I1 = S1[t, i]→ S2[t, i] when 0 ≤ i ≤ N

• I2 = S1[t, i]→ S2[t, i+ 1] when i < N

• I3 = S1[t, i]→ S1[t+ 1, i] when i = 0

The need for index-set splitting does not arise until some
prior scheduling fuses the two inner loops. Let the schedul-
ing functions be:

• θS1 = (t, i→ 0, t, 0, i, 0)

• θS2 = (t, i→ 0, t, 0, i, 1)

Algorithm 1 UOV-Guided Split

Input:

I: Set of uniform dependences that depend on a statement S. A dependence is a pair 〈f,D〉 where f is the dependence
function and D is a domain. The domain is the constraints on the producer statement.

Output:

P: A partition of DS , the domain of S, where each element defines a piece of the split.

Algorithm:
We first inspect the domain of dependences in I to detect equalities.
Let

Ib be the set of dependences with equalities, and

Im be the set of those without equalities.

Then,

1. foreach 〈f,D〉 ∈ Ib,

if ∃〈g,E〉 ∈ Im; f = g then remove 〈f,D〉 from Ib

2. Further remove dependences from Ib using the following if applicable:

(a) Theorem 1 and its corollaries. The following steps are only for Theorem 1.

Let m be the element-wise maxima of dataflow vectors in Im.
foreach 〈f,D〉 ∈ Ib
– Let v be the dataflow vector of f .
– if ∀i : vi ≤ mi then remove 〈f,D〉 from Ib.

3. Group the remaining dependences in Ib into groups Gi, 0 ≤ i ≤ n, where ∀X,Y ∈ Gi;DX ∩ DY 6= ∅. In other words,
group the dependences with overlapping domains in the producer space.

4. foreach i ∈ 0 ≤ i ≤ n, Pi =
⋃
∀X∈Gi

DX

5. if n ≥ 0 then Pn+1 = DS \
n⋃

i=0

Pi else P0 = DS

The data-flow vectors in the scheduled space, after remov-
ing constant dimensions (we also remove the outer-most one
since there is only one loop at the outer-most level) are:

• I
′
1 = [0, 1] when 0 ≤ i ≤ N

• I
′
2 = [0, 1] when i < N

• I
′
3 = [1, 0] when i = 0

As the pre-processing step, we separate the dependences
into two sets based on the equalities in the domain:

• Ib = {I
′
3}; those with equalities, and

• Im = {I
′
1, I

′
2}; those without equalities.

Then we use Step 1 to eliminate identical dependences. If
the same dependence function is both in the boundary and
the main body, separating the boundary does not reduce the
number of distinct dependences to be considered. There-
fore, splitting such domain does not positively influence the
storage mapping, and hence is removed from further consid-

eration. Since I
′
3 is different from the other two, this step

does not change the set of dependences for this example.

Step 2a is the core of this algorithm. The general idea
is the same as Step 1, but we use additional properties of
UOV-based allocation to identify more cases where splitting
does not positively influence the storage mapping.

Theorem 1 states that if all elements of a data-flow vector
are less than the corresponding element of the element-wise
maxima of all data-flow vectors under consideration, the de-
pendence does not influence shortest QUOV. Therefore, if
the candidate dependence to split does not contribute to
the element-wise maxima, the split is useless in terms of
further shortening the QUOV. As an illustration, consider
the rectangle in Figure 1 defined by the element-wise max-
ima. If separating a dependence does not shrink the size of
the rectangle, the length of QUOV cannot be shortened.

In this example, the element-wise maxima of dependences
in Im is [0, 1]. However, the boundary dependence has data-
flow vector [1, 0], and when combined, the element-wise max-
ima becomes [1, 1]. Therefore, the boundary dependence
does contribute to the element-wise maxima, and is not re-
moved from the candidate set in Step 2a. The dependences
that are left in the set Ib after this step are the set of de-
pendences that will be split from the main body.

Step 3 is a grouping step, where dependences to be split
are grouped into those that have overlap in their domains.

Two sub-domains of a statement cannot be split into sepa-
rate statements, unless the computation is duplicated. Al-
though computing the values redundantly may be an option,
we enforce the two statements to be jointly split as one ad-
ditional statement. This step is irrelevant for our example,
since our example only has one dependence in set Ib.

The last step is a cleanup step, which adds the remainder
of splits to the set of partitions.

Let S1b be the statement after splitting the domain of I3
from S1, and S1a be the remainder of the main body of S1.
The domain of statements in the program are now:

• DS1a = {t, i|0 ≤ t ≤ T ∧ 1 ≤ i ≤ N}

• DS1b = {t, i|0 ≤ t ≤ T ∧ i = 0}

• DS2 = {t, i|0 ≤ t ≤ T ∧ 1 ≤ i ≤ N}

and the dependences are:

• I∗1 = S1a[t, i]→ S2[t, i] when 1 ≤ i ≤ N

• I∗2 = S1a[t, i]→ S2[t, i+ 1] when i < N

• I∗3 = S1b[t, i]→ S1a[t+ 1, i] when i = 0

The QUOV for S1a is [0, 0, 0, 0, 1] in the scheduled space
with constant dimensions, which is the aforementioned spe-
cial case, and only a scalar is required for S1a. The QUOV
for S1b is [1, 0] after removing the constant dimensions. The
projection of its domain along this vector is also a constant,
due to the equality in its domain. Thus, the storage require-
ment for S1 in the original program becomes two scalars,
which is much smaller than what is required without the
splitting.

7. RELATED WORK
There is a lot of prior work on storage mappings for poly-

hedral programs [1, 4, 5, 13, 15, 19, 20, 21]. Most approaches
focus on the case when the schedule for statements are given.

7.1 Efficiency of UOV-based Allocation
By the nature of its strategy, UOV-based allocation, in-

cluding those using QUOVs, cannot yield more compact
storage mappings compared to alternative strategies for a
specific schedule. However, UOV-based allocation may not
be as inefficient as one might think for programs that require
d − 1 dimensional storage. The misconception is (at least
partially) due to the trade-off between memory usage and
parallelism that is often overlooked. Consider the following
code fragment with Smith-Waterman(-like) dependences.

for (i=1:N)

for (j=1:M)

H[i,j] = foo(H[i-1,j], H[i,j-1]);

As illustrated in Figure 5, UOV-based allocation, even
with QUOVs, gives a storage mapping that use O(N + M)
memory for this program. However, the program cannot
be tiled if O(N) or O(M) storage mappings are used due
to memory-based dependences. One approach to still ac-
complish tiled execution of this program is to transform the
program such that the iteration space is tilable even when
the memory-based dependences are under consideration.

For the above program, this requires a skewing as depicted
in Figure 6. Once the skewing is applied so that O(M)

i

j

(a) Iteration space and pos-
sible storage mappings

i

j

(b) Set of live values in tiled
execution

Figure 5: Iteration space of Smith-Waterman(-like) code
and possible storage mappings. Figure 5a shows two pos-
sible storage mappings, either horizontal or vertical projec-
tion of the iteration space. The size of memory is O(M)
or O(N), depending of the direction of the projection. Fig-
ure 5b shows the iteration space after tiling, and the val-
ues that are live after executing two tiles on the diagonal.
Observe that neither projection (horizontal or vertical) can
store all the live values. One example of a valid projec-
tive storage mapping is the projection along [1, 1] that use
O(N +M) memory.

storage mapping can be tiled, the UOV-based allocation for
the same program will also yield a storage mapping with
O(M) memory. Note that the skewed iteration space has
less parallelism (longer critical path length) when compared
to the original rectangular iteration space. The parallelism
is effectively traded off with decreased memory usage.

For this example, when the other condition (amount of
parallelism) is equal, the allocation using UOVs is no worse
than what is considered a more efficient allocation. This
observation can be generalized to other instances of uniform
dependence programs, such as Jacobi/Gauss-Seidel stencils.
How to jointly find schedule and storage mappings to explore
such trade-off is still an open problem.

7.2 Optimality of Projective Allocations
There is also an upper bound on dimension-wise optimal-

ity. Quilleré and Rajopadhye [15] show that the number of
linearly independent projection vectors can be viewed as the
primary criterion for optimality of storage mappings.

UOV-based allocation, as originally defined, was limited
to allocations with one projection vector by its nature, and
therefore, is limited to finding d− 1 dimensional storage for
d dimensional iteration space. The additional optimizations
we describe in Section 5 allow us to overcome this limitation,
but for many, if not most, uniform dependence programs,
the lower bound on the number of memory dimensions is
d − 1. Therefore, UOV-based allocations are no more than
a constant fold more expensive.

Now, the constant factor can become important, but
Quilleré and Rajopadhye [15] give a number of examples
to illustrate that the problem is subtle when the size of
the iteration domain is parameterized. For some programs
Lefebvre-Feautrier [13] gives a better memory footprint than
the Quilleré-Rajopadhye method, while for others, it is
worse.

It is easy to show that any multiple, by some integer
greater than one, of a legal UOV uses more memory. Two

for (i=1:N)

for (j=i+1:M+i)

x = j-i;

H[i,x] = foo(

H[i-1,x],

H[i ,x-1]

);

(a) Code

i

j

(b) Iteration space

Figure 6: The code and iteration space after skewing the
original program. It is easy to see that [1, 1] is the short-
est UOV for this program. With this UOV, the amount of
memory used is O(M).

UOVs that are not constant multiples of each other are of-
ten difficult to compare. For example, memory usage of two
allocations based on UOVs [1, 1] and [2, 0] are only paramet-
rically comparable. With N×M iteration space, the former
use N + M and the latter use 2N . The optimal allocation
in such case depends on the values of N and M that are not
known until run-time.

Informally, increasing the Manhattan distance will always
increase memory usage by either increasing the GCD, and
hence increasing the mod factor, or by increasing the angle of
the projection, and hence increasing the size of the projected
space.

7.3 Parametric Tile Sizes
Our main motivation for QUOVs is to find storage map-

pings that are valid for tiled execution by any (legal) tile
sizes. Schedule-dependent approaches cannot provide stor-
age mappings for parametric tile sizes due to its non-affine
nature.

It is possible to provide tile coordinates and tile sizes as
additional parameters to the polyhedral representation, and
then apply polyhedral storage mappings for each tile indi-
vidually. Although this approach makes sense in certain
contexts (e.g., [10]), it is not suitable for others (e.g., shared
memory parallelization.) As shown in Figure 6, UOV-based
allocation maps iterations from different tiles to a single
memory location, allowing inter-tile reuse of storage. There
is no need to transfer data from one tile to another in UOV-
based allocation.

7.4 Affine Occupancy Vectors
Thies et al. [20] present an extension to the concept of

UOV to affine schedules, named Affine Occupancy Vectors.
They restrict the universality to affine scheduling, rather
than the full universe. Although the idea of restricting the
universality has some similarities with our work, the re-
stricted universe is still the entire affine scheduling space.
In addition, they only handle one-dimensional affine sched-
ules.

8. CONCLUSIONS
We have presented a series of extensions to the Schedule-

Independent Storage Mapping. Although UOVs were orig-
inally used for schedule-independent mappings, our exten-
sions restrict the universality of the occupancy vectors to
analyze a specific class of schedules; tiling.

For such a restricted universe, Quasi-UOVs can be shorter
than fully universal ones, leading to more compact memory.
We can also take advantage of its properties to directly find
the shortest QUOV.

Although UOV-based allocations are limited to uniform
dependence programs, storage mappings that are legal for a
class of schedules is an interesting alternative to most mem-
ory allocation methods that require schedules to be given.

Our extensions aim to make UOV-based allocations more
practical by providing efficient method for finding the short-
est UOV for a smaller, but an important universe, tilable
programs.

9. REFERENCES
[1] C. Alias, F. Baray, and A. Darte. Bee+Cl@k: an

implementation of lattice-based array contraction in
the source-to-source translator rose. In Proceedings of
the 2007 ACM SIGPLAN/SIGBED conference on
Language, Compiler and Tool Support for Embedded
Systems, volume 13, pages 73–82, 2007.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In Proceedings of the 13th
IEEE International Conference on Parallel
Architecture and Compilation Techniques, PACT ’04,
pages 7–16, Washington, DC, USA, 2004.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08,
pages 101–113, New York, NY, USA, 2008. ACM.

[4] Y. Bouchebaba and F. Coelho. Tiling and memory
reuse for sequences of nested loops. In Proceedings of
the 8th International Euro-Par Conference, volume
2400, page 255, 2002.

[5] A. Cohen. Parallelization via constrained storage
mapping optimization. In Proceedings of the
International Symposium on High Performance
Computing, pages 83–94, 1999.

[6] A. Darte, R. Schreiber, and G. Villard. Lattice-based
memory allocation. IEEE Transactions on Computers,
54(10):1242–1257, 2005.

[7] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[8] P. Feautrier. Some efficient solutions to the affine
scheduling problem, II, multidimensional time.
International Journal of Parallel Programming,
21(6):389–420, 1992.

[9] M. Griebl, P. Feautrier, and C. Lengauer. Index set
splitting. International Journal of Parallel
Programming, 28(6):607–631, 2000.

[10] S. Guelton, A. Guinet, and R. Keryell. Building
retargetable and efficient compilers for multimedia
instruction sets. In 2011 International Conference on

Parallel Architectures and Compilation Techniques,
pages 169–170, 2011.

[11] G. Gupta and S. Rajopadhye. Simplifying reductions.
In Proceedings of the 33rd ACM Conference on
Principles of Programming Languages, PoPL ’06,
pages 30–41, New York, NY, USA, Dec 2006. ACM.

[12] F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
PoPL ’88, pages 319–329. ACM, 1988.

[13] V. Lefebvre and P. Feautrier. Automatic storage
management for parallel programs. Parallel
Computing, 24(3-4):649–671, 1998.

[14] W. Pugh. A practical algorithm for exact array
dependence analysis. Communications of the ACM,
35(8):102–114, 1992.

[15] F. Quilleré and S. Rajopadhye. Optimizing memory
usage in the polyhedral model. ACM Transactions on
Programming Languages and Systems, 22(5):773–815,
2000.

[16] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation
of efficient nested loops from polyhedra. International
Journal of Parallel Programming, 28(5):469–498, 2000.

[17] J. Ramanujam and P. Sadayappan. Tiling of iteration

spaces for multicomputers. In Proceedings of the 1990
International Conference on Parallel Processing,
volume 2 of ICPP ’90, pages 179–186, 1990.

[18] R. Schreiber and J. J. Dongarra. Automatic blocking
of nested loops. Technical report, 1990.

[19] M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops.
ACM SIGOPS Operating Systems Review,
32(5):24–33, 1998.

[20] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe.
A unified framework for schedule and storage
optimization. In Proceedings of the 22nd International
Conference on Programming Language Design and
Implementation, PLDI ’01, pages 232–242. ACM,
2001.

[21] D. Wilde and S. Rajopadhye. Memory reuse analysis
in the polyhedral model. In Proceedings of the 2nd
International Euro-Par Conference, pages 389–397,
1996.

[22] M. Wolfe. Iteration space tiling for memory
hierarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific
Computing, pages 357–361. Society for Industrial and
Applied Mathematics, 1987.

	Introduction
	Background
	Polyhedral Representations
	Schedules and Storage Mappings
	Tiling
	Universal Occupancy Vectors

	Overview of Our Approach
	QUOV-based Allocation for Tiled Programs
	Relevant Set of Dependences for UOV Construction
	Finding the Shortest QUOV for Tiled Programs

	Handling of Programs with Multiple Statements
	Limitations of UOV-based Allocation
	Handling of Statement Ordering

	UOV Guided Index Set Splitting
	Related Work
	Efficiency of UOV-based Allocation
	Optimality of Projective Allocations
	Parametric Tile Sizes
	Affine Occupancy Vectors

	Conclusions
	References

