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ABSTRACT
Although Single Instruction Multiple Data (SIMD) units
are available in general purpose processors already since the
1990s, state-of-the-art compilers are often still not capable
to fully exploit them, i.e., they may miss to achieve the best
possible performance.

We present a new hardware-aware and adaptive loop tiling
approach that is based on polyhedral transformations and
explicitly dedicated to improve on auto-vectorization. It is
an extension to the tiling algorithm implemented within the
PluTo framework [4, 5]. In its default setting, PluTo uses
static tile sizes and is already capable to enable the use of
SIMD units but not primarily targeted to optimize it. We
experimented with different tile sizes and found a strong re-
lationship between their choice, cache size parameters and
performance. Based on this, we designed an adaptive pro-
cedure that specifically tiles vectorizable loops with dynam-
ically calculated sizes. The blocking is automatically fitted
to the amount of data read in loop iterations, the available
SIMD units and the cache sizes. The adaptive parts are
built upon straightforward calculations that are experimen-
tally verified and evaluated. Our results show significant im-
provements in the number of instructions vectorized, cache
miss rates and, finally, running times.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers, Optimization; B.3.2 [Memory Archi-
tectures]: Design Styles—Cache Memories; C.1.2 [Proces-
sor Architectures]: Multiple Data Stream Architectures
(Multiprocessors)—single-instruction-stream, multiple-data-
stream processors (SIMD)

General Terms
Algorithms, Performance, Experimentation

Keywords
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1. INTRODUCTION
Single Instruction Multiple Data (SIMD) units offer a

speedup-potential brought to a wide range of users. In order
to exploit the available concurrency of modern CPUs, one
must achieve shared memory parallelism by multithreading

and, at the same time, vectorization by effectively applying
instructions to multiple data. Both tasks impose a difficult
challenge to experienced programmers as well as state-of-
the-art compilers. In this paper, we focus on the effective
automatic exploitation of SIMD units. We found severe lim-
itations when we made some experiments with the vectorizer
of the GNU C Compiler (gcc, version 4.6). To our surprise,
even for loops that can be vectorized in a straightforward
manner, SSE-instructions were only set if the range speci-
fied by the loop bounds was a multiple of the SIMD register
width divided by the size of the data type.

Vectorization is difficult since it usually requires an analy-
sis of the dependence structure of the code to be optimized.
It demands for the right ordering of instructions and fast ac-
cesses to data in order to leverage its full speedup potential.
Unfortunately, in many cases even the existence of a legal
order of instructions cannot be easily recognized by humans
or compiler procedures. Here, polyhedral code optimization
is a powerful tool to detect and exploit parallelism in loop
structures. It provides a formal characterization of affine
loop nests, their iteration spaces, the dependencies between
statements and the iteration points in which they occur [2, 7,
9, 12, 13]. It can therefore be used to generate valid transfor-
mations of a given source code. Further, tiling (or blocking)
of nested loops is a well-known technique to improve data lo-
cality and, if concurrency concerning outer loop dimensions
is possible, to perform automatic parallelization [21]. In this
manner, transformations such as loop fusion, splitting, skew-
ing, or interchange may enable a coarse-grain (tile-wise) or a
fine-grain (loop-internal) concurrency (or both) even where
this is not the case for the original source code [2].

There is extensive literature dealing with the optimiza-
tion of tilings. However, to the best of our knowledge,
there is yet no implemented approach that integrates loop
transformations which broadly enable automatic vectoriza-
tion with tilings and an adaptive hardware-aware tile size
selection (TSS). Trifunovic et al. [20] analyze the impact
of loop transformations on the resulting possibilities to ap-
ply auto-vectorization and performance by means of a cost
model that can be seamlessly integrated into the polyhedral
model. Based on this, they propose a framework to choose
the best-suited loop for vectorization within a nest. Unfor-
tunately, it does not comprise a TSS model. As opposed to
that, there exist several TSS models which are, however, not
explicitly geared towards an improved vectorization. Cole-
man and McKinley [8] present an iterative technique to cal-
culate cache-fitting tile sizes for all loop dimensions. This
is interesting in conjunction with the approach presented



in this paper, especially for cases where there is no vec-
torizable loop available. This is also true for Sarkar’s and
Megiddo’s [17] approach to generate tile sizes via a memory-
oriented cost model of the given loop nest and an analytical
model to finally perform the TSS. However, it is restricted to
loop nests of depth two or three. Shirako et al. [18] present a
method to analytically bound the search space for tile sizes
that lead to a good performance. They potentially leave loop
dimensions unblocked and propose to tile a vectorizable loop
into large blocks. While these general ideas are similar to
ours, their approach is merely capable to perform a one-
level tiling and based on an empirical search method while
ours uses a straightforward polyhedral and analytical basis.
Ghosh et al. [11] propose to use cache miss equations [3] for
TSS and in order to detect poor cache performance. They
show how loop transformations (including tiling) can help
to improve on this. Abella et al. [1] use the equations to de-
termine optimal tile sizes by means of a genetic algorithm.
However its running time on some inputs is not applicable
for a common compilation process.

In this paper, we present a new hardware-oriented TSS
approach explicitly targeted to vectorization. It is an adap-
tive procedure that specifically tiles vectorizable loops with
dynamically calculated sizes. We implemented our approach
as an extension to PluTo [4, 5] which is an academic source-
to-source compiler framework that performs tilings based
on polyhedral optimization. The resulting code can be com-
piled by any C compiler. In particular, we use PluTo to
obtain valid transformations and tilings of loops as well as
to gather information about those loops that can actually
be vectorized. However, in contrast to PluTo, we orient the
tiling towards an effective use of SIMD units. Instead of
partitioning the iteration space with respect to all loop di-
mensions and into tiles of static size, we restrict the tiling
to those loops that are relevant for the data to be processed
in a vectorized manner. Further, we dynamically adapt the
size of tiles to the SIMD register width and the cache sizes
of the underlying hardware. Ideally, our approach leads to
a software pipeline of blocks to be processed by the SIMD
units. We show for two example source codes that we obtain
improved running times by a combination of a measurably
well-performing stream of data through the cache hierarchy
and an increased rate of issued SIMD instructions.

2. POLYHEDRAL TRANSFORMATIONS,
VECTORIZABLE LOOPS AND TILINGS

A loop qualifies for vectorization if it is innermost with
respect to its nest and parallelizable, i.e., there are no data
dependencies between its iterations.

In the polyhedral model, one considers the iteration points
of a loop nest and the dependencies between them using
Z-polyhedra [9, 12, 13], as depicted in Fig. 1. In this rep-
resentation, the index variable of each loop relates to one
dimension of the associated polyhedron. A valid transfor-
mation corresponds to a change in the order of execution
of the iteration points that preserves compliance with the
dependencies. This may include the manipulation of loop
dimensions (index variables) leading to a deformation of the
polyhedron such that computations can be processed in par-
allel with respect to one or more of the dimensions. By
applying integer programming techniques, PluTo is capable
to perform transformations such that the necessary com-

munication across the dimensions of the resulting loops is
minimized [6]. This is beneficial for parallelization. If com-
munication is not necessary with respect to an outer loop
dimension, then a parallelization of the inner loops’ itera-
tions is possible. If communication is not necessary with
respect to the innermost loop dimension, then the iterations
of this loop can be processed in parallel, e.g., by vectoriza-
tion. Fortunately, PluTo is able to mark loops that qualify
for vectorization, possibly by interchanging it to become the
innermost one (which we assume from now on to be the
case). Furthermore, PluTo can compute a partitioning of
the iteration space into tiles. Consider Fig. 1 for an exam-
ple where a legal (rectangular) tiling is possible only after
a transformation of the loop nest. The left tiling is illegal,
because iteration points between blocks have reciprocal de-
pendencies. After manipulating the loop dimensions, it is
possible to apply the tiling depicted in the right image since
it now allows for an order of execution that respects all de-
pendencies. We use the polyhedral representations within
PluTo to obtain such legal loop tilings.

j

i
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Figure 1: A polyhedral representation of a nested
loop with its dependence structure and an invalid
tiling (left) as well as a valid one (right).

3. CENTRAL IDEAS
In order to fully exploit the speedup potential of SIMD

units, it is advantageous to have access to data that is ac-
cordingly prefetched into the available cache hierarchy. How
can we achieve this by a smart tiling?

As already stated, a loop to be vectorized must be (made)
innermost. Its index variable imposes a constant offset/stride
between the memory addresses of data that is to be succes-
sively packed into (SIMD) registers while the indices of all
other loops remain constant. It can thus be expected that it
is beneficial for the successful prefetching of operands, if the
innermost loop is executed for a relatively large number of it-
erations before the control flow leaves it and manipulates the
other loops’ index variables. Then, the prefetcher should be
able to better pre-load future operands while current calcu-
lations are served from the cache hierarchy. The prefetching
causes cache misses that do not significantly influence the
running time but impose cache hits when the operands are
really needed. On the other hand, a large number of itera-
tions in the innermost loop may also harm spatial locality
in comparison to fewer ones. This is particularly true if the
index variable of the innermost loop does not correspond to
the minor dimension of all accessed arrays (and therefore
not to one-strides in memory).

Clearly, there must be a trade-off between the advantages
and disadvantages of a large blocking of the innermost loop.
However, we believe that the blocking of (a) all loops into



(b) constantly sized blocks (like, e.g., the default tiling into
blocks of 32 iterations performed by PluTo) is unlikely to
perform well for every application and every system. This
is especially true for deeply nested loops with many state-
ments within the innermost loop. As an example, if d is the
depth of a loop nest, then the innermost statements of a
tile using PluTo’s default tiling are executed 32d times and
the data accessed by these statements is unlikely to fit into
a cache with increasing d. Nonetheless, this fits quite well
for ‘typical’ loop nests with depth two or three and today’s
usual cache sizes. PluTo allows to also enforce a second-level
tiling of the resulting loops into blocks of 8 which already
addresses the cache memory hierarchies of modern proces-
sors. Alternatively, the user may specify tile sizes manually.
We used this fact to elaborate on our ideas and made exper-
iments with different sizes for a specific tiling of one or two
loops only.

3.1 Experiments with manual tile sizes
We consider two test cases both of which are written in C

and have been taken from PluTo’s example suite:

• A standard matrix multiplication (see Fig. 18)

• A correlation matrix algorithm (see Fig. 21)

The environment for the tests and the benchmarks in the
subsequent section comprises the following Intel Xeon pro-
cessor and is running Scientific Linux 6.

CPU: Intel R© Xeon R© CPU X5650 (2.67 GHz)

L1 / L2 / L3 cache: 32 KB (data) / 256 KB / 12288 KB

SSE version: 4.2 (128 bit registers)

All runs were performed single-threaded using gcc 4.6 or
icc 13.0, both with optimization level -O3 on single precision
floating point data.

3.1.1 Manual one-level tiling
To start, we consider a pure tiling of the vectorized loop

only with manually set tile sizes qL1 = 4, 64 and 256. We
compare it to the original source code and PluTo, configured
to also generate a one-level tiling of all loops using its default
sizes (see Fig. 23).

First, we evaluate the resulting matrix multiplication codes
for various choices of (symmetric) matrix sizes N = M = K
within a small range for a fine-grain analysis.
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Figure 2: Running times for the one-level-tiled ma-
trix multiplication (fine grain) with gcc

As is depicted in Fig. 2, the performance of the original
(source) version highly depends on the size of the matrix.
For sizes that are multiples of four, the code generated by
gcc performs about four times faster. Application of gcc’s

verbose mode confirmed the hypothesis that it is only able to
apply auto-vectorization in these cases. Likewise, already a
very fine-grain tiling with qL1 = 4 suffices in order to enable
auto-vectorization by gcc for any matrix size. Increasing
qL1 to 256 leads to running times that are comparable to
those achieved by the default tiling of PluTo or even faster.
The deviant behavior for sizes that are not multiples of four
can be explained with the ‘remainders’ that result from the
tiling in these cases. We experimentally determined a per-
fect correlation between the size of the last tiles and the rate
of vectorization, i.e., again gcc appears to not vectorize these
remaining loop iterations, especially if their number is odd.
We further elaborate on different parameters that influence
the sustained performance in Sect. 4.2.

In Table 1, the relative performance from the fine-grained
setting is confirmed for a larger interval of register-fitting
(multiples of four) and non-register-fitting matrix sizes.

N 256 512 1024 1536 2048

source 0.0096 0.0905 2.3191 7.9956 20.2370
PluTo (def.) 0.0063 0.0536 0.4645 1.4801 3.7902

qL1 = 4 0.0202 0.1829 2.1804 8.2643 26.1112
qL1 = 64 0.0071 0.0672 0.6092 2.4307 10.0529
qL1 = 256 0.0048 0.0454 0.3887 1.6499 5.2734

N 257 513 1025 1537 2049

source 0.0223 0.1956 9.9101 34.0321 82.7667
PluTo (def.) 0.0121 0.1076 0.8839 2.9326 7.5070

qL1 = 4 0.0444 0.3702 3.6207 14.8025 38.7883
qL1 = 64 0.0113 0.1081 0.9672 3.7944 14.0045
qL1 = 256 0.0079 0.0673 0.5736 2.2688 6.4815

Table 1: Running times for the one-level-tiled ma-
trix multiplication (coarse grain) with gcc

We apply the same test cases for the correlation matrix
algorithm which has a more complicated code structure. As
can be seen in Fig. 3 and Table 2, gcc is not able to vec-
torize its original version at all. However, again tiling the
loops corresponding to the M -matrix-dimension (together
with the corresponding code transformation) enables gcc to
auto-vectorize the code already when setting qL1 to 4. With
qL1 = 256, the running times are almost always faster than
with PluTo’s default one-level tiling.
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Figure 3: Running times for the one-level-tiled cor-
relation matrix algorithm (fine grain) with gcc

3.1.2 Manual two-level tiling
Now, we consider a two-level tiling (of the vectorized loop

and additionally the outermost loop of its nest) again using
manually set tile sizes qL1 = 4, 64 and 256 for the vector-
ized loop and qL2 = 2, 4 and 8 for the outermost one. We



N 256 512 1024 1536 2048

source 0.0114 0.2140 4.8512 22.4826 60.9249
PluTo (def.) 0.0078 0.0599 0.4844 1.5089 3.8053

qL1 = 4 0.0221 0.1844 2.0942 8.5166 21.8286
qL1 = 64 0.0065 0.0573 0.5204 1.8351 5.7119
qL1 = 256 0.0054 0.0404 0.3472 1.2619 3.7619

N 257 513 1025 1537 2049

source 0.0115 0.2152 4.9040 22.4878 61.0156
PluTo (def.) 0.0070 0.0533 0.4367 1.3892 3.3829

qL1 = 4 0.0209 0.1745 1.8981 7.5941 20.9514
qL1 = 64 0.0065 0.0557 0.5031 1.7586 5.5304
qL1 = 256 0.0054 0.0403 0.3430 1.2401 3.7118

Table 2: Running times for the one-level-tiled cor-
relation matrix algorithm (coarse grain) with gcc

configured PluTo to also generate a two-level tiling using its
default sizes (see Fig. 23). The running times are depicted
in Figures 4 and 5 and, for ease of comparison, the one-level
tiling running times are shown dotted in the right graphs.
As might have been expected, the additional blocking leads
to shorter running times in all cases.
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Figure 4: Running times for the two-level tiled ma-
trix multiplication (fine grain) with gcc
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Figure 5: Running times for the two-level tiled cor-
relation matrix algorithm (fine grain) with gcc

3.2 Ideas towards an automatic derivation of
tile sizes

The results presented so far appear to support the hy-
pothesis that a tiling of specific loops can be as effective
as a tiling of all loops. Furthermore, they tell us that loop
ranges should be SIMD-specific, i.e., fit to SIMD register
widths, in order to leverage the full potential of gcc’s au-
tomatic vectorizer. Until now, the running times seem to
improve with increasing tile sizes. Clearly, the amount of
increase that pays off must be limited. Our intuition was
that a natural limitation should stem from the cache sizes.
Ideally, the block size for the first level tiling should be fit-
ted to the ratio of the size of the L1 cache and the amount

of data read in one iteration of the loop to be vectorized.
Similarly, the block size for the second level tiling should
be fitted to the ratio between the L2 cache size and the L1
cache size. In the best case, this strategy could lead to the
situation that all required data for one tile of the vectorized
loop fits into the L1 cache and that such blocks of data can
be successively pipelined from the L2 cache. With the larger
innermost tile size, we should be able to move compulsory
cache misses to the prefetcher and, with the cache-specific
tiling, we should optimize for less capacity cache misses at
the same time. Hence, we call the just described combina-
tion of both concepts a SIMD- and cache-specific (SICA)
tiling. For the (optional) second-level tiling, we select the
outermost loop of the corresponding nest. This strategy
keeps changes to the inner loops as rare as possible which,
as a heuristic, should be good for the prefetcher.

We set up a straightforward model to compute all the in-
formation needed for experiments to analyze whether this
is indeed a promising approach. First of all, we need to
know how many new operands must be loaded by each of
a loops’ iterations. This requires an analysis of the loops’
statements, since, e.g., operands (or addresses) that are ac-
cessed multiple times should be loaded only once per itera-
tion. Furthermore, constant values as well as operands that
do not depend on the vectorized loop should be loaded even
only once at all for the entire loop. As already stated in
Sect. 2, the innermost loop may, in general, contain several
statements which are considered to compose a statement-
block. We calculate the total amount of data elements E to
load per iteration for each of these blocks.

Elements per Iteration : ElPeIt = E (1)

Further, we need the following hardware parameters:

• CL1: The size of the L1 cache (in KBytes)

• CL2: The size of the L2 cache (in KBytes)

• R: The SIMD register width (in Bits)

Using this information, the number of elements of the
given type (e.g. float or double) with size D (in Bytes)
that fit into the L1 cache can be calculated as follows:

cache size in elements : CaSiEl =
CL1 ∗ 1024

D (2)

The number of operands of the given data type with size
D (in Bytes) that can be packed into the SIMD registers is
denoted by:

elements per register : ElPeRe =
R

8 ∗ D (3)

Since there might be other variables that should be cached,
one might like to adjust the ratio of the L1 cache size to use
to, e.g., only 90% or 80%. We therefore introduce an ac-
cording parameter ρ with the meaning that ρ = 1.0 relates
to 100%.

ratio of cache to use : ρ (4)

For each block of statements we may now compute how
many iterations shall be blocked so that all operands re-
quired by this block ideally fit into the L1 cache at once:

iterations to block : ItToBl = ρ ∗ CaSiEl

ElPeIt
(5)



Finally, we want to make the first-level tile size qL1 a
multiple of the SIMD-register width. Hence, we compute
the greatest multiple of ElPeRe that fits into the L1 cache
as follows:

qL1 =

—
ItToBl

ElPeRe

�
∗ ElPeRe (6)

Summing up all calculations into a single formula yields:

qL1 =

$
ρ ∗ CL1∗1024

D ∗ 1
E

R
8∗D

%
∗ R

8 ∗ D (7)

=

—
ρ ∗ CL1 ∗ 8192

R ∗ E

�
∗ R

8 ∗ D (8)

Now for the second level tiling, we simply calculate the
ratio of the two cache sizes.

qL2 =
CL2

CL1
(9)

3.2.1 Example
Consider the standard matrix multiplication for single pre-

cision floating point data with only one statement C[i][j] =
C[i][j] + α ∗A[i][k] ∗B[k][j] and vectorized j-loop. Two new
data elements need to be loaded per j-iteration, namely
C[i][j] and B[k][j]. This leads to the following SICA L1
tile size for our test system with 32 KByte of L1 cache and
128 Bit SSE registers:

qL1 =

—
ρ ∗ 32 ∗ 8192

128 ∗ 2

�
∗ 128

8 ∗ 4

ρ=1.0
= 4096 (10)

Since our system has 256 KByte of L2 cache, the second
block size evaluates to qL2 = 256

32
= 8.

3.3 SICA extensions to PluTo
We implemented our SICA tiling as an extension of PluTo

together with several new parameters and functionalities
that cause only neglectable overhead. It comprises adaptive
components, like, e.g., procedures to determine hardware
parameters by using the CPUID [15] instructions (they can
be equally manually set via a configuration file) and new
routines to calculate the amount of data loaded in one loop
iteration. If an innermost loop contains multiple statements
(possibly as a consequence of the polyhedral transforma-
tions), it is viable to group them into blocks for which the
tiling is then performed independently. Unlike in PluTo’s
original tiling algorithm, every block of statements can be
associated with individual tile sizes. This is necessary since
different statement blocks (within the same loop nest) may
require a different number of operands to be loaded per iter-
ation. Nevertheless, one may still request a globally uniform
tiling by adopting the minimal or maximal determined tile
size for all statement blocks. As an example, a rectangular
SICA tiling of a perfectly nested loop with only one state-
ment S is depicted in Fig. 24.

4. ANALYSIS AND BENCHMARKS
The following experiments can be divided into two parts.

First, we deliver a verification of the proposed correlation be-
tween the amount of data read within the vectorized loops’
iterations, tile sizes, cache sizes and performance. After
that, we evaluate the performance of the corresponding adap-
tive approach concerning running times, cache miss rates,
TLB misses and the rate of issued SIMD instructions.

4.1 Verification of the approach
In order to evaluate the impact of the tile sizes only, we

fix some (asymmetric) matrix sizes. We keep the matrix
dimensions corresponding to non-vectorized loop dimensions
small in order to be able to benchmark a large interval of
sizes for the vectorized one and to obtain reasonable running
times at the same time.

4.1.1 SICA L1 tiling
We again start our experiments with a one-level tiling. For

the matrix multiplication, we set M = 189, N = 139233 and
K = 189, since the loop corresponding to the N -dimension
is the vectorized one. Then, we vary the tile sizes by suc-
cessively changing the cache-ratio parameter ρ from 0 to 10
in steps of 0.01 units. This results in 1000 different versions
of the code with tile sizes up to 36864. Fig. 6 shows their
corresponding running times which are all within the shad-
owed area while the line is a cubic interpolation of them with
some smoothing applied.
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Figure 6: Impact of the tile size on the running time
of the matrix multiplication code with gcc

There is a global optimum that corresponds to about 90%
of the L1 cache size. This appears to confirm a correlation
between performance, tile and cache sizes. Furthermore, we
claimed a relationship between the optimum tile sizes and
the amount of data that needs to be loaded within the vec-
torized loops’ iterations. To verify this, we additionally mea-
sured the running times of codes performing the addition of
two or even three matrix multiplications (the corresponding
statements in the nested loop are depicted in Fig. 20). For
each additional matrix multiplication, there is one additional
operand to be loaded per iteration. Regarding our test sys-
tem, this leads to tile sizes of qL1 = 4096 for a single matrix
multiplication [matmul1 ], qL1 = 2728 for the sum of two
of them [matmul2 ] and qL1 = 2048 for the sum of three of
them [matmul3 ]. Again, Fig. 7, in which we scaled the run-
ning times of the different versions to a common ordinate
(each individual range in seconds is denoted in brackets),
shows that the best tile size is at about 80 to 90% of the
theoretical optimum.

As before, the same experiments are repeated for the cor-
relation matrix algorithm. Here, we set M = 11923 and
N = 89 since loops corresponding to the M -dimension are
vectorized. Since there are several statements and multi-
ple loop nests (see Fig. 21 for the original code and Fig. 22
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Figure 7: The effect of more data to be loaded in
each iteration of the vectorized loop with gcc

for the SICA version), there is no unique tile size but an
individual one for each statement block. This is why it is
reasonable to measure the running times only by varying ρ
and thereby scaling the tile sizes proportionally.

In Fig. 8, the best tile size turns out to be quite exactly
the theoretical optimum. Another interesting observation
are the local optima for ρ = 2.0 and ρ = 3.0, where the
necessary data could be loaded from the cache in exactly
two or three portions.
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Figure 8: Impact of the tile size on the running time
of the correlation matrix algorithm with gcc

4.1.2 SICA L2 tiling
For a two-level tiling, we already theoretically justified to

choose the outermost loop from the nest of the vectorizable
one. Now, we deliver an experimental justification of this
decision using the matrix multiplication example. The re-
sulting running times for each selection of one of the three
nested loops for the second-level tiling (while tiling the first
level with the calculated qL1) are depicted in Fig. 9. Only
when the outermost loop (first) is selected, the running time
is improved. Furthermore, the calculated theoretical opti-
mum of qL2 = 8 (the L2 cache on the test-system is 8 times
larger than the L1 cache) leads to the best running times.

4.2 Performance counters
To further investigate the impact of the SICA tiling and to

explain the improved running times, we measured PAPI [19]
performance counters for the original source code and the
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Figure 9: Second level tiling: The impact of the
choice of a distinct loop and its tile size (with gcc)

two-level tilings by PluTo (default) and our extension with
the asymmetric matrix sizes from Sect. 4.1. In particular,
we focused on the effects concerning the L2 cache miss rate
(as each L2 cache miss is preceded by an L1 cache miss
and the L2 cache, being the last on-core level, is crucial for
our intended pipeline), the rate of introduced SIMD instruc-
tions and the number of L1/L2-TLB misses. Concerning the
cache behavior, it is important to consider miss rates instead
of absolute numbers of cache misses. This is true since a
successful prefetching of the accessed data may lead to an
increase of the total number of cache misses and accesses at
the same time. However, misses obtained like this do not
significantly harm performance but impose cache hits when
the operands are really needed. We additionally measured
the cache hit rate but did not explicitly picture it. As could
be expected, it sums up to 100% with the cache miss rate
(besides minor deviation of the counters).

When using gcc, both the SICA and PluTo’s default tiling
largely improve the performance of the matrix multiplication
code (cf. Fig. 10). While the original source code cannot be
vectorized by gcc at all, the tiled versions enable the intro-
duction of SIMD instructions. In case of the SICA tiling,
in fact nearly all instructions are SIMD instructions. Tiling
only two instead of all loop dimensions results in fewer cases
where the control flows enters the innermost loop with ‘re-
mainders’ of iterations that cannot be vectorized by gcc.
This effect is in fact intensified by the choice of asymmetric
matrix sizes for these experiments. The larger tile size for
the vectorized loop (in comparison to PluTo) corresponds to
many predictable accesses to the innermost (linearly stored)
array dimension. Both tiled versions lead to a reduction of
the L2 cache miss rate. This is especially true with the fitted
tile sizes calculated by the SICA extension which also leads
to a stronger reduction of TLB misses.

Fig. 11 shows that the internal optimizations done within
icc applied to the original source code perform better than
when applied to PluTo’s default tiled version. This is espe-
cially true for the L2 cache miss rate. It is even marginally
better for the original source than with the fitted SICA tile
sizes. However, with the SICA tiling, icc is able to pro-
duce the fastest code since it can again turn nearly every
instruction into a SIMD instruction. The situation concern-
ing TLB misses is as before with the exception that the code
produced by icc on the original source code leads to far less
TLB misses than with gcc.

In case of the correlation matrix algorithm and gcc, the



3

6

9

12

15

18

21

24

27

running
time (s)

24.97 s

so
urce

3.69 s

PluTo

(de
fau

lt)

2.52 s

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L2 cache
miss rate (%)

35.76%

so
urce

26.41%

PluTo

(de
fau

lt)

4.78%

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vectorized
instructions (%)

0.00%

so
urce

71.53%

PluTo

(de
fau

lt)

99.69%

SIC
A

101

102

103

104

105

106

107

108

109

1010

TLB
Misses

1345541255

so
urce

3111456

PluTo

(de
fau

lt)

69055

SIC
A

Figure 10: PAPI performance counters for the matrix multiplication code with gcc
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Figure 12: PAPI performance counters for the correlation matrix code with gcc
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Figure 13: PAPI performance counters for the correlation matrix code with icc



source codes produced by PluTo and with the SICA tiling
both improve the running time as is shown in Fig. 12. Even
more, both tilings lead to a nearly perfect vectorization of
the code. However, whereas the PluTo code leads to an
increase of L2 cache misses compared to the original source
code, the SICA tiling leads to a decrease which explains
the better running time. As opposed to that and with less
impact on the running time, PluTo performs by far best
concerning TLB misses while the SICA version cannot even
improve on the number of TLB misses that are produced
with the original source code.

As with the matrix multiplication, PluTo’s default tiling
does not lead to a better running time compared to the
original source code when compiled with icc. For the L2
cache miss rate and the TLB misses, the results are similar
to the case of using gcc. However, icc is able to fully vectorize
the original code and there is nearly no difference in the rate
of vectorization using any of the three codes as input.

4.2.1 Interim summary
For the considered test cases and compared to the original

source code and PluTo’s default tiling, the SICA approach
always produced the best running times, no matter if used
as input for gcc or icc. A big advantage of the SICA tiling is
that it typically enables the compilers to vectorize a larger
number of instructions. Further, across all benchmarks, it
leads to a small L2 cache miss rate which is the best one
obtained except for the matrix multiplication with icc. Con-
cerning TLB misses, possible improvements depend on the
access pattern of the statements within the vectorized loop.

4.3 Performance benchmarks
Finally, we would like to verify the performance of the

SICA two-level tiling for the two application codes across a
larger range of symmetric matrix input sizes. We selected
the sizes i · 1024 for i ∈ [2, 8]. Since these are all multiples
of four, they diminish the disadvantages of PluTo’s default
tiling in the benchmarks before, i.e., there will be no non-
vectorizable ‘remainders’ of loop iterations anymore. Simi-
larly, gcc will always be able to apply its auto-vectorization
already to the original source code.

Fig. 14 and 16 show the corresponding running times for
gcc and Fig. 15 and 17 those for icc. The output produced
by the SICA tiling appears to support both compilers to
produce faster code compared to the original source and
PluTo’s default tiling. For completeness, Table 3 depicts
the average speedups obtained for the tested input sizes.

gcc matrix multiplication correlation matrix

PluTo (def.) 11.14 4.47
SICA 20.05 8.89

icc matrix multiplication correlation matrix

PluTo (def.) 1.01 3.73
SICA 1.31 7.54

Table 3: Average speedups (coarse grain)

5. CONCLUSION, ONGOING WORK AND
OUTLOOK

We presented an adaptive hardware-aware tiling approach
that has been implemented and evaluated as an extension to
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Figure 14: Running times for the two-level tiled ma-
trix multiplication (coarse grain) with gcc
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Figure 15: Running times for the two-level tiled ma-
trix multiplication (coarse grain) with icc
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Figure 16: Running times for the two-level tiled cor-
relation matrix (coarse grain) with gcc
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Figure 17: Running times for the two-level tiled cor-
relation matrix (coarse grain) with icc

PluTo. In contrast to PluTo, it does not perform a tiling of
all loops in a nest, but specific tilings of distinct loops that
are beneficial for an effective vectorization. It is adaptive
in that it performs an automatic analysis of the amount of
data accessed by a loop’s statements and is able to derive
information about the underlying hardware such as cache
sizes and SIMD register widths. These parameters are used
to derive dynamic tile sizes that ideally lead to a software
pipeline of blocks to be processed by the SIMD units and to
be well prefetched through the cache hierarchy.

We verified and evaluated our approach experimentally
on two source codes from PluTo’s example suite, namely a
standard matrix multiplication and a correlation matrix al-
gorithm. As our results show, the proposed tiling strategy



leads to better running times in comparison to PluTo’s de-
fault tiling and the original source code when its output is
compiled with gcc 4.6 or icc 13.0. An analysis with per-
formance counters brought to light that these results can be
mainly explained by an increase of issued SIMD instructions
and a strong reduction of the L2 cache miss rate.

In further studies (see [10]), we examined the behavior of
our extension on further source codes. They include appli-
cations that contain very deep loop nests and where a static
all-dimension tiling therefore leads to blocks that are by far
too large for today’s usual cache sizes. This may consider-
ably harm performance, whereas our extension can handle
these cases by its dynamic analysis and the restriction to tile
at most two loops.

However, we do not consider a tiling of at most two loops
as a globally superior strategy. To the contrary, if the de-
pendence structure of a statement block refers to multiple
loop dimensions, a corresponding specific multi-dimensional
tiling could be superior in terms of spatial locality and TLB
performance. We plan to consider this in future work. Sim-
ilarly, we would like to manipulate the loop transformations
towards an automatic optimization for one-strided memory
accesses. This could be potentially achieved by (a) sepa-
rating the statements of a block according to their access
patterns, (b) transforming them one by one targeting one-
strided accesses and (c) vectorizing the resulting loop nests.
We also plan to experiment with a L3 cache tiling as well as
with the combination of our developments with automatic
shared-memory parallelization in order to exploit the full
concurrency potential of modern multicore processors.

Currently, our developments are ported to the PoCC [16]
framework (that includes PluTo) in order to integrate our
extensions into Polly and thereby into the LLVM infrastruc-
ture [14].
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APPENDIX
A. STATIC CONTROL PARTS (SCoPs) OF

THE CONSIDERED EXAMPLE CODES

f o r ( i =0; i<M; i++)
f o r ( j =0; j<N; j++)
f o r (k=0; k<K; k++)
C[ i ] [ j ] = C[ i ] [ j ] + alpha∗A[ i ] [ k ]∗B[ k ] [ j ] ;

Figure 18: Original standard matrix multiplication

f o r ( t1=0; t1<=f l o o r (M−1 ,8) ; t1++) {
f o r ( t2=0; t2<=f l o o r (N−1 ,3684); t2++) {
f o r ( t3=0; t3<=K−1; t3++) {
f o r ( t4=8∗t1 ; t4<=min(M−1 ,8∗ t1 +7); t4++) {
{
lbv=3684∗ t2 ; ubv=min(N−1 ,3684∗ t2 +3683);
#pragma ivdep
#pragma vector always
f o r ( t9=lbv ; t9<=ubv ; t9++) {
C[ t4 ] [ t9 ]=C[ t4 ] [ t9 ]+alpha∗A[ t4 ] [ t3 ]∗B[ t3 ] [ t9 ] ; ;
}
}

}}}}

Figure 19: Matrix multiplication (SICA applied with
ρ = 0.9)

C[ i ] [ j ]=C[ i ] [ j ]+A[ i ] [ k ]∗B[ k ] [ j ] ;
C[ i ] [ j ]=C[ i ] [ j ]+A[ i ] [ k ]∗B[ k ] [ j ]+D[ i ] [ k ]∗E[ k ] [ j ] ;
C[ i ] [ j ]=C[ i ] [ j ]+A[ i ] [ k ]∗B[ k ] [ j ]+D[ i ] [ k ]∗E[ k ] [ j ]

+F [ i ] [ k ]∗G[ k ] [ j ] ;

Figure 20: The different statements in matmul1,
matmul2 and matmul3

/∗ Center and reduce the column vec to r s . ∗/
f o r ( i = 1 ; i <= N; i++)
f o r ( j = 1 ; j <= M; j++) {
data2 [ i ] [ j ] −= mean [ j ] ;
data2 [ i ] [ j ] /= sq r t (N) ∗ stddev [ j ] ;
}

/∗ Calcu la te the M ∗ M co r r e l a t i o n matrix . ∗/
f o r ( j 1 = 1 ; j 1 <= M−1; j 1++) {
symmat [ j 1 ] [ j 1 ] = 1 . 0 ;
f o r ( j 2 = j1 +1; j2 <= M; j2++) {
symmat [ j 1 ] [ j 2 ] = 0 . 0 ;
f o r ( i = 1 ; i <= N; i++)
symmat [ j 1 ] [ j 2 ]+=(data2 [ i ] [ j 1 ]∗ data2 [ i ] [ j 2 ] ) ;

symmat [ j 2 ] [ j 1 ] = symmat [ j 1 ] [ j 2 ] ;
}
}

Figure 21: Original correlation matrix SCoP

f o r ( t2=0; t2<=f l o o r (M−1 ,8) ; t2++) {
f o r ( t3=c e i l ( t2 −920 ,921); t3<=f l o o r (M, 7 3 6 8 ) ; t3++) {
f o r ( t5=max(1 ,8∗ t2 ) ; t5<=min(min (M−1 ,8∗ t2 +7) ,

7368∗ t3 +7366); t5++) {
{
lbv=max(7368∗ t3 , t5 +1); ubv=min(M,7368∗ t3 +7367);
#pragma ivdep
#pragma vector always
f o r ( t10=lbv ; t10<=ubv ; t10++) {
symmat [ t5 ] [ t10 ]=0 . 0 ; ;
}
}

}}}
f o r ( t2=1; t2<=M−1; t2++) {
symmat [ t2 ] [ t2 ]= 1 . 0 ; ;
}
f o r ( t2=0; t2<=f l o o r (N, 8 ) ; t2++) {
f o r ( t3=0; t3<=f l o o r (M, 2 4 5 6 ) ; t3++) {
f o r ( t5=max(1 ,8∗ t2 ) ; t5<=min(N,8∗ t2 +7); t5++) {
{
lbv=max(1 ,2456∗ t3 ) ; ubv=min(M,2456∗ t3 +2455);
#pragma ivdep
#pragma vector always
f o r ( t10=lbv ; t10<=ubv ; t10++) {
data [ t5 ] [ t10]−=mean [ t10 ] ; ;
data [ t5 ] [ t10 ]/= sq r t (N)∗ stddev [ t10 ] ; ;
}
}

}}}
f o r ( t2=0; t2<=f l o o r (M−1 ,8) ; t2++) {
f o r ( t3=c e i l (2∗ t2 −920 ,921); t3<=f l o o r (M, 3 6 8 4 ) ; t3++) {
f o r ( t4=1; t4<=N; t4++) {
f o r ( t5=max(1 ,8∗ t2 ) ; t5<=min(min (M−1 ,8∗ t2 +7) ,

3684∗ t3 +3682); t5++) {
{
lbv=max(3684∗ t3 , t5 +1); ubv=min(M,3684∗ t3 +3683);
#pragma ivdep
#pragma vector always
f o r ( t10=lbv ; t10<=ubv ; t10++) {
symmat [ t5 ] [ t10 ]+=(data [ t4 ] [ t5 ]∗ data [ t4 ] [ t10 ] ) ; ;
}
}

}}}}
f o r ( t2=0; t2<=f l o o r (M−1 ,8) ; t2++) {
f o r ( t3=c e i l (2∗ t2 −920 ,921); t3<=f l o o r (M, 3 6 8 4 ) ; t3++) {
f o r ( t5=max(1 ,8∗ t2 ) ; t5<=min(min (M−1 ,8∗ t2 +7) ,

3684∗ t3 +3682); t5++) {
{
lbv=max(3684∗ t3 , t5 +1); ubv=min(M,3684∗ t3 +3683);
#pragma ivdep
#pragma vector always
f o r ( t10=lbv ; t10<=ubv ; t10++) {
symmat [ t10 ] [ t5 ]=symmat [ t5 ] [ t10 ] ; ;
}
}

}}}

Figure 22: Correlation matrix SCoP (SICA applied
with ρ = 0.9)

f o r ( i =0; i<M; i++)
f o r ( j =0; j<N; j++)
S ( i , j ) ;

f o r ( i i =0; i i≤ f l o o r (M−1 ,32); i i ++)
f o r ( j j =0; j j≤ f l o o r (N−1 ,32); j j++)
f o r ( i =32∗ i i ; i≤min(M−1 ,32∗ i i +31); i++)
f o r ( j=32∗ j j ; j≤min(N−1 ,32∗ j j +31); j++)
S ( i , j ) ;

f o r ( i i i =0; i i i ≤ f l o o r (M−1 ,256); i i i ++)
f o r ( j j j =0; j j j≤ f l o o r (N−1 ,256); j j j ++)
f o r ( i i =8∗ i i i ; i i≤min( f l o o r (M−1 ,32) ,8∗ i i i +7); i i ++)
f o r ( j j =8∗ j j j ; j j≤min( f l o o r (N−1 ,32) ,8∗ j j j +7); j j++)
f o r ( i =32∗ i i ; i≤min(M−1 ,32∗ i i +31); i++)
f o r ( j=32∗ j j ; j≤min(K−1 ,32∗ j j +31); j++)
S ( i , j ) ;

Figure 23: Perfectly nested loop (left) with one level (middle) and two level (right) traditional tiling by PluTo

f o r ( i =0; i<M; i++)

f o r ( j j =0; j j≤ f l o o r (N−1,qL1 ) ; j j++)

f o r ( j=qL1∗ j j ; j≤min(N−1,qL1∗ j j +(qL1 − 1 ) ) ; j++)
S ( i , j ) ;

for ( i i =0; i i≤ f l o o r (M−1,qL2 ) ; i i ++)

for ( j j =0; j j≤ f l o o r (N−1,qL1 ) ; j j++)

for ( i=qL2∗ i i ; i≤min(M−1,qL2∗ i i +(qL2 − 1 ) ) ; i++)

for ( j=qL1∗ j j ; j≤min(N−1,qL1∗ j j +(qL1 − 1 ) ) ; j++)
S ( i , j ) ;

Figure 24: Loop from figure 23 with one level (left) and two level (right) SICA tiling for vectorizable j loop


