
Proceedings of IMPACT 2013

IMPACT 2013

Proceedings of the

3rd International Workshop on
Polyhedral Compilation Techniques

Berlin, Germany
January 21, 2013

in conjunction with HiPEAC 2013

Workshop organizers and proceedings editors:

Armin Größlinger
Louis-Noël Pouchet

Each article in these proceedings is copyrighted by its respective authors.

Acknowledgements

The program chairs are grateful to the members of the program committee for their incredible
work, time commitment and dedication during the review process for IMPACT 2013. We are
also grateful to the authors who submitted to IMPACT, Albert Cohen for his keynote speech,
and all participants and attendees of IMPACT 2013 in Berlin.

IMPACT 2013 in Berlin, Germany (in conjuction with HiPEAC 2013) is the third workshop in a
series of international workshops on polyhedral compilation techniques. The previous workshops
were held in Chamonix, France (2011) in conjuction with CGO 2011 and Paris, France (2012) in
conjuction with HiPEAC 2012.

iii

iv

Contents

Committees 1

Tiling & Dependence Analysis

David G. Wonnacott, Michelle Mills Strout
On the Scalability of Loop Tiling Techniques . 3

Tomofumi Yuki, Sanjay Rajopadhye
Memory Allocations for Tiled Uniform Dependence Programs 13

Sven Verdoolaege, Hristo Nikolov, Todor Stefanov
On Demand Parametric Array Dataflow Analysis . 23

Parallelism Constructs & Speculation

Imèn Fassi, Philippe Clauss, Matthieu Kuhn, Yosr Slama
Multifor for Multicore . 37

Dustin Feld, Thomas Soddemann, Michael Jünger, Sven Mallach
Facilitate SIMD-Code-Generation in the Polyhedral Model by
Hardware-aware Automatic Code-Transformation . 45

Johannes Doerfert, Clemens Hammacher, Kevin Streit, Sebastian Hack
SPolly: Speculative Optimizations in the Polyhedral Model 55

v

vi

Organizers and Program Chairs
Armin Größlinger (University of Passau, Germany)
Louis-Noël Pouchet (University of California Los Angeles, USA)

Program Committee
Christophe Alias (ENS Lyon, France)
Cédric Bastoul (INRIA, France)
Uday Bondhugula (IISc, India)
Philippe Clauss (University of Strasbourg, France)
Albert Cohen (INRIA, France)
Alain Darte (ENS Lyon, France)
Paul Feautrier (ENS Lyon, France)
Martin Griebl (University of Passau, Germany)
Sebastian Hack (Saarland University, Germany)
François Irigoin (MINES ParisTech, France)
Paul Kelly (Imperial College London, UK)
Ronan Keryell (Wild Systems/Silkan, USA)
Vincent Loechner (University of Strasbourg, France)
Benoît Meister (Reservoir Labs, Inc., USA)
Sanjay Rajopadhye (Colorado State University, USA)
P. Sadayappan (Ohio State University, USA)
Michelle Mills Strout (Colorado State University, USA)
Nicolas Vasilache (Reservoir Labs, Inc., USA)
Sven Verdoolaege (KU Leuven/ENS, France)

Additional Reviewers
Somashekar Bhaskaracharya
Roshan Dathathri
Alexandra Jimborean
Athanasios Konstantinidis
Andreas Simbürger

1

2

On the Scalability of Loop Tiling Techniques

David G. Wonnacott
Haverford College

Haverford, PA, U.S.A. 19041
davew@cs.haverford.edu

Michelle Mills Strout
Colorado State University

Fort Collins, CO, U.S.A. 80523
mstrout@cs.colostate.edu

ABSTRACT
The Polyhedral model has proven to be a valuable tool for
improving memory locality and exploiting parallelism for op-
timizing dense array codes. This model is expressive enough
to describe transformations of imperfectly nested loops, and
to capture a variety of program transformations, including
many approaches to loop tiling. Tools such as the highly suc-
cessful PLuTo automatic parallelizer have provided empiri-
cal confirmation of the success of polyhedral-based optimiza-
tion, through experiments in which a number of benchmarks
have been executed on machines with small- to medium-scale
parallelism.

In anticipation of ever higher degrees of parallelism, we have
explored the impact of various loop tiling strategies on the
asymptotic degree of available parallelism. In our analysis,
we consider “weak scaling” as described by Gustafson, i.e.,
in which the data set size grows linearly with the number of
processors available. Some, but not all, of the approaches to
tiling provide weak scaling. In particular, the tiling currently
performed by PLuTo does not scale in this sense.

In this article, we review approaches to loop tiling in the
published literature, focusing on both scalability and imple-
mentation status. We find that fully scalable tilings are not
available in general-purpose tools, and call upon the polyhe-
dral compilation community to focus on questions of asymp-
totic scalability. Finally, we identify ongoing work that may
resolve this issue.

1. INTRODUCTION
The Polyhedral model has proven to be a valuable tool for
improving memory locality and exploiting parallelism for op-
timizing dense array codes. This model is expressive enough
to express a variety of program transformations, including
many forms of loop tiling, which can improve cache line uti-
lization and avoid false sharing [16, 37, 36], as well as in-
crease the granularity of concurrency.

For many codes, the most dramatic locality improvements
occur with time tiling, i.e., tiling that spans multiple itera-
tions of an outer time-step loop. In some cases, the degree
of locality can increase with the number of time steps in a
tile, providing scalable locality [39]. For non-trivial exam-
ples, time tiling often requires loop skewing with respect to
the time step loop [27, 39], often referred to as time skew-
ing [39, 38]. This transformation typically involves imper-
fectly nested loops, and was thus not widely implemented

before the adoption of the polyhedral approach. However,
the PLuTo automatic parallelizer [19, 6] has demonstrated
considerable success in obtaining high performance on ma-
chines with moderate degrees of parallelism by using this
technique to automatically produce OpenMP parallel code.

Unfortunately, the specific tiling transformations that have
been implemented and released in tools like PLuTo involve
pipelined execution of tiles, which prevents full concurrency
from the start. The lack of immediate full concurrency is
sometimes dismissed as a start-up cost that will be triv-
ially small for realistic problem sizes. While this may be
true for the degrees of parallelism provided by current multi-
core processors, this choice of tiling can impact the asymp-
totic degree of concurrency available if we try to scale up
data set size and machine size together, as suggested by
Gustafson [15]. Furthermore, Van der Wijngaart et al. [35]
have modeled and experimentally demonstrated the load im-
balance that occurs on distributed memory machines when
using the pipelined approach.

In this paper, we review the status of implemented and pro-
posed techniques for tiling dense array codes (including the
important sub-case of stencil codes) in an attempt to de-
termine whether or not the techniques that are currently
being implemented are well suited to machines with higher
demands for parallelism and control of memory traffic and
communication. The published literature on tiling for auto-
matic parallelization seems to be divided into two disjoint
categories: “practical” papers describing implemented but
unscalable techniques for automatic parallelizers for dense
array codes, and “theoretical” papers describing techniques
that scale well but are either not implemented or not inte-
grated into a general automatic parallelizer.

In Section 2 of this paper, we discuss that the approach cur-
rently used by PLuTo does not allow full scaling as described
by Gustafson [15]. In Section 4, we survey other tilings that
have been suggested in the literature, classify each approach
as fully scalable or not, and discuss its implementation sta-
tus in current automatic parallelization tools. We also ad-
dress recent work by Bondhugula et al. [3] on a tiling tech-
nique that we believe will be scalable, though asymptotic
scaling is not addressed in [3]. Section 5 presents our con-
clusions: we believe the scalable/implemented dichotomy is
an artifact of current design choices, not a fundamental lim-
itation of the polyhedral model, and can thus be addressed
via a shift in emphasis by the research community.

3

// update N pseudo-random seeds T times

// assumes R[] is initialized

for t = 1 to T

for i = 0 to N-1

S0: R[i] = (a*R[i]+c) % m

Figure 1: “Embarrassingly Parallel” Loop Nest.

2. TILING AND SCALABILITY
In his 1988 article “Reevaluating Amdahl’s Law” [15],
Gustafson observed that, in actual practice, “One does not
take a fixed size problem and run it on various numbers of
processors”, but rather “expands [the problem] to make use
of the increased facilities”. In particular, in the successful
parallelizations he described, “as a first approximation, the
amount of work that can be done in parallel varies linearly
with the number of processors”, and it is “most realistic to
assume run time, not problem size, is constant”. This form
of scaling is typically referred to as weak scaling or scal-
able parallelism, as opposed to the strong scaling needed to
give speed-up proportional to the number of processors for
a fixed-size problem.

Weak scaling can be found in many data parallel codes, in
which many elements of a large array can be updated simul-
taneously. Figure 1 shows a trivial example that we will use
to introduce our diagrammatic conventions (following [38]).
In Figure 2 each statement execution/loop iteration is drawn
as an individual node, with sample values given to symbolic
parameters. The time axis, or outer loop, moves from left
to right across the page. The grouping of nodes into tiles is
illustrated with variously shaped boxes around sets of nodes.
Arrows in the figure denote direction of flow of information
among iterations or tiles. Line-less arrowheads indicate val-
ues that are live-in to the space being illustrated. (When
comparing our figures to other work, note that presentation
style may vary in several ways: some authors use a time axis
that moves up or down the page; some draw data depen-
dence arcs from a use to a definition, thus pointing into the
data-flow like a weather vane; some illustrate tiles as rectan-
gular grids on a visually transformed iteration space, rather
than with varied shapes on the original iteration space.)

Figure 2 makes clear the possibility of both (weak) scalable
parallelism and scalable locality. In the execution of a tile
of size (τ × σ), i.e., τ iterations of the t (time) loop and σ
iterations of the i (data) loop, data-flow does not prevent P
processors from concurrently executing P such tiles. Each
tile performs O(σ × τ) computations and has O(σ) live-in
and live-out values; if each processor performs all updates of
one data element before moving to the next, O(τ) operations
can be performed with O(1) accesses to main memory.

Inter-iteration data-flow can constrain, or even prevent, scal-
able parallelism or scalable locality. For the code in Figure 1,
we can scale up parallelism by increasing N and P , or we
can scale up locality by increasing T with the machine bal-
ance. However, beyond a certain point (i.e., σ = 1), we can
no longer use additional processors to explore ever increas-
ing values of T for a given N . (An increase in CPU clock
speed might help in this situation, though beyond a certain
point it would likely not help performance for increasing N

1 2 3 4 5

i

1

3

4

5

6

2

7

t

0

Figure 2: Iteration Space of Figure 1 with T=5, N=8,
tiled with τ = 5, σ = 4.

for a given T .)

As we show in the next two sections, scalable parallelism
may be constrained not only by the fundamental data-flow,
but also by the approach to parallelization.

3. PIPELINED PARALLELISM
In a Jacobi stencil computation, each array element is
updated as a function of its value and its neighbors’
values, as shown (for a one-dimensional array) in Fig-
ure 3. Thus, we must perform time skewing to tile the
iteration space (except in the degenerate case of τ = 1,
which prevents scalable locality). Figure 4 illustrates the
usual tiling performed by automatic parallelizers such
as PLuTo, though for readability our figure shows far
fewer loop iterations per tile. Nodes represent execu-
tions of statement S1; for simplicity, executions of S2

are not shown. (The same data-flow also arises from a
doubly-nested execution of the single statement A[t%2,i]

= (A[(t-1)%2,i-1]+2*A[(t-1)%2,i]+A[(t-1)%2,i+1])/4,
but some tools may not recognize the program in this form.)

Array data-flow analysis [11, 22, 23] is well understood for
programs that fit the polyhedral model, and can be used
to deduce the data-flow arcs from the original imperative
code. The data-flow arcs crossing a tile boundary describe
the communication between tiles; in most approaches to
tiling for distributed systems, inter-processor communica-
tion is aggregated and takes place between executions of
tiles, rather than in the middle of any tile. The topology of
the inter-tile data-flow thus gives the constraints on possible
concurrent execution of tiles. For Figure 4, concurrent ex-

4

for t = 1 to T

for i = 1 to N-2

S1: new[i] = (A[i-1]+2*A[i]+A[i+1])/4

for i = 1 to N-2

S2: A[i] = new[i]

Figure 3: Three Point Jacobi Stencil.

1 2 3 4 5

i

1

3

4

5

6

2

7

t

8

Figure 4: Iteration Space of Figure 3 with T=5,
N=10, tiled with τ = 2, σ = 4.

ecution is possible in pipelined fashion, in which execution
of tiles progresses as a wavefront that begins with the lower
left tile, then simultaneously executes the two tiles border-
ing it (above and to the right), and continues to each wave
of tiles adjacent to the just-completed wave.

As has been noted in the literature, this is not the only
way to tile this set of iterations; however, other tilings are
not (currently) selected by fully-automatic loop parallelizers
such as PLuTo [19]. Even the semi-automatic AlphaZ sys-
tem [40], which is designed to allow programmers to exper-
iment with different optimization strategies, cannot express
many of these tilings. If such tools are to be considered
for extreme scale computing, we must consider whether or
not the tiling strategies they support provide the necessary
scaling characteristics.

3.1 Scalability
To support our claim that this pipelined tiling does not al-
ways provide scalable parallelism, we need only show that it
fails to scale on one of the classic examples for which it has
shown dramatic success for low-degree parallelism, such as
the easily-visualized one-dimensional Jacobi stencil of Fig-

t

i

12

12

12

12

12

12

12

12

11

10

9

8

7

6

5

4

3

2

1

11

11

2

3

4

4

5

5

5

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

9

10

10

10

10

10

10
8

11

11

11

11

11

Figure 5: Wavefronts of Pipelined Tile Execution.

ure 3. We will first do so, and then discuss the issue in
higher dimensions.

For some problem sizes, the tiling of Figure 4 can come close
to realizing scalable parallelism: if P = N

σ+τ
and T

τ
is much

larger than P , most of the execution is done with P pro-
cessors. Figure 5 illustrates the first 8τ time steps of such
an example, with P = 8, σ = 2τ , and N = P (σ + τ) (the
ellipsis on the right indicates a large number of additional
time steps). The tiles executed in the first 12 waves are
numbered 1 to 12 for reference, and individual iterations
and data-flow are omitted for clarity. For all iterations af-
ter 11, this tiling provides enough parallelism to keep eight
processors busy for this problem size, and for large T the
running time approaches 1

8
of the sequential execution time

(plus communication/synchronization time, which we will
discuss later). If we double both N and P , a similar ar-
gument shows the running time approaches 1

16
of the now

twice-as-large sequential execution time, i.e., the same par-
allel execution time, as described by Gustafson.

However, as N and P continue to grow, the assumption
that T

τ
� P eventually fails, and scalability is lost. Con-

sider what happens in Figure 5 if T = 8τ , i.e., the ellipsis
corresponds to 0 additional time steps. At this point, dou-
bling N and P produces a figure that is twice as tall, but no
wider; parallelism is limited to degree 8, and execution with
16 processors requires 35 steps rather than the 23 needed for
Figure 5 when T = 8τ (note that the upper-right region is
symmetric with the lower-left). Thus, communication-free
execution time has increased rather than remaining con-
stant. Increasing T (rather than N) with P is no better,
and in fact no combination of N and T increase can allow
16 processors to execute twice the work of 8 in the same 23
wavefronts: adding even one full row or one full column of
tiles means 24 wavefronts are needed.

Figure 5 was, of course, constructed to illustrate a lack of
scalability. But even if we start with a more realistic problem

5

size, i.e., with N � P and T � P , the pipelined tiling still
limits scalability. Consider what happens we apply the tiling
of Figure 5 with parameters N = 10000σ, T = 1000τ, P =
100, in which over 99% of the tiles can be run with full
100-fold parallelism, and then scale up N and P together
by successive factors of ten. Our first jump in size gives
N = 100000σ, T = 1000τ, P = 1000, which still has full
(1,000-fold) parallelism in over 98% of the tiles.

After the next jump, to N = 1000000σ, T = 1000τ, P =
10000 there is no 10,000-fold concurrency in the problem.
Even if the application programmer is willing to scale up
T rather than just N , in an attempt to reach full machine
utilization, the execution for N = 38730σ, T = 25820τ, P =
10000 still achieves 10,000-fold parallelism in only 85% of the
109 tiles. No combination of N and T allows any 100,000-
fold parallelism on 1010 tiles with this tiling... to maintain
a given degree of parallelism asymptotically, we must scale
both N and T with P , contrary to Gustafson’s original def-
inition. While this may be acceptable for some application
domains, we do not presume it to be universally appropri-
ate, and thus see pipelined tiling as a potential restriction
on the applicability of time tiling.

It is not always realistic to scale the number of time steps T .
Bassetti et al. [4] introduce an optimization they call sliding
block temporal tiling. They indicate that in these relax-
ation algorithms such as Jacobi “[g]enerally several sweeps
are made”. In their experiments they use up to 8 sweeps.
Zhou et al. [41] use 16,384 in their modified benchmarks. Ex-
periments with the Pochoir compiler [34] used 200 time steps
because their cache oblivious performance optimization im-
proves temporal locality. In summary, the number of time
iterations in stencil computation performance optimization
research varies dramatically. Work from the BeBOP group
at Berkeley [8] discusses how often multiple sweeps over the
grid within one loop occur and indicate that it may not be
as common as those of us working on time skewing imagine.
This makes it even more important for tiling strategies to
provide scalable parallelism that does not require the num-
ber of time steps to be on par with the spatial domain.

3.2 Tile Size Choice and Communication Cost
The above argument presumes a fixed tile size, ignoring the
possibility of reducing the tile size to increase the number of
tiles. However, communication costs (either among proces-
sors or between processors and RAM) dictate a minimal tile
size below which performance will be negatively impacted
(see [38, 19] for further discussion).

Note that per-processor communication cost is not likely to
shrink as the data set size and number of processors is scaled
up: Each processor will need to send the same number of
tiles per iteration, producing per-processor communication
cost that remains roughly constant (e.g., if processors are
connected to nearest neighbors via a network of the same
dimensionality as the data set space) or rising (e.g., if pro-
cessors are connected via a shared bus).

Even if we ignore communication costs entirely (i.e. in the
notoriously unscalable PRAM abstraction), tile size cannot
shrink below a single-iteration (or single-instruction) tile,
and eventually our argument of Section 3.1 comes into play

in asymptotic analysis.

3.3 Other Factors Influencing Scalability and
Performance

Our argument focuses on tile shape, but a number of
other factors will influence the degree of parallelism actu-
ally achieved by a given tiling. As noted above, reductions
in tile size could, up to a point, provide additional paral-
lelism (possibly at the cost of performance on the individual
nodes).

The use of global barriers or synchronization is common
in the original code generators, but note that MPI code
generators are under development for both Pluto and Al-
phaZ. While combining different tilings and code generation
schemes raises practical challenges in implementation, we do
not see any reason why any of the tilings discussed in the
next section could not, in principle, be executed without
global barriers within the tiled iteration space.

High performance on each node also requires attention to a
number of other code generation issues, such as code com-
plexity and impact on vectorization and prefetching. Fur-
thermore, these issues could be exacerbated by changes in
tile shape [3, Section III.B]. Thus, different tiling shapes may
be optimal for different hardware platforms or even differ-
ent problem sizes, depending on the relative costs of limit-
ing parallelism vs. per-node performance. Both [3, Section
III.B] and [33] discuss these issues and the possibility of
choosing a tiling that is scalable in some, but not all, data
dimensions.

3.4 Higher-Dimensional Codes
While the two-dimensional iteration space of the three-point
Jacobi stencil is easy to visualize on paper, many of the
subtleties of tiling techniques are only evident in problems
with at least two dimensions of data and one of time. For
pipelined tiling, the conflict between scalability is essentially
the same in higher dimensions: for a pipelined tiling of a
hyper-rectangular iteration space of dimension d, eventually
the amount of work must grow by O(kd) to achieve paral-
lelism O(kd−1).

Conversely, in higher dimensions, the existence of a wave-
front that is perpendicular to the time dimension (or any
other face of a hyper-rectangular iteration space) is fre-
quently the sign of a parallelization that admits some form
of weak scalability. However, as we will see, the parallelism
of some tilings scales with only some of the spatial dimen-
sions.

4. VARIATIONS ON THE TILING THEME
The published literature describes many approaches to loop
tiling. In this section, we survey these approaches, group-
ing together those that produce similar (or identical) tilings.
Our descriptions focus primarily on the tiling that would be
used for the code of Figure 3, which is used as an intro-
ductory example in many of the descriptions. We illustrate
the tilings of this code with figures that are analogous to
our Figure 5, with gray shading highlighting a single tile

6

t

i

21 3

1

1

1

2

2

2

3

3

3

Figure 6: Overlapped Tiling.

from time step two. We delve into the complexities of more
complex codes only as necessary to make our point.

For iterative codes with intra-time-step data-flow, the
tile shapes discussed below are not legal (or cannot be
legally executed in an order that permits scalable paral-
lelism). For example, consider an in-place update of a
single copy of a data set, e.g. the single statement A[i]

= (A[i-1]+2*A[i]+A[i+1])/4 nested inside t and i loops.
Since each tile must wait for data from tiles of with lower
values of i and the same value of t, pipelined startup is
necessary. While such code provides additional asymptotic
concurrency when both T and N increase, we see no way to
allow concurrency to grow linearly with the total work to be
done in parallel. Thus, pipelined tiling does not produce a
scalability disadvantage for such codes.

Note that our discussion below focuses on distinct tile
shapes, rather than distinctions among algorithms used to
deduce tile shape or size or the manner in which individual
tiles are scheduled or assigned to processors. For example we
do not specifically discuss the “CORALS” approach [32], in
which an iteration space is recursively subdivided into paral-
lelograms, avoiding the need to choose a tile size in advance
of starting the computation. Regardless of size, variation
in size, and algorithmic provenance, the information flow
among atomic parallelogram tiles still forces execution to
proceed along the diagonal wavefront, and thus still limits
asymptotic scalability.

4.1 Overlapped Tiling
A number of projects have experimented with what is com-
monly called overlapped tiling [26, 4, 2, 25, 10, 24, 19, 7,
20, 41]. In overlapped tiling for stencil computations, a
larger halo is maintained so that each processor can execute

t

i
2

2

3

31

1

4

4

5

6

5

6

Figure 7: Trapezoidal Tiling.

more than one time step before needing to communicate
with other processors. Figure 6 illustrates this tiling. Two
individual tiles from the second wavefront have been indi-
cated with shading, one with gray and one with polkadots;
the triangular polkadotted and gray region is in both tiles,
and thus represents redundant computation. This overlap
means that all tiles along each vertical wavefront can be exe-
cuted in parallel while still improving temporal data locality.

In terms of parallelism scalability, overlapped tiling does
scale because all of the tiles can be executed in parallel. If a
two-dimensional tiling in a two-dimensional spatial part of a
stencil is used as the seed partition, then two dimensions of
parallelism will be available with no need to fill a pipeline.
This means that as the data scale, so will the parallelism.

The problem with overlapped tiling is that redundant com-
putation is performed. This leads to a trade-off between
parallel scalability and execution time. Tile size selection
must also consider the effect of the expanded memory foot-
print caused by overlapped tiling.

Auto-tuning between overlapped sparse tiling and non-
overlapped sparse tiling [29, 30] for irregular iteration spaces
has also been investigated by Demmel et al. [9] in the con-
text of iterative sparse matrix computations where the tiling
is a run-time reordering transformation [28].

4.2 Trapezoidal Tiling
Frigo and Strumpen [12, 13, 14] propose an algorithm for
limiting the asymptotic cache miss rate of “an idealized par-
allel machine” while providing scalable parallelism. Figure 7
illustrates that even a simplified version of their approach

7

t

i

2

1

1

1

1

2

2

2

1

3

3

3

3

3

Figure 8: One data dimension and the time dimen-
sion in a diamond tiling [33]. The diamond extends
into a diamond tube in the second data dimension.

can enable weak scaling for the examples we discuss here
(their full algorithm involves a variety of possible decompo-
sition steps; our figure is based on Figure 4 of [14]). In our
Figure 7, the collection of trapezoids marked “1” can start
simultaneously; after these tiles complete, the mirror-image
trapezoids that fill the spaces between them, marked “2”,
can all be executed; after these steps, a similar pair of sets
of tiles “3” and “4” complete another τ time steps of com-
putation, etc. For discussion of the actual transformation
used by Frigo and Strumpen, and its asymptotic behavior,
see [14].

The limitation of this approach is not its scalability, but
rather the challenge of implementing it in a general-purpose
compiler. Tang et al. [34] have developed the Pochoir com-
piler, based on a variant of Frigo and Strumpen’s techniques
with a higher degree of asymptotic concurrency [34]. How-
ever, Pochoir handles a specialized language that allows only
stencil computations. Tools like PLuTo handle a larger do-
main of dense array codes; it may be possible to generalize
trapezoidal tiling to PLuTo’s domain, but we know of no
such work.

4.3 Diamond Tiling
Strzodka et al. [33, 31] present the CATS algorithm for cre-
ating diamond “tube” tiles in a 3-d iteration space. The dia-
monds occur in the time dimension and one data dimension,
as in Figure 8. The tube aspect occurs because there is no
tiling in the other space dimension. Each diamond tube can
be executed in parallel with all other diamond tubes within
a temporal row of diamond tubes. For example, in Figure 8
all diamonds labeled “1” can be executed in parallel, after
which all diamonds labeled “2” can be executed in parallel,

t

i

S

C

R1

1

1

S

C1

1

C

R1

1

S

C

R2

2

2

S

C2

2

C

R2

2

S

C

R3

3

3

S

C3

3

C

R3

3

Figure 9: Molecular tiling.

etc. Within each diamond tube, the CATS approach sched-
ules another level of wavefront parallelism at the granularity
of iteration points.

Although Strzodka et al. [33] do not use diamond tiles for 1-d
data/2-d iteration space, diamond tiles are parallel scalable
within that context. They actually focus on the 2-d data/3-
d iteration space, where asymptotically, diamond tiling only
scales for one data dimension. The outermost level of par-
allelism over diamond tubes only scales with one dimension
of data since the diamond tiling occurs across time and one
data dimension. On page 2 of [33], Strzodka et al. explic-
itly state that their results are somewhat surprising in that
asymptotically their behavior should not be as good as previ-
ously presented tiling approaches, but the performance they
observe is excellent probably due to the concurrent parallel
startup that the diamond tiles provide.

Diamond tiling is a practical approach that can perform bet-
ter than pipelined tiling approaches because it avoids the
pipeline fill and drain issue. The diamond tube also has
advantages in terms of intra-tile performance: fine-grained
wavefront parallelism and leveraging pre-fetchers. The dis-
advantages of the diamond tiling approach are that it has
not been expressed within a framework such as the poly-
hedral model (although it would be possible, just not with
rectangular tiles); that the approach does not cleanly extend
to higher dimensions of data (only one dimension of diamond
tiles are possible with other dimensions doing some form of
pipelined or split tiling); and that the outermost level of
parallelism can only scale with one data dimension.

4.4 Molecular Tiling
Wonnacott [38] described a tiling for stencils that allows true
weak scaling for higher-dimensional stencils, performs no re-

8

dundant work, and contains tiles that are all the same shape.
However, Wonnacott’s molecular tiles required mid-tile com-
munication steps, as per Pugh and Rosser’s iteration space
slicing [21] as illustrated in Figure 9. Each tile first executes
its send slice (labeled “S”), the set of iterations that produce
values that will be needed by another currently-executing
tile, and then sends those values; it then goes on to execute
its compute slice (“C”), the set of iterations that require no
information from any other currently-executing tile; finally,
each tile receives incoming values and executes its receive
slice (“R”), the set of iterations that require these data. In
higher dimensions, Wonnacott discussed the possibility of
extending the parallelograms into prisms (as diamonds are
extended into diamond tubes in the diamond tiling), but
also presented a multi-stage sequence of send and receive
slices to provide full scalability.

Once again, a transformation with potential for true weak
scaling remains unrealized due to implementation chal-
lenges. No implementation was ever released for iteration
space slicing [21]. For the restricted case of stencil com-
putations, these molecular tiles can be described without
reference to iteration space slicing, but they make extensive
use of modulo constraints supported by the Omega Library’s
code generation algorithms [18], and Omega has no direct fa-
cility for generating the required communication primitives.

The developers of PLuTo explored a similar split tiling [19]
approach, and demonstrated improved performance over the
pipelined tiling, but this approach was not used for the re-
leased implementation of PLuTo.

4.5 A New Hope
Recent work on the PLuTo system [3] has produced a tiling
that we believe will address the issue of true scalability with
data set size, though the authors frame their approach pri-
marily in terms of“enabling concurrent start-up”rather than
improving asymptotic scalability. For a one-dimensional
data set, this approach is essentially the same as the “dia-
mond tiling” of Section 4.3, but for higher-dimensional sten-
cils it allows scalable parallelism in all data dimensions.

Although a Jacobi stencil on a two-dimensional data set has
an“obvious” four-sided pyramid of dependences, a collection
of four-sided pyramids (or a collection of octahedrons made
from pairs of such pyramids) cannot cover all points, and
thus does not make a regular tiling. The algorithm of [3]
produces, instead, a collection of six-faced tiles that appear
to be balanced on one corner (these figures are shown with
the time dimension moving up the page). Various sculptures
of balanced cubes may be helpful in visualizing this tiling;
those with limited travel budgets may want to search the
internet for images of the “Zabeel park cube sculpture”. The
approach of [3] manages to construct these corner-balanced
solids in such as way that the three faces at the bottom of
the tile enclose the data-flow.

Experiments with this approach [3] demonstrate improved
results (vs. pipelined tiling) for current shared-memory sys-
tems up to 16 cores. The practicality of this approach on
such a low degree of parallelism suggests that the per-node
penalties discussed in our Section 3.3 are not prohibitively
expensive.

While the algorithm is described in terms of stencils, and
the authors only claim concurrent startup for stencils, it is
implemented in a general automatic parallelizer (PLuTo).
We belive it would be interesting to explore the full domain
over which this tiling algorithm provides concurrent startup.

The authors of [3] do not discuss asymptotic complexity, but
we hope that future collaborations could lead to a detailed
theoretical and larger-scale empirical study of the scalability
of this technique, using the distributed tile execution tech-
niques of [1] or [5].

4.6 A Note on Implementation Challenges
The pipelined tile execution shown in Figures 4 and 5 is of-
ten chosen for ease of implementation in compilers based on
the polyhedral model. Such compilers typically combine all
iterations of all statements into one large iteration space; the
pipelined tiling can then be seen as a simple linear transfor-
mation of this space, followed by a tiling with rectangular
solids. This approach works well regardless of choice of soft-
ware infrastructure within the polyhedral model.

The other transformations may be more sensitive to choice
of software infrastructure, or the subtle use thereof. At this
time, we do not have an exact list of which transformations
can be expressed with which transformation and code gen-
eration libraries. We are working with tools that allow the
direct control of polyhedral transformations from a text in-
put, such as AlphaZ [40] and the Omega Calculator [17],
in hopes of better understanding the expressiveness of these
tools and the polyhedral libraries that underlie them.

5. CONCLUSIONS
Current work on general-purpose loop tiling exhibits a di-
chotomy between largely unimplemented explorations of
asymptotically high degrees of parallelism and carefully
tuned implementations that restrict or inhibit scalable paral-
lelism. This appears to result from the challenge of general
implementation of scalable approaches. The pipelined ap-
proach requires only a linear transformation of the iteration
space followed by rectangular tiling, but does not provide
true scalable parallelism. Diamond tiling scales with only
one data dimension. Overlapped, trapezoidal, and molec-
ular tiling each pose implementation challenges (due to re-
dundant work, non-uniform tile shape/orientation, or non-
atomic tiles, respectively).

We believe automatic parallelization for extreme scale com-
puting will require a tuned implementation of a general tech-
nique that does not inhibit or restrict scalability; thus fu-
ture work in this area must address scalability, generality,
and quality of implementation. We are optimistic that on-
going work by Bondhugula et al. [3] may already provide an
answer to this to dilemma.

6. ACKNOWLEDGMENTS
This work was supported by NSF Grant CCF-0943455, by a
Department of Energy Early Career Grant DE-SC0003956,
and the CACHE Institute grant DE-SC04030.

9

7. REFERENCES
[1] Abdalkader, M., Burnette, I., Douglas, T., and

Wonnacott, D. G. Distributed shared memory and
compiler-induced scalable locality for scalable cluster
performance. Cluster Computing and the Grid, IEEE
International Symposium on 0 (2012), 688–689.

[2] Allen, G., Dramlitsch, T., Foster, I., Goodale,
T., Karonis, N., Ripeanu, M., Seidel, E., and
Toonen, B. The cactus code: A problem solving
environment for the grid. In Proceedings of the Ninth
IEEE International Symposium on High Performance
Distributed Computing (HPDC9) (Pittsburg, PA,
USA, 2000).

[3] Bandishti, V., Pananilath, I., and Bondhugula,
U. Tiling stencil computations to maximize
parallelism. In Proceedings of 2012 International
Conference for High Performance Computing,
Networking, Storage and Analysis (November 2012),
SC ’12, ACM Press.

[4] Bassetti, F., Davis, K., and Quinlan, D.
Optimizing transformations of stencil operations for
parallel object-oriented scientific frameworks on
cache-based architectures. Lecture Notes in Computer
Science 1505 (1998).

[5] Bondhugula, U. Compiling affine loop nests for
distributed-memory parallel architectures. Preprint,
2012.

[6] Bondhugula, U., Hartono, A., and Ramanujam,
J. A practical automatic polyhedral parallelizer and
locality optimizer. In In PLDI âĂŹ08: Proceedings of
the ACM SIGPLAN 2008 conference on Programming
language design and implementation (2008).

[7] Christen, M., Schenk, O., Neufeld, E.,
Paulides, M., and Burkhart, H. Manycore Stencil
Computations in Hyperthermia Applications. In
Scientific Computing with Multicore and Accelerators,
J. Dongarra, D. Bader, and J. Kurzak, Eds. CRC
Press, 2010, pp. 255–277.

[8] Datta, K., Kamil, S., Williams, S., Oliker, L.,
Shalf, J., and Yelick, K. Optimizations and
performance modeling of stencil computations on
modern microprocessors. SIAM Review 51, 1 (2009),
129–159.

[9] Demmel, J., Hoemmen, M., Mohiyuddin, M., and
Yelick, K. Avoiding communication in sparse matrix
computations. In Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS) (Los
Alamitos, CA, USA, 2008), IEEE Computer Society.

[10] Ding, C., and He, Y. A ghost cell expansion method
for reducing communications in solving pde problems.
In Proceedings of the ACM/IEEE Conference on
Supercomputing (New York, NY, USA, 2001),
Supercomputing ’01, ACM, pp. 50–50.

[11] Feautrier, P. Dataflow analysis of scalar and array
references. International Journal of Parallel
Programming 20, 1 (Feb. 1991), 23–53.

[12] Frigo, M., and Strumpen, V. Cache oblivious
stencil computations. In Proceedings of the 19th annual
international conference on Supercomputing (New
York, NY, USA, 2005), ICS ’05, ACM, pp. 361–366.

[13] Frigo, M., and Strumpen, V. The cache complexity
of multithreaded cache oblivious algorithms. In

Proceedings of the eighteenth annual ACM symposium
on Parallelism in algorithms and architectures (New
York, NY, USA, 2006), SPAA ’06, ACM, pp. 271–280.

[14] Frigo, M., and Strumpen, V. The cache complexity
of multithreaded cache oblivious algorithms. Theor.
Comp. Sys. 45, 2 (June 2009), 203–233.

[15] Gustfson, J. L. Reevaluating Amdahl’s law.
Communications of the ACM 31, 5 (May 1988),
532–533.

[16] Irigoin, F., and Triolet, R. Supernode
partitioning. In Conference Record of the Fifteenth
ACM Symposium on Principles of Programming
Languages (1988), pp. 319–329.

[17] Kelly, W., Maslov, V., Pugh, W., Rosser, E.,
Shpeisman, T., and Wonnacott, D. The Omega
Calculator and Library. Tech. rep., Dept. of Computer
Science, University of Maryland, College Park, Apr.
1996.

[18] Kelly, W., Pugh, W., and Rosser, E. Code
generation for multiple mappings. In The 5th
Symposium on the Frontiers of Massively Parallel
Computation (McLean, Virginia, Feb. 1995),
pp. 332–341.

[19] Krishnamoorthy, S., Baskaran, M.,
Bondhugula, U., Ramanujam, J., Rountev, A.,
and Sadayappan, P. Effective automatic
parallelization of stencil computations. In Proceedings
of Programming Languages Design and
Implementation (PLDI) (New York, NY, USA, 2007),
vol. 42, ACM, pp. 235–244.

[20] Nguyen, A., Satish, N., Chhugani, J., Kim, C.,
and Dubey, P. 3.5-d blocking optimization for stencil
computations on modern cpus and gpus. In
Proceedings of the ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis (Washington, DC,
USA, 2010), SC ’10, IEEE Computer Society,
pp. 1–13.

[21] Pugh, W., and Rosser, E. Iteration slicing for
locality. In 12th International Workshop on Languages
and Compilers for Parallel Computing (Aug. 1999).

[22] Pugh, W., and Wonnacott, D. Eliminating false
data dependences using the Omega test. In SIGPLAN
Conference on Programming Language Design and
Implementation (San Francisco, California, June
1992), pp. 140–151.

[23] Pugh, W., and Wonnacott, D. Constraint-based
array dependence analysis. ACM Trans. on
Programming Languages and Systems 20, 3 (May
1998), 635–678.

[24] Rastello, F., and Dauxois, T. Efficient tiling for
an ode discrete integration program: Redundant tasks
instead of trapezoidal shaped-tiles. In Proceedings of
the 16th International Parallel and Distributed
Processing Symposium (Washington, DC, USA, 2002),
IPDPS ’02, IEEE Computer Society, pp. 138–.

[25] Ripeanu, M., Iamnitchi, A., and Foster, I. T.
Cactus application: Performance predictions in grid
environments. In Proceedings of the 7th International
Euro-Par Conference Manchester on Parallel
Processing (London, UK, UK, 2001), Euro-Par ’01,
Springer-Verlag, pp. 807–816.

10

[26] Sawdey, A., and O’Keefe, M. T. Program analysis
of overlap area usage in self-similar parallel programs.
In Proceedings of the 10th International Workshop on
Languages and Compilers for Parallel Computing
(London, UK, UK, 1998), LCPC ’97, Springer-Verlag,
pp. 79–93.

[27] Song, Y., and Li, Z. New tiling techniques to
improve cache temporal locality. ACM SIGPLAN
Notices (PLDI) 34, 5 (May 1999), 215–228.

[28] Strout, M. M., Carter, L., and Ferrante, J.
Compile-time composition of run-time data and
iteration reorderings. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (New York, NY,
USA, June 2003), ACM.

[29] Strout, M. M., Carter, L., Ferrante, J.,
Freeman, J., and Kreaseck, B. Combining
performance aspects of irregular Gauss-Seidel via
sparse tiling. In Proceedings of the 15th Workshop on
Languages and Compilers for Parallel Computing
(LCPC) (Berlin / Heidelberg, July 2002), Springer.

[30] Strout, M. M., Carter, L., Ferrante, J., and
Kreaseck, B. Sparse tiling for stationary iterative
methods. International Journal of High Performance
Computing Applications 18, 1 (February 2004),
95–114.

[31] Strzodka, R., Shaheen, M., and Pajak, D. Time
skewing made simple. In PPOPP (2011), C. Cascaval
and P.-C. Yew, Eds., ACM, pp. 295–296.

[32] Strzodka, R., Shaheen, M., Pajak, D., and
Seidel, H.-P. Cache oblivious parallelograms in
iterative stencil computations. In ICS ’10: Proceedings
of the 24th ACM International Conference on
Supercomputing (June 2010), ACM, pp. 49–59.

[33] Strzodka, R., Shaheen, M., Pajak, D., and
Seidel, H.-P. Cache accurate time skewing in
iterative stencil computations. In Proceedings of the
40th International Conference on Parallel Processing
(ICPP) (Taipei, Taiwan, September 2011), IEEE
Computer Society, pp. 517–581.

[34] Tang, Y., Chowdhury, R. A., Kuszmaul, B. C.,
Luk, C.-K., and Leiserson, C. E. The pochoir
stencil compiler. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and
architectures (New York, NY, USA, 2011), SPAA ’11,
ACM, pp. 117–128.

[35] Van der Wijngaart, R. F., Sarukkai, S. R.,
Mehra, and P. The effect of interrupts on software
pipeline execution on message-passing architectures.
In FCRC ’96: Conference proceedings of the 1996
International Conference on Supercomputing:
Philadelphia, Pennsylvania, USA, May 25–28, 1996
(New York, NY 10036, USA, 1996), ACM, Ed., ACM
Press, pp. 189–196.

[36] Wolf, M. E., and Lam, M. S. A data locality
optimizing algorithm. In Programming Language
Design and Implementation (New York, NY, USA,
1991), ACM.

[37] Wolfe, M. J. More iteration space tiling. In
Proceedings, Supercomputing ’89, Reno, Nevada
(Reno, Nevada, November 1989), ACM, Ed., ACM
Press, pp. 655–664.

[38] Wonnacott, D. Using Time Skewing to eliminate
idle time due to memory bandwidth and network
limitations. In International Parallel and Distributed
Processing Symposium (May 2000), IEEE.

[39] Wonnacott, D. Achieving scalable locality with
Time Skewing. Internation Journal of Parallel
Programming 30, 3 (June 2002), 181–221.

[40] Yuki, T., Basupalli, V., Gupta, G., Iooss, G.,
Kim, D., Pathan, T., Srinivasa, P., Zou, Y., and
Rajopadhye, S. Alphaz: A system for analysis,
transformation, and code generation in the polyhedral
equational model. Tech. rep., Technical Report
CS-12-101, Colorado State University, 2012.

[41] Zhou, X., Giacalone, J.-P., Garzarán, M. J.,
Kuhn, R. H., Ni, Y., and Padua, D. Hierarchical
overlapped tiling. In Proceedings of the Tenth
International Symposium on Code Generation and
Optimization (New York, NY, USA, 2012), CGO ’12,
ACM, pp. 207–218.

11

12

Memory Allocations for
Tiled Uniform Dependence Programs ∗

Tomofumi Yuki
Colorado State University

Fort Collins
Colorado, U.S.A.

yuki@cs.colostate.edu

Sanjay Rajopadhye
Colorado State University

Fort Collins
Colorado, U.S.A.

Sanjay.Rajopadhye@colostate.edu

ABSTRACT
In this paper, we develop a series of extensions to schedule-
independent storage mapping using Quasi-Universal Occu-
pancy Vectors (QUOVs) targeting tiled execution of poly-
hedral programs. By quasi-universality, we mean that we
restrict the “universe” of the schedule to those that corre-
spond to tiling. This provides the following benefits: (i)
the shortest QUOVs may be shorter than the fully univer-
sal ones, (ii) the shortest QUOVs can be found without any
search, and (iii) multi-statement programs can be handled.
The resulting storage mapping is valid for tiled execution by
any tile size.

1. INTRODUCTION
In this paper, we discuss storage mappings for tiled pro-

grams, especially for the case when tile sizes are not known
at compile time. When the tile sizes are parameterized,
most techniques for storage mappings [6, 13, 15, 20] cannot
be used due to the non-affine nature of parameterized tiling.
However, we cannot combine parametric tiling with memory
re-allocation if we cannot find a legal allocation for all legal
tile sizes.

One approach that can find storage mappings for paramet-
rically tiled programs is the Schedule-Independent Storage
Mapping proposed by Strout et al. [19]. For programs with
uniform dependences, schedule-independent memory allo-
cation finds storage mappings that are valid for any legal
execution of the program, including tiling by any tile size.
We present a series of extensions to schedule-independent
mapping for finding legal and compact storage mappings for
polyhedral programs with uniform dependences.

Schedule-Independent Storage Mapping is based on what
are called Universal Occupancy Vectors (UOVs), that char-
acterize when a value produced can safely be overwritten.
As originally defined by Strout et al, UOVs are fully uni-
versal, where the resulting allocations are valid for any legal
schedule. In this paper, we restrict the UOVs to smaller
universes and exploit their properties to efficiently find good
UOVs. In the remainder of this paper, we call such UOVs
that are not fully universal Quasi-UOVs (QUOVs) to distin-
guish them from fully universal ones. Using QUOVs, we can
find valid mappings for tiled execution by any tile size, but
not necessarily valid for other legal schedules. This leads to
more compact storage mappings for cases when fully univer-
sal allocation is an overkill.

∗This work was funded in part by the National Science Foun-
dation, Award Numbers: 1240991 and 0917319

The restriction on the universality leads to the following:

• QUOVs may be shorter than the shortest UOV. Since
the universe of possible schedules is restricted, valid
storage mappings may be more compact. We use Man-
hattan distance as the length of UOVs as a cost mea-
sure when we describe optimality of a projective mem-
ory allocation.

• The shortest QUOV for tiled loop programs can be an-
alytically found, and the dynamic programming algo-
rithm presented by Strout et al. is no longer necessary.

• Imperfectly nested loops can be handled. The origi-
nal method assumed single statement programs (and
hence perfectly nested loop programs.) We extend the
method by taking statement orderings, often expressed
in the polyhedral model as constant dimensions, into
account. This is possible because we focus on tiled ex-
ecution, where tiling applies the same schedule (except
for ordering dimensions) to all statements.

The input to our analysis is a program in polyhedral
representation, which can be obtained from loop programs
through array data-flow analysis [7, 14]. Our methods can
be used for loop programs in single assignment form; an
alternative view used in some of the prior work [19, 20].

In addition, we present a method for isolating boundary
cases based on index-set splitting [9]. UOV-based allocation
assumes that every a dependence is active at all points in
the iteration space. In practice, programs have boundary
cases where certain dependences are only valid at iteration
space boundaries. We take advantage of the properties of
QUOVs we develop to guide the splitting.

2. BACKGROUND
In this section, we present the background necessary

for this paper. We first introduce the terminology used,
and then present an overview of Universal Occupancy Vec-
tors [19].

2.1 Polyhedral Representations
Polyhedral representations of programs primarily consist

of statement domains and dependences. Statement domains
represent the set of iteration points where a statement is
executed. In polyhedral programs, such sets are described
by a finite union of polyhedra.

In this paper, we focus on programs with uniform depen-
dences, where the producer and the consumer differ by a
constant shift. We characterize these dependences using a

13

vector, which we call data-flow vector, drawn the producer
to the consumer. For example, if a value produced by an
iteration [i, j] is used by another iteration [i+ 1, j + 2], the
corresponding data-flow vector is [1, 2].

2.2 Schedules and Storage Mappings
The schedules are represented by affine mappings that

map statement domains to a common dimensional space,
where the lexicographic order denotes the order of execu-
tion. In the polyhedral literature, statement orderings are
commonly expressed as constant dimensions in the schedule.
Furthermore, one can represent arbitrary orderings of loops
and statements by adding d + 1 additional dimensions [8],
where d is the dimensionality of statement domains in the
programs1. To make the presentation consistent, we assume
such schedules are always used, resulting in a 2d+ 1 dimen-
sional schedule.

The storage mappings are often represented as a combi-
nation of affine mappings and dimension-wise modulo fac-
tors [13, 16, 19].

2.3 Tiling
Tiling is a well known loop transformation that was orig-

inally proposed as a locality optimization [12, 17, 18, 22]. It
can also be used to extract coarser grained parallelism, by
partitioning the iteration space to tiles (blocks) of compu-
tation, some of which may run in parallel [12, 17].

Legality of tiling is a well established concept defined over
contiguous subsets of the schedule dimensions (in the range
of the scheduling function; scheduled space), also called
bands [3]. These dimensions of the schedules are tilable,
and are also known to be fully permutable [12].

The range space of the schedules given to statements in
a program all refers to the common space, and thus have
the same number of dimensions. Among these dimensions,
a dimension is tilable if all dependences are not violated
(i.e., the producer is not scheduled after the consumer, but
possibly be scheduled to the same time stamp,) with a one-
dimensional schedule using only the dimension in question.
Then any contiguous subset of such dimensions forms a legal
tilable band.

We call a subset of dimensions in an iteration space to
be tilable, if the identity schedule is tilable for the corre-
sponding subset. The iteration space is fully-tilable if all
dimensions are tilable.

2.4 Universal Occupancy Vectors
A Universal Occupancy Vector (UOV) [19] is a vector that

denotes the “distance after which” when a value may safely
be overwritten in the following sense. When an iteration
z is executed, its value is stored in some memory location.
Another iteration z′ can reuse this same memory location
if all iterations that use the value produced by z have been
executed. When a storage mapping is such that z and z′

are mapped to the same memory location, the difference of
these points, z′ − z, is called the occupancy vector.

Universal Occupancy Vector is a specialization of such vec-
tors, where all iterations k that use z are guaranteed to be
executed before z′ in any legal schedule. Since most machine
models assume that, within a single assignment statement,

1Note that for uniform dependence programs, all statement
domains have the same number of dimensions.

reads happen before writes in a given time step, z′ may also
use the value produced by z.

Additionally, we introduce a notion of scoping to UOVs.
We call a vector v to be an UOV with respect to a set of de-
pendences I, if the vector v satisfies the necessary property
to be an UOV for a subset of all points k that use the value
produced by z with one of the dependences in I.

Once the UOV is computed, the mapping that corre-
sponds to the projection of the statement domain along the
UOV is a legal storage mapping. If the UOV crosses more
than one integer points, then an array that corresponds to
a single projection is not sufficient. Instead, multiple ar-
rays are used in turn, implemented using modulo factors.
The necessary modulo factor is the GCD of elements of the
UOV.

The trivial UOV; a valid, but possibly suboptimal UOV
is computed as follows.

1. Construct the set of data-flow vectors corresponding to
all the dependences that use the result of a statement.

2. Compute the sum of all data-flow vectors in the con-
structed set.

The above follows from a simple proposition shown below,
and an observation that the data-flow vector of a dependence
is a legal UOV with respect to that dependence.

Proposition 1 (Sum of UOVs). Let u and v be, re-
spectively, the UOVs for two sets of dependences U and V.
Then u+ v is a legal UOV for U ∪ V.

Proof. The value produced at z is dead when z + u can
legally be executed with respect to the dependences in U ,
and similarly for V at z + v. Since there is a path from z to
z + u + v by following the edges z + u and z + v (in either
order), the value produced at z is guaranteed to be used by
all uses, z + u and z + v, when z + u + v can legally be
executed.

The optimality of UOVs without any knowledge of size
or shape of the iteration space is captured by the length of
the UOV. However, the length that should be compared is
not the Euclidean length, but the Manhattan distance. We
discuss the optimality of UOV-based allocations and other
projective allocations in Section 7.

3. OVERVIEW OF OUR APPROACH
UOV-based allocation give legal mappings even for sched-

ules that cannot be implemented as loops. For example,
even a run-time work stealing scheduler can use UOV-based
allocation. However, this is obviously an overkill if we only
consider schedules that can be implemented as loops.

The important change in perspective is that we are not
interested in schedule-independent storage mappings, al-
though the concept of UOV is used. We are only interested
in using UOV-based allocation in conjunction with tiling.
Thus, our allocation is partially schedule-dependent. The
overview of our storage mapping strategy is as follows:

1. Extract polyhedral representations of programs (array
expansion.)

2. Perform schduling and apply the schedules as transfor-
mations to the iteration space2. After the transforma-
tion, lexicographic scan of the resulting iteration space

2This can be viewed as pre-processing to code generation [2].

14

respects the schedules. The resulting space should be
(partially) tilable to take advantage of our approach.

3. Apply UOV-guided index-set splitting (Section 6.)
This step attempts to isolate boundaries of statement
domains that negatively influence storage mappings.

4. Apply QUOV-based allocation (Section 4.) Our pro-
posed storage mapping based on extensions to the
UOVs are applied to each statement after the split-
ting. Although inter-statement sharing of arrays may
be possible, such optimization is beyond the scope of
this paper.

The order of presentation does not follow the above for
two reasons. One is that the UOV-guided splitting is an
optional step that can further optimize memory usage. In
addition, splitting introduces multiple statements to the pro-
gram, and requires our extension to handle multiple state-
ments presented in Section 5.

4. QUOV-BASED ALLOCATION FOR
TILED PROGRAMS

In this section, we present a series of formalism to ana-
lytically find the shortest QUOV. We first develop a lemma
that can eliminate dependences while constructing UOVs.
We then apply the lemma to find the shortest QUOVs in
different contexts.

4.1 Relevant Set of Dependences for UOV
Construction

The trivial UOV, which also serves as the starting point
for finding the optimal UOV, is found by taking the sum
of all dependences. However, this formulation may lead to
significantly inefficient starting points. For example, if two
dependences with data-flow vectors [1, 0] and [2, 0] exist, the
former dependence may be ignored during UOV construc-
tion since a legal UOV-based allocation using only the latter
dependence is also guaranteed to be legal for the former de-
pendence.

We may refine both the construction of the trivial UOV
and the optimality algorithm by reducing the set of depen-
dences considered during UOV construction. The optimal-
ity algorithm presented by Strout et al. [19] searches a space
bounded by the length of trivial UOV using dynamic pro-
gramming. Therefore, reducing the number of dependences
to consider will improve both the trivial UOV and the dy-
namic programming algorithm.

The main intuition is that if a dependence can be tran-
sitively expressed by another set of dependences, then it is
the only dependence that needs to be considered. This is
formalized in the following lemma.

Lemma 1 (Dependence Subsumption). If a depen-
dence f can be expressed as compositions of dependences in
a set G, where all dependences in G are used at least once in
the composition, then a legal UOV with respect to f is also
a legal UOV with respect to all elements of G.

Proof. Given a legal UOV with respect to a single de-
pendence f , the value produced at z is preserved at least
until z′ defined by f(z′) = z, can be executed. Let the set
of dependences in G be denoted as gx, 1 ≤ x ≤ |G|. Since
composition of uniform functions is associative and commu-
tative, there is always a function g∗ obtained by composing

dependences in G, such that f = g∗ ◦ gx for each x. Thus,
all points z′′, gx(z′′) = z, are executed before z′ for all
x. Therefore, a legal UOV with respect to f is guaranteed
to preserve the value produced at z until all points that
directly depend on z by a dependence in set G have been
executed.

Finding a composition in the above can be implemented as
an integer linear programming problem. The problem may
also be viewed as determining if a set of vectors are linearly
dependent when restricted to positive combinations. The
union of all sets G, called subsumed dependences, found in
the initial set of dependences can be ignored when construct-
ing the UOV.

Applying Lemma 1 may significantly reduce the num-
ber of dependences to be considered. However, the triv-
ial UOV of the remaining dependences may still not be
the shortest UOV. For example, consider data-flow vectors
[1, 1], [1,−1], [1, 0]. Although the vectors are independent
by positive combinations, the trivial UOV [3, 0] is clearly
longer than another UOV [2, 0]. Further reducing the set
of dependences to consider requires a variation of Lemma 1
that allows f also to be a composition of dependences. This
leads to complex operations, and the dynamic programming
algorithm for finding optimal UOV by Strout et al. [19] may
be a better alternative. Instead of finding the shortest UOV
in the general case, we show that such UOV can be found
very efficiently for a specific context, namely tiling.

4.2 Finding the Shortest QUOV for Tiled Pro-
grams

When UOV-based allocation is used in the specific con-
text of tiling, the shortest QUOV can be analytically found.
If we know that the program is to be tiled, we can add
dummy dependences to restrict the universality of the stor-
age mapping, while maintaining tilability. In addition, we
may assume that the dependences are all non-positive (for
the tilable dimensions) as a result of pre-scheduling step to
ensure the legality of tiling. For the remainder of this sec-
tion, the“universe”of UOVs is one of the following restricted
universes: fully tilable, fully sequential, and mixed sequen-
tial and tilable.

Note that the expectation is that “tilable” iteration spaces
are tiled in a later phase. We analyze iteration spaces that
will be tiled using QUOV, and then apply tiling. We also
assume that the iteration points are scanned in the lexico-
graphic order within a tile.

Theorem 1 (Shortest QUOV, Fully Tilable).
Given a set of dependences I in a fully tilable space, the
shortest QUOV u for tiled execution is the element-wise
maxima of data-flow vectors of all dependences in I.

Proof. Let the element-wise maxima of all data-flow vec-
tors be the vector m, and fm be a dependence with data-flow
vector m. For unit vectors ud in each of the d dimensions, we
introduce dummy dependences fd with data-flow vector ud.
Because these dependences have non-negative components,
the resulting space is still tilable. For all dependences in I
there exists a sequence of compositions with the dummy de-
pendences to transitively express fm. Using Lemma 1, the
only dependence to be considered in UOV construction can
therefore be reduced to fm, which has the trivial UOV of m.

It remains to show that no QUOV shorter than m exists
for the set of dependences I. The shortest QUOV is defined

15

`

i

j Data-flow Vectors

Dummy Vectors

Element-wise Maxima

Bounds by Maxima

Points with
M. Distance 4

Figure 1: Illustration of Theorem 1 for the set of depen-
dences with data-flow vectors [2, 0], [2, 1], [1, 2], and [0, 2].
The element-wise maxima of the data-flow vectors corre-
spond to the shortest UOV. The value produced by the bot-
tom left iteration is used by the destination of the data-flow
vectors. The data-flows induced by dummy dependences
guarantees that the iteration pointed by the element-wise
maxima is only executed after all iterations that depend on
the bottom left. None of the other iterations with the same
Manhattan distance (4) can be reached, since it requires
backward data-flow along at least one of the axes.

by the closest3 point from z that can be reached from all
uses of z by following the dependences. Since the choice of
z does not matter, let us use the origin, ~0, to simplify our
presentation. This allows us to use the data-flow vectors
interchangeably with coordinate vectors.

Then, the hyper-rectangle with diagonal m includes all
I, and all bounds of the hyper-rectangle are touched by
at least one dependence. Since all dependences in a fully
tilable space are restricted to have non-negative data-flow
vectors, no points within the hyper-rectangle can be reached
by following dependences. Thus, it is clear that m is the
closest common point that can be reached by those that
touch the bounds.

The theorem is illustrated in Figure 1, and is contrasted
with the trivial UOV used by Strout et al. [19] in Figure 2.

The basic idea of inserting dummy dependences to restrict
the possible schedule can be used beyond tilable schedules.
One important corollary for sequential execution is the fol-
lowing.

Corollary 1 (Sequential Execution). Given a set
of dependences I in an n-dimensional space where lexico-
graphic scan of the space is a legal schedule. Let m be the
lexicographic maximum of the data-flow vectors of all depen-
dences in I. Then the shortest QUOV u for lexicographic
execution is either m or the vector [m1 + 1, 0, · · · , 0] where
m1 is the first element of m.

Proof. For sequential execution, we may introduce
dummy dependences to any lexicographically preceding
point. Then the dependence, with a data-flow vector whose
first element is m1 can can subsume other dependences with
lower values in the first element according to Lemma 1 by
introducing appropriate dummy dependences.

3Shortest and closest are both in terms of Manhattan dis-
tance.

i

j

Dynamic Programming Search Space

Trivial UOV
Shortest QUOV

Data-flow Vectors

Shortest UOV

Figure 2: Comparison against the trivial UOV computed
as proposed by Strout et al. [19] for the same set of de-
pendences as in Figure 1. The trivial UOV is [5, 5] and it
becomes the radius on the bounds of the search space for
the dynamic programming algorithm proposed by Strout et
al. [19]. In contrast, Theorem 1 gives the shortest QUOV
by simply computing the element-wise maxima of the data-
flow vectors. Furthermore, the shortest fully universal UOV
is twice as long as the shortest QUOV, since the unit length
dummy dependences cannot be assumed. The search space
is bounded by a sphere since Euclidean distance is used by
Strout et al. [19], but can be adapted to Manhattan distance.

For the remaining dependences there are two possibilities:

• We may use dummy dependences of the form
[1, ∗, · · · , ∗] to let a dependence with data-flow vector
[m1 + 1, 0, · · · , 0] subsume all remaining dependences.

• We may use m as the QUOV following Theorem 1.

It is obvious that when the former options is used, [m1 +
1, 0, · · · , 0] is the shortest. The optimality of the latter case
follows from Theorem 1. Thus, the shortest UOV is the
shortest among these two options.

Note that m can be shorter than [m1+1, 0, · · · , 0] only when
m = [m1, 0, · · · , 0]. In addition, although the above coro-
rally can be applied to tilable iteration spaces, the tilability
may be lost due to memory-based dependences introduced
by the allocation.

The allocation given by the above corollary is not
schedule-independent at all. It is an analytical solution
to the storage mapping of uniform dependence programs,
where the schedule is the lexicographic scan of the iteration
space.

The following corollary can trivially be established by the
combination of the above.

Corollary 2 (Sequence of Tilable Spaces).
Given a set of dependences I in a space where a subset of

16

for (i=0:N)

S1[i] = foo();

for (j=0:N)

S2[j] = bar(S1[j]);

(a) When θS1 = (i→ 0, i, 0) and θS2 = (j → 1, j, 0).

for (i=0:N)

S1[i] = foo();

S2[i] = bar(S1[i]);

(b) When θS1 = (i→ 0, i, 0) and θS2 = (j → 0, j, 1).

Figure 3: Two possible schedules for statements S1 and S2.
Note that statement S1 in Figure 3a requires O(N) memory
whereas it only requires a scalar in Figure 3b, although the
code shown is still in single assignment.

the dimensions are tilable, and lexicographic scan is legal for
other dimensions, the shortest QUOV u for tiled execution
of the tilable space, and sequential execution of the rest is
the combination of vectors computed for each contiguous
subset of either sequential or tilable spaces.

Note that the above corollary only takes effect when there
are sequential subsets with at least two contiguous dimen-
sions. When a single sequential dimension is surrounded
by tilable dimensions, its element-wise maxima and lexico-
graphic maxima are equivalent.

Using the above, the shortest QUOV for sequential, tiled,
or a hybrid combination, can be computed very efficiently.

5. HANDLING OF PROGRAMS WITH
MULTIPLE STATEMENTS

In many programs, there are multiple statements depend-
ing on each other. The original formulation of UOVs are for
single statement programs [19]. In this section, we show that
the concept can be adapted to multi-statement programs,
knowing that we restrict the universe to tiled execution of
the iteration space.

5.1 Limitations of UOV-based Allocation
Allocations based on UOVs have a strong property that

they are valid for any legal schedule. Here, the schedule is
not limited to affine schedules in the polyhedral model, and
time stamps to each operation can be assigned arbitrarily, as
long as they respect the dependences. The concept of UOV
applies to reuse among writes to a single common space,
and relies on the fact that every iteration writes to the same
space (or array.) Different statements may write to different
arrays, in programs with multiple statements, and hence
UOV cannot be directly used.

For example, consider a program with two statements S1

and S2:

• DS1 = {i|0 ≤ i ≤ N}
• DS2 = {j|0 ≤ j ≤ N}

where the dependence is such that iteration x of S1 must
executed before x of S2.

Figure 3 illustrates two possible schedules and its implica-
tions on memory usage. Note that we do not discuss storage

mapping for S2, since it is not used within the code frag-
ment above. A fully universal UOV-based allocation would
have to take account for such variations of a schedule, but
such extension may not even make sense. When two state-
ments are scheduled differently, the dependence between two
statements in the scheduled space may no longer be uniform.

When we apply the concept of UOV for tiling, we are
no longer interested in arbitrary schedules. We first apply
all non-tiling scheduling decisions before performing stor-
age mapping. Therefore, the only change in the execution
order comes from a tiling transformation viewed as a post-
processing, so the same “schedule” applied to all statements
involved. This allows us to extend the concept of UOVs to
imperfectly nested loops.

5.2 Handling of Statement Ordering
When the ordering dimensions are represented as constant

dimensions, the elements in the UOV require special han-
dling. In the original formulation there is only one state-
ment, and thus every iteration point writes to the same
array. When multiple statements exist in a program, the
iteration space of a statement is a subset of the combined
space, and are made disjoint by statement ordering dimen-
sions. Thus, not all points in the common space correspond
to a write, and this affects how the UOV is interpreted.

Consider the program in Figure 3b. The only dependence
involving S1 has data-flow [0, 0, 1], and since it is the only
dependence, it is the shortest UOV. Literal interpretation
of this vector as UOV means that the iteration z + [0, 0, 1]
can safely overwrite the value produced by z. However, this
interpretation does not make sense in the context of by-
statement allocation, since statement S2 at z+[0, 0, 1] writes
to a different array.

We handle multi-statement programs by removing d out
d + 1 constant dimensions for the purpose of UOV-based
analysis. We apply the following rule to remove constant
dimensions by transferring the information carried by these
dimensions to others. Let v be a data-flow vector of a depen-
dence in the scheduled space. We first apply the following
rule to the vector v:

• For each constant dimension x > 0, where vx > 0, set
vx−1 = max(vx−1, 1)

Once the above rule is applied, all the constant dimensions,
except for the first one, are removed to obtain d + 1 di-
mensional data-flow vector. We repeatedly apply the above
to all dependences in the program, resulting with a set of
data-flow vectors with d+ 1 dimensions.

We justify the above rule in the following. When the con-
stant dimension of the data-flow is greater than 0, it means
that some textually later statement uses the produced value.
With respect to this particular dependence, the memory lo-
cation may be reused once this textually later statement has
been executed. However, there is always exactly one itera-
tion of a specific statement in a constant dimension, since it
is an artificial dimension for statement ordering. Therefore,
the earliest possible iteration that can overwrite the memory
location in question is in the next iteration of the immediate
surrounding loop dimension.

For example, the only dependence of S1 in Figure 3b is
[0, 0, 1]. The value produced by S1 at i is used by S2 at
i, but only overwritten by another iteration of S1 at i +
1. Therefore, we transfer the dependence information to a

17

for (t=0:T)

for (i=0:N)

A[i] = foo(A[i]); //S1

for (i=1:N)

A[i] = bar(A[i-1], A[i]); //S2

Figure 4: Example to illustrate influences of boundary
cases. Note that the value produced by S1 is last used by
S2 of the same outer loop iteration, except for when i = 0,
in which case it is used again by S1 at [t+ 1, 0].

preceding dimension.
Projecting a d+1 dimensional domain along a vector does

indeed produce a domain with d dimensions. This is be-
cause in the presence of imperfect nests, d dimensional stor-
age may be required for d dimensional statements even with
uniform dependences. Consider the code in Figure 3a. The
only use of S1 is by S2 with data-flow [1, 0, 0] in the sched-
uled space. Applying the rule described above removes the
last dimension, yielding [1, 0] as the QUOV. Projecting the
statement domain of S1 (in the scheduled space with d con-
stant dimensions removed) along the vector [1, 0] gives a two-
dimensional domain: {i, x|0 ≤ i ≤ N∧x = 0}. Although the
domain is two-dimensional, it is effectively one-dimensional
because of the equality in the constant dimension.

It is also important to note a special case when the UOV
takes the form: [0, · · · , 0, 1]. When the last constant di-
mension is the only non-zero entry, it is obvious that the
statement requires only a scalar, since its immediately con-
sumed.

6. UOV GUIDED INDEX SET SPLITTING
In the polyhedral representation of programs there are

usually boundary cases that behave differently from the rest.
For instance, the first iteration of a loop may read from
inputs, whereas successive iterations use values computed
by previous iterations.

In the polyhedral model, storage mapping is usually com-
puted for each statement. With pseudo-projective alloca-
tions, the same allocation must be used for all points in the
statement domain. Thus, dependences that only exist at the
boundaries influence the entire allocation.

For example, consider the code in Figure 4. The value
produced by S1 at [t, i] is last used by S2 at [t, i+1] for i > 0.
However, the value produced by S1 at [t, 0] is last used by S1

at [t + 1, 0]. Thus, the storage mapping for S1 must ensure
that a value produced at [t, i] is live until [t + 1, i] for all
instances of S1. This clearly leads to wasteful allocations,
and our goal is to avoid them.

One solution to the problem is to apply a form of index set
splitting [9] such that the boundary cases and common cases
have different mappings. In the example above, we wish to
use piece-wise mappings for S1 at [t, i] where the mapping is
different for two disjoint sets i = 0 and i > 0. This reduces
the memory usage from an array of size N + 1 to 2 scalars.

Once, the pieces are computed, application of piece-wise
mappings can done through splitting the statements (nodes)
as defined by the pieces, and then applying a separate map-
ping to each of the statements after split. Thus, the only
interesting problem that remain is finding meaningful splits.

In this section, we present an algorithm for finding the

split with the goal of minimizing memory usage. The algo-
rithm is guided by Universal Occupancy Vectors and works
best with UOV-based allocations. The goal of our index
set splitting is to isolate boundaries that require longer life-
time than the main body. Thus, we are interested in a sub-
domain of a statement with a different dependence pattern
than that in the rest of the statement’s domain. We focus on
boundary domains that contain at least one equality. The
approach may be generalized to boundary planes of constant
thickness using Thick Face Lattices [11].

The original index-set splitting [9] aimed at finding better
schedules. The quality of a split is measured by its influence
on possible schedules: whether different scheduling functions
for each piece yields a better schedule.

In our case, the goal is different. Our starting point is
the program after affine scheduling, and we are now inter-
ested in finding storage mappings. When the dependence
pattern is the same at all points in the domain, splitting
cannot improve the quality of the storage mapping. Since
the dependence pattern is the same, the same storage map-
ping will be used for all pieces (with a possible exception of
the cases when the split introduces equalities or other prop-
erties related to shape of the domains). Because two points
that may have been in the nullspace of the projection may
now be split into different pieces, the number of points that
can share the same memory location may be reduced as the
result of splitting.

Thus, as a general measure of quality, we seek to ensure
that a split influences the choice of storage mapping for each
piece. The obvious case when splitting is useless is when a
dependence function at a boundary is also in the main part.
We present Algorithm 1 based on this intuition to reduce
the number of splits.

The intuition of the algorithm is that we start with all
dependences with equalities in their domain as candidate
pieces. Then we remove some of the dependences where
splitting does not improve the allocation from candidate
pieces. The obvious case is when the same dependence func-
tion exists in the non-boundary cases (i.e., dependences with
no equalities in their domain). In addition, more sophisti-
cated exclusion is performed using Theorem 1.

The algorithm can also be easily adapted for non-uniform
programs. It may also be specialized/generalized by adding
more dependence elimination rules to Step 2. This requires
a method similar to Lemma 1 for other memory allocation
methods.

Example
Let us describe the algorithm in more detail with an ex-
ample. The statement S1 in Figure 4 has three data-flow
dependences:

• I1 = S1[t, i]→ S2[t, i] when 0 ≤ i ≤ N

• I2 = S1[t, i]→ S2[t, i+ 1] when i < N

• I3 = S1[t, i]→ S1[t+ 1, i] when i = 0

The need for index-set splitting does not arise until some
prior scheduling fuses the two inner loops. Let the schedul-
ing functions be:

• θS1 = (t, i→ 0, t, 0, i, 0)

• θS2 = (t, i→ 0, t, 0, i, 1)

18

Algorithm 1 UOV-Guided Split

Input:

I: Set of uniform dependences that depend on a statement S. A dependence is a pair 〈f,D〉 where f is the dependence
function and D is a domain. The domain is the constraints on the producer statement.

Output:

P: A partition of DS , the domain of S, where each element defines a piece of the split.

Algorithm:
We first inspect the domain of dependences in I to detect equalities.
Let

Ib be the set of dependences with equalities, and

Im be the set of those without equalities.

Then,

1. foreach 〈f,D〉 ∈ Ib,

if ∃〈g,E〉 ∈ Im; f = g then remove 〈f,D〉 from Ib
2. Further remove dependences from Ib using the following if applicable:

(a) Theorem 1 and its corollaries. The following steps are only for Theorem 1.

Let m be the element-wise maxima of dataflow vectors in Im.
foreach 〈f,D〉 ∈ Ib
– Let v be the dataflow vector of f .
– if ∀i : vi ≤ mi then remove 〈f,D〉 from Ib.

3. Group the remaining dependences in Ib into groups Gi, 0 ≤ i ≤ n, where ∀X,Y ∈ Gi;DX ∩ DY 6= ∅. In other words,
group the dependences with overlapping domains in the producer space.

4. foreach i ∈ 0 ≤ i ≤ n, Pi =
⋃

∀X∈Gi

DX

5. if n ≥ 0 then Pn+1 = DS \
n⋃

i=0

Pi else P0 = DS

The data-flow vectors in the scheduled space, after remov-
ing constant dimensions (we also remove the outer-most one
since there is only one loop at the outer-most level) are:

• I′
1 = [0, 1] when 0 ≤ i ≤ N

• I′
2 = [0, 1] when i < N

• I′
3 = [1, 0] when i = 0

As the pre-processing step, we separate the dependences
into two sets based on the equalities in the domain:

• Ib = {I′
3}; those with equalities, and

• Im = {I′
1, I

′
2}; those without equalities.

Then we use Step 1 to eliminate identical dependences. If
the same dependence function is both in the boundary and
the main body, separating the boundary does not reduce the
number of distinct dependences to be considered. There-
fore, splitting such domain does not positively influence the
storage mapping, and hence is removed from further consid-

eration. Since I′
3 is different from the other two, this step

does not change the set of dependences for this example.

Step 2a is the core of this algorithm. The general idea
is the same as Step 1, but we use additional properties of
UOV-based allocation to identify more cases where splitting
does not positively influence the storage mapping.

Theorem 1 states that if all elements of a data-flow vector
are less than the corresponding element of the element-wise
maxima of all data-flow vectors under consideration, the de-
pendence does not influence shortest QUOV. Therefore, if
the candidate dependence to split does not contribute to
the element-wise maxima, the split is useless in terms of
further shortening the QUOV. As an illustration, consider
the rectangle in Figure 1 defined by the element-wise max-
ima. If separating a dependence does not shrink the size of
the rectangle, the length of QUOV cannot be shortened.

In this example, the element-wise maxima of dependences
in Im is [0, 1]. However, the boundary dependence has data-
flow vector [1, 0], and when combined, the element-wise max-
ima becomes [1, 1]. Therefore, the boundary dependence
does contribute to the element-wise maxima, and is not re-
moved from the candidate set in Step 2a. The dependences
that are left in the set Ib after this step are the set of de-
pendences that will be split from the main body.

Step 3 is a grouping step, where dependences to be split
are grouped into those that have overlap in their domains.

19

Two sub-domains of a statement cannot be split into sepa-
rate statements, unless the computation is duplicated. Al-
though computing the values redundantly may be an option,
we enforce the two statements to be jointly split as one ad-
ditional statement. This step is irrelevant for our example,
since our example only has one dependence in set Ib.

The last step is a cleanup step, which adds the remainder
of splits to the set of partitions.

Let S1b be the statement after splitting the domain of I3
from S1, and S1a be the remainder of the main body of S1.
The domain of statements in the program are now:

• DS1a = {t, i|0 ≤ t ≤ T ∧ 1 ≤ i ≤ N}
• DS1b = {t, i|0 ≤ t ≤ T ∧ i = 0}
• DS2 = {t, i|0 ≤ t ≤ T ∧ 1 ≤ i ≤ N}

and the dependences are:

• I∗1 = S1a[t, i]→ S2[t, i] when 1 ≤ i ≤ N
• I∗2 = S1a[t, i]→ S2[t, i+ 1] when i < N

• I∗3 = S1b[t, i]→ S1a[t+ 1, i] when i = 0

The QUOV for S1a is [0, 0, 0, 0, 1] in the scheduled space
with constant dimensions, which is the aforementioned spe-
cial case, and only a scalar is required for S1a. The QUOV
for S1b is [1, 0] after removing the constant dimensions. The
projection of its domain along this vector is also a constant,
due to the equality in its domain. Thus, the storage require-
ment for S1 in the original program becomes two scalars,
which is much smaller than what is required without the
splitting.

7. RELATED WORK
There is a lot of prior work on storage mappings for poly-

hedral programs [1, 4, 5, 13, 15, 19, 20, 21]. Most approaches
focus on the case when the schedule for statements are given.

7.1 Efficiency of UOV-based Allocation
By the nature of its strategy, UOV-based allocation, in-

cluding those using QUOVs, cannot yield more compact
storage mappings compared to alternative strategies for a
specific schedule. However, UOV-based allocation may not
be as inefficient as one might think for programs that require
d − 1 dimensional storage. The misconception is (at least
partially) due to the trade-off between memory usage and
parallelism that is often overlooked. Consider the following
code fragment with Smith-Waterman(-like) dependences.

for (i=1:N)

for (j=1:M)

H[i,j] = foo(H[i-1,j], H[i,j-1]);

As illustrated in Figure 5, UOV-based allocation, even
with QUOVs, gives a storage mapping that use O(N + M)
memory for this program. However, the program cannot
be tiled if O(N) or O(M) storage mappings are used due
to memory-based dependences. One approach to still ac-
complish tiled execution of this program is to transform the
program such that the iteration space is tilable even when
the memory-based dependences are under consideration.

For the above program, this requires a skewing as depicted
in Figure 6. Once the skewing is applied so that O(M)

i

j

(a) Iteration space and pos-
sible storage mappings

i

j

(b) Set of live values in tiled
execution

Figure 5: Iteration space of Smith-Waterman(-like) code
and possible storage mappings. Figure 5a shows two pos-
sible storage mappings, either horizontal or vertical projec-
tion of the iteration space. The size of memory is O(M)
or O(N), depending of the direction of the projection. Fig-
ure 5b shows the iteration space after tiling, and the val-
ues that are live after executing two tiles on the diagonal.
Observe that neither projection (horizontal or vertical) can
store all the live values. One example of a valid projec-
tive storage mapping is the projection along [1, 1] that use
O(N +M) memory.

storage mapping can be tiled, the UOV-based allocation for
the same program will also yield a storage mapping with
O(M) memory. Note that the skewed iteration space has
less parallelism (longer critical path length) when compared
to the original rectangular iteration space. The parallelism
is effectively traded off with decreased memory usage.

For this example, when the other condition (amount of
parallelism) is equal, the allocation using UOVs is no worse
than what is considered a more efficient allocation. This
observation can be generalized to other instances of uniform
dependence programs, such as Jacobi/Gauss-Seidel stencils.
How to jointly find schedule and storage mappings to explore
such trade-off is still an open problem.

7.2 Optimality of Projective Allocations
There is also an upper bound on dimension-wise optimal-

ity. Quilleré and Rajopadhye [15] show that the number of
linearly independent projection vectors can be viewed as the
primary criterion for optimality of storage mappings.

UOV-based allocation, as originally defined, was limited
to allocations with one projection vector by its nature, and
therefore, is limited to finding d− 1 dimensional storage for
d dimensional iteration space. The additional optimizations
we describe in Section 5 allow us to overcome this limitation,
but for many, if not most, uniform dependence programs,
the lower bound on the number of memory dimensions is
d − 1. Therefore, UOV-based allocations are no more than
a constant fold more expensive.

Now, the constant factor can become important, but
Quilleré and Rajopadhye [15] give a number of examples
to illustrate that the problem is subtle when the size of
the iteration domain is parameterized. For some programs
Lefebvre-Feautrier [13] gives a better memory footprint than
the Quilleré-Rajopadhye method, while for others, it is
worse.

It is easy to show that any multiple, by some integer
greater than one, of a legal UOV uses more memory. Two

20

for (i=1:N)

for (j=i+1:M+i)

x = j-i;

H[i,x] = foo(

H[i-1,x],

H[i ,x-1]

);

(a) Code

i

j

(b) Iteration space

Figure 6: The code and iteration space after skewing the
original program. It is easy to see that [1, 1] is the short-
est UOV for this program. With this UOV, the amount of
memory used is O(M).

UOVs that are not constant multiples of each other are of-
ten difficult to compare. For example, memory usage of two
allocations based on UOVs [1, 1] and [2, 0] are only paramet-
rically comparable. With N×M iteration space, the former
use N + M and the latter use 2N . The optimal allocation
in such case depends on the values of N and M that are not
known until run-time.

Informally, increasing the Manhattan distance will always
increase memory usage by either increasing the GCD, and
hence increasing the mod factor, or by increasing the angle of
the projection, and hence increasing the size of the projected
space.

7.3 Parametric Tile Sizes
Our main motivation for QUOVs is to find storage map-

pings that are valid for tiled execution by any (legal) tile
sizes. Schedule-dependent approaches cannot provide stor-
age mappings for parametric tile sizes due to its non-affine
nature.

It is possible to provide tile coordinates and tile sizes as
additional parameters to the polyhedral representation, and
then apply polyhedral storage mappings for each tile indi-
vidually. Although this approach makes sense in certain
contexts (e.g., [10]), it is not suitable for others (e.g., shared
memory parallelization.) As shown in Figure 6, UOV-based
allocation maps iterations from different tiles to a single
memory location, allowing inter-tile reuse of storage. There
is no need to transfer data from one tile to another in UOV-
based allocation.

7.4 Affine Occupancy Vectors
Thies et al. [20] present an extension to the concept of

UOV to affine schedules, named Affine Occupancy Vectors.
They restrict the universality to affine scheduling, rather
than the full universe. Although the idea of restricting the
universality has some similarities with our work, the re-
stricted universe is still the entire affine scheduling space.
In addition, they only handle one-dimensional affine sched-
ules.

8. CONCLUSIONS
We have presented a series of extensions to the Schedule-

Independent Storage Mapping. Although UOVs were orig-
inally used for schedule-independent mappings, our exten-
sions restrict the universality of the occupancy vectors to
analyze a specific class of schedules; tiling.

For such a restricted universe, Quasi-UOVs can be shorter
than fully universal ones, leading to more compact memory.
We can also take advantage of its properties to directly find
the shortest QUOV.

Although UOV-based allocations are limited to uniform
dependence programs, storage mappings that are legal for a
class of schedules is an interesting alternative to most mem-
ory allocation methods that require schedules to be given.

Our extensions aim to make UOV-based allocations more
practical by providing efficient method for finding the short-
est UOV for a smaller, but an important universe, tilable
programs.

9. REFERENCES
[1] C. Alias, F. Baray, and A. Darte. Bee+Cl@k: an

implementation of lattice-based array contraction in
the source-to-source translator rose. In Proceedings of
the 2007 ACM SIGPLAN/SIGBED conference on
Language, Compiler and Tool Support for Embedded
Systems, volume 13, pages 73–82, 2007.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In Proceedings of the 13th
IEEE International Conference on Parallel
Architecture and Compilation Techniques, PACT ’04,
pages 7–16, Washington, DC, USA, 2004.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08,
pages 101–113, New York, NY, USA, 2008. ACM.

[4] Y. Bouchebaba and F. Coelho. Tiling and memory
reuse for sequences of nested loops. In Proceedings of
the 8th International Euro-Par Conference, volume
2400, page 255, 2002.

[5] A. Cohen. Parallelization via constrained storage
mapping optimization. In Proceedings of the
International Symposium on High Performance
Computing, pages 83–94, 1999.

[6] A. Darte, R. Schreiber, and G. Villard. Lattice-based
memory allocation. IEEE Transactions on Computers,
54(10):1242–1257, 2005.

[7] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[8] P. Feautrier. Some efficient solutions to the affine
scheduling problem, II, multidimensional time.
International Journal of Parallel Programming,
21(6):389–420, 1992.

[9] M. Griebl, P. Feautrier, and C. Lengauer. Index set
splitting. International Journal of Parallel
Programming, 28(6):607–631, 2000.

[10] S. Guelton, A. Guinet, and R. Keryell. Building
retargetable and efficient compilers for multimedia
instruction sets. In 2011 International Conference on

21

Parallel Architectures and Compilation Techniques,
pages 169–170, 2011.

[11] G. Gupta and S. Rajopadhye. Simplifying reductions.
In Proceedings of the 33rd ACM Conference on
Principles of Programming Languages, PoPL ’06,
pages 30–41, New York, NY, USA, Dec 2006. ACM.

[12] F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
PoPL ’88, pages 319–329. ACM, 1988.

[13] V. Lefebvre and P. Feautrier. Automatic storage
management for parallel programs. Parallel
Computing, 24(3-4):649–671, 1998.

[14] W. Pugh. A practical algorithm for exact array
dependence analysis. Communications of the ACM,
35(8):102–114, 1992.

[15] F. Quilleré and S. Rajopadhye. Optimizing memory
usage in the polyhedral model. ACM Transactions on
Programming Languages and Systems, 22(5):773–815,
2000.

[16] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation
of efficient nested loops from polyhedra. International
Journal of Parallel Programming, 28(5):469–498, 2000.

[17] J. Ramanujam and P. Sadayappan. Tiling of iteration

spaces for multicomputers. In Proceedings of the 1990
International Conference on Parallel Processing,
volume 2 of ICPP ’90, pages 179–186, 1990.

[18] R. Schreiber and J. J. Dongarra. Automatic blocking
of nested loops. Technical report, 1990.

[19] M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops.
ACM SIGOPS Operating Systems Review,
32(5):24–33, 1998.

[20] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe.
A unified framework for schedule and storage
optimization. In Proceedings of the 22nd International
Conference on Programming Language Design and
Implementation, PLDI ’01, pages 232–242. ACM,
2001.

[21] D. Wilde and S. Rajopadhye. Memory reuse analysis
in the polyhedral model. In Proceedings of the 2nd
International Euro-Par Conference, pages 389–397,
1996.

[22] M. Wolfe. Iteration space tiling for memory
hierarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific
Computing, pages 357–361. Society for Industrial and
Applied Mathematics, 1987.

22

On Demand Parametric Array Dataflow Analysis

Sven Verdoolaege
Consultant for LIACS, Leiden

INRIA/ENS, Paris
Sven.Verdoolaege@ens.fr

Hristo Nikolov
LIACS, Leiden

nikolov@liacs.nl

Todor Stefanov
LIACS, Leiden

stefanov@liacs.nl

ABSTRACT
We present a novel approach for exact array dataflow anal-
ysis in the presence of constructs that are not static affine.
The approach is similar to that of fuzzy array dataflow anal-
ysis in that it also introduces parameters that represent in-
formation that is only available at run-time, but the pa-
rameters have a different meaning and are analyzed before
they are introduced. The approach was motivated by our
work on process networks, but should be generally useful
since fewer parameters are introduced on larger inputs. We
include some preliminary experimental results.

1. INTRODUCTION AND MOTIVATION
Array dataflow analysis [12] (also known as value-based

dependence analysis [20]) is of crucial importance in the
polyhedral framework with applications in array expansion
[2, 10], scheduling [13], equivalence checking [5, 27] optimiz-
ing computation/communication overlap in MPI programs
[18] and the derivation of process networks [24, 28] to name
but a few. For program fragments that are static affine,
dataflow analysis can be performed exactly [12, 15, 20]. For
programs that contain certain dynamic and/or non-affine
constructs, both exact [4] and approximate [21] approaches
have been proposed. In particular, fuzzy array dataflow
analysis (FADA) [4] introduces additional parameters, whose
values depend on run-time information, that allow the de-
pendences to be represented exactly. After all parameters
have been introduced, certain properties on the parameters
are derived that allow for a simplification of the result. In
the end, the parameters may also be projected out, resulting
in approximate but static dependences.

The initial motivation for our new approach stems from
our work on the derivation of process networks. A process
network derived from a sequential program is essentially
a refinement of the dataflow graph of the program, where
nodes in the graph correspond to processes and edges to
communication channels, and is mainly used to represent
the task-level parallelism available in the program. These
process networks may then be mapped to various hardware
implementations [17]. The parameters introduced by FADA
can be used to construct control channels between the differ-
ent processes [22]. Unfortunately, preliminary experiments
with the only known publicly available implementation of
FADA [6] have shown that this approach tends to introduce
too many parameters to be practically useful, whence the
need for an alternative approach. For our application, we
are mainly interested in dynamic and/or non-affine condi-
tions and this is currently the only extension beyond static

affine programs that we support.
Our approach shares many similarities with FADA and

is therefore also useful for other applications of this ap-
proach [3] (a description of these other applications is how-
ever beyond the scope of the present paper). In particular,
we also introduce parameters whose values depend on run-
time information. However, our parameters have a different
meaning, essentially representing the last iteration of a po-
tential source that was executed, and we analyze their effect
before they are introduced. This allows us to (typically) in-
troduce fewer parameters, resulting in simpler dependence
relations that can be computed more efficiently. Unlike the
FADA approach, our approach does not rely on a resolution
engine, but instead performs operations on affine sets and
relations to determine which parameters to add and which
constraints they should satisfy.

We start with a description of our representation of static
affine programs in Section 2 and an overview of standard
dataflow analysis in Section 3. These sections also introduce
notation that is used in later sections. The representation
of dynamic conditions in the input is explained in Section 4,
while the representation of dynamic dependence relations is
explained in Section 5. Section 6 describes the computation
of dynamic dependence relations. In Section 7, we discuss
some extensions. We conclude with preliminary experimen-
tal results in Section 8 and a comparison to related work in
Section 9.

2. PROGRAM REPRESENTATION
Each input program is represented using a polyhedral

model [14], consisting of iteration domains, access relations,
dependence relations and a schedule. Each statement has
an associated iteration domain containing the values of the
iterators of the enclosing loops for which the statement is ex-
ecuted. For example, the iteration domain of the statement
in Line 14 of Listing 1 is

{ H(k, i, j) | 0 ≤ k, j ≤ 99 ∧ 0 ≤ i < 99 }. (1)

Note that n is modified inside the program and can there-
fore not be treated as a parameter. This iteration domain
is therefore an overapproximation of the set of executed it-
erations, based on the bounds on n specified by the user in
Line 3. The mechanism for filtering out the iterations that
have not actually been executed is explained in Section 4.
An access relation maps elements of an iteration domain to
the element(s) of an array domain accessed by that itera-
tion of the associated statement through some array refer-
ence. For example, the access to a in the same statement is

23

1 int n, m;

2 int a[100][100];

3 #pragma value_bounds n 0 99

4 #pragma value_bounds m 0 100

5

6 N1: n = f();

7 for (int k = 0; k < 100; ++k) {

8 M: m = g();

9 for (int i = 0; i < m; ++i)

10 for (int j = 0; j <= n; ++j)

11 A: a[j][i] = g();

12 for (int i = 0; i < n; ++i)

13 for (int j = 0; j < m; ++j)

14 H: h(i, j, a[i + 1][j]);

15 N2: n = f();

16 }

Listing 1: Code with locally static conditions

represented as { H(k, i, j) → a(i + 1, j) }, simplified with re-
spect to the iteration domain. In this paper, a dependence
relation maps a (nested) read access relation to the write
access relation that wrote the value being read by the read
access. For example, the dependence relation for the above
read access is { (H(k, i, j) → a(i + 1, j)) → (A(k, j, i + 1) →
a(i + 1, j)) | 0 ≤ k, j ≤ 99 ∧ 0 ≤ i < 99 }, while the depen-
dence relation for the read of n in the bound of the enclosing
loop (simplified with respect to the iteration domain) is

{ (H(0, i, j)→ n())→ (N1()→ n()) } ∪
{ (H(k, i, j)→ n())→ (N2(k − 1)→ n()) | k ≥ 1 }. (2)

Note that the above access and dependence relations are all
single-valued functions. We will, however, also use the “→”
notations for other relations that may not represent single-
valued functions. The schedule maps the union of all itera-
tion domains to a common space where the execution order
of the corresponding statement iterations is determined by
the lexicographical order.

Each of the above sets and relations is represented in
isl [25]. The iteration domains, the access relations and
the initial schedule are extracted using pet [26], while the
construction of the dependence relations is the topic of the
present paper. In the base case, the input program con-
sists of expression statements, if conditions and for loops
with only static quasi-affine index expressions, conditions
and bounds. The representation of dynamic (or non-affine)
conditions, the main focus of the present paper, is explained
in Section 4. Dynamic loop conditions and dynamic index
expressions are briefly discussed in Section 7. The initial
schedule describes an ordering that corresponds to the orig-
inal execution order. To simplify the exposition, we will not
take arbitrary initial schedules as input, but instead exploit
the positions of the statements inside the abstract syntax
tree, in particular the number of shared outer loops and the
relative order of pairs of statements.

3. STANDARD DATAFLOW ANALYSIS
Several algorithms have been proposed in the literature for

performing dataflow analysis in the case of static affine pro-
grams [12,15,20]. Our implementation in isl is a variation
of these algorithms. We do not claim any novelty in this

implementation and we will not describe the implementa-
tion in detail here. Instead, we only highlight those aspects
that are important for understanding the remainder of this
paper.

Dataflow analysis is performed separately for each read
access (a.k.a., “sink” or “consumer”) C. For each such read
access we consider all the write accesses (a.k.a., “potential
source”or“producer”) P that access the same array, ordering
them such that the“closest”are considered first. Let AC and
AP be the corresponding access relations. Furthermore, let
B represent the relative ordering of the statements. That is,
if I is the union of all iteration domains, then B is a binary
relation on I with i → j ∈ B iff j is executed before i. For
example, { H(k, i, j) → N2(k′) | 0 ≤ k, k′, i, j ≤ 99 ∧ k′ < k }
is a subset of B. Note that bold variable names are used
to denote (named) integer tuples. Furthermore, if S is a set
and if R, R1 and R2 are relations, then let 1S be the identity
relation on S, i.e,

1S = { s→ s | s ∈ S },
let R−1 be the inverse of R, i.e.,

R−1 = { t→ s | s→ t ∈ R },
let R2 ◦R1 be the composition of R1 and R2, i.e.,

R2 ◦R1 = { s→ u | ∃t : s→ t ∈ R1 ∧ t→ u ∈ R2 },
let R1 ×R2 denote the cross product of R1 and R2 with

R1×R2 = { (s→ t)→ (u→ v) | s→ u ∈ R1∧t→ v ∈ R2 }
and let ran−→R map a nested copy of R to its range, i.e.,

ran−→R = { (s→ t)→ t | s→ t ∈ R }.

If the value read by an element in the domain of AC was
written inside the program fragment under consideration,
then it was written by one of the domain elements of one
of those write access relations AP . In particular, it is an
element of the image of the relation

(
A−1

P ◦AC

)
∩ B for

some P . Since we want to keep track of the array elements
being accessed, we can extend the above computation to

Dmem
C,P =

(
(ran−→AP)−1 ◦ (ran−→AC)

)
∩ (B × 1A) , (3)

where Dmem
C,P refers to the “memory based” dependences of

C on P and A is the union of all array domains. For
example, if AP = { N2(k) → n() | 0 ≤ k ≤ 99 } then
ran−→AP = { (N2(k) → n()) → n() | 0 ≤ k ≤ 99 }. Com-

bining this with AC = { H(k, i, j) → n() | 0 ≤ k, i, j ≤ 99 },
we obtain Dmem

C,P = { (H(k, i, j) → n()) → (N2(k′) → n()) |
0 ≤ k, k′, i, j ≤ 99 ∧ k′ < k }.

If the iteration domain of the statement containing C has
dimension d, then we first consider elements of the Dmem

C

relations such that the first d iterators in domain and range
have the same value, then d − 1 iterators, continuing un-
til we consider the case where 0 iterators have the same
value. Let ` denote this number of equal iterators. For each
value of `, we consider the potential sources P that share at
least ` outer loops, compute the maximum image element
of Dmem

C,P ∩ (E`
= × 1A), with E`

= expressing that exactly `
outer iterators have the same value, adding constraints that
ensure this maximal element is executed after any previ-
ously computed maximum at this level. When moving from
` to ` − 1, we only consider those elements from the sink

24

access relation for which no source has been found so far.
The main operation in this computation is then that of the
partial lexicographical maximum of a relation M on a do-
main U , which returns a relation mapping elements u of U
to the lexicographically greatest element associated to u by
M , along with a set of elements in U that do not have any
images in M . Let us define some more operations on sets
and relations. Specifically, if S1 and S2 are sets and if R is a
relation, then the universal relation from S1 to S2 is denoted

S1 → S2 = { s→ t | s ∈ S1 ∧ t ∈ S2 },
while the domain and range of R are denoted

domR = { s | s→ t ∈ R }.
and

ranR = { t | s→ t ∈ R }.
The lexicographical maximum of a relation R is then de-
noted lexmaxR and is equal to

{ s→ t | s→ t ∈ R ∧ (∀t′ : s→ t′ ∈ R⇒ t′ 4 t) },
“4” representing the lexicographical order, Finally, the par-
tial lexicographical maximum of M on U is

lexmax
U

M = (lexmax(M ∩ (U → ranM)), U \ domM)

(4)
The partial lexicographical maximum can be computed us-
ing parametric integer programming [11]. In the example,
the read of n in Line 12 can only have 0 equal loop it-
erators with the write in Line 15. We therefore compute
lexmaxU D

mem
C,P with U the (nested) sink access relation.

The result consists of the (simplified) relation { (H(k, i, j)→
n())→ (N2(k− 1)→ n()) | k > 0 } and the set { (H(0, i, j)→
n()) }. Sources for this latter part of the sink relation can
be found in Line 6. The final result is shown in (2).

4. FILTERS
As explained in Section 2, if there are any dynamic condi-

tions in the program, then the iteration domain may be an
affine overapproximation of the set of executed iterations.
To mark those iterations that are actually executed, we ap-
ply one or more filters to the iteration domain. These filters
encode the dynamic conditions that determine whether an
iteration in the iteration domain is actually executed. For
example, as shown before, the iteration domain (1) is an
overapproximation of the executed iterations of the state-
ment in Line 14 of Listing 1. The filter on this iteration
domain then expresses the dynamic conditions i < n and
j < m. Each filter consists of a sequence of filter access re-
lations, accessing variables that may be updated during the
execution of the program, and a filter value relation, map-
ping statement iterations to the possible values of the dy-
namic variables for which the iteration is executed. For sim-
plicity of exposition, we will assume that all the filter access
relations are functions and that there is only one filter. The
more general case is discussed in Appendix A. Non-affine
conditions are treated as dynamic conditions.

More formally, let S be a statement and IS its iteration
domain. Furthermore, let the filter on S consist of a filter
value relation V S and nS filter access relations FS

i . We have

FS
i ⊆ IS → (IS → A) and V S ⊆ IS → ZnS

. That is, each
filter access relation maps an iteration to an access of an

array element and the filter value relation maps an iteration
to a tuple of values. Moreover, each FS

i is a function on the
iteration domain. The application of the relation R to the
set S is defined as

R(S) = {u | ∃t : t→ u ∈ R ∧ t ∈ S }.
Furthermore, let

(aj)
n
j=1

be the n-tuple with elements aj and let V({ j → b }) be
the value of b at j. Iteration k ∈ IS is then executed iff
executedS(k) holds, with

executedS(k) =
(
V
(
FS
j (k)

))nS

j=1
∈ V S(k), (5)

where FS
j (k) is short for FS

j ({k }). An access k → a from
an iteration k is executed iff the iteration is executed, so
that executedS((k→ a)) = executedS(k). Let dom−−→R map a

nested copy of R to its domain, i.e.,

dom−−→R = { (s→ t)→ s | s→ t ∈ R },

then, initially, each filter access relation is a subset of the re-

lation
(

dom−−→(I → A)
)−1

. That is, each iteration is mapped

to an access that takes place at the same iteration.
We consider two types of filters, one for the general case

and one for the special case of “locally static affine” condi-
tions. A condition is considered to be locally static affine if
it is an affine expression in variables that are definitely not
modified between the point where they are evaluated and
all the statements that are guarded by the condition. Such
variables are called “locally static”. In this case, the accesses
to the locally static variables themselves are used as filter
accesses. Otherwise, a new statement is created that eval-
uates the condition and writes the resulting boolean value
(0 or 1) to a virtual array, as in [26, Section 4.3]. This vir-
tual array is then used as a filter access in a condition that
simply evaluates the element of the virtual array. The first
type of filter is allowed in both if-conditions and loop con-
ditions, while the second type is in the current context only
allowed in if-conditions. In Section 7.1, we explain how to
also handle the second type in loop conditions.

Consider, for example, the code in Listing 1. The condi-
tion i < n in Line 12 references the variable n which is not
a parameter because it is assigned in Line 6 and in Line 15.
However, the value of n is clearly not changed between the
condition in Line 12 and the statement in Line 14 governed
by this condition. Similarly, m is also locally static for the
statement. The filter for statement H therefore has filter
access relations

F H
1 = { H(k, i, j)→ (H(k, i, j)→ n()) } (6)

and

F H
2 = { H(k, i, j)→ (H(k, i, j)→ m()) }. (7)

The filter value relation V H is

{ H(k, i, j)→ (n,m) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < n ∧ 0 ≤ j < m }.
(8)

For convenience to the reader, the dimensions that corre-
spond to the filters have been named after the arrays (in
this case scalars) that are being accessed by the correspond-
ing filter access relations. However, the reader should keep

25

1 state = 0;

2 while (1) {

3 sample = radioFrontend ();

4 if (t(state)) {

5 D: state = detect(sample);

6 } else {

7 C: decode(sample , &state , &value0);

8 value1 = processSample0(value0);

9 processSample1(value1);

10 }

11 }

Listing 2: Code with dynamic conditions, adapted
from [7, Figure 8.1]

in mind that these names are completely arbitrary. Note
that the condition of the loop in Line 12 is allowed since it
is locally static affine.

The code in Listing 2 has a generic dynamic condition in
Line 4. pet introduces a separate virtual array, say t0, for
storing the result of the condition and a separate statement,
say S0, for computing this result. The access relation that
writes to the filter is of the form

{ S0(i)→ t0(i) }.
Note that pet introduces an implicit iterator (called i in this
relation) with non-negative values [26, Section 3.3] for the
loop while (1) in Line 2. The filter value relation of the
statement in Line 5 is

V D = { D(i)→ (1) | i ≥ 0 }
with filter access relation

F D = { D(i)→ (D(i)→ t0(i)) }.
That is, the statement is executed for values of i greater than
or equal to 0 such that t0(i) at D(i) is equal to 1. (Recall
that t0(i) is a boolean variable that only attains values 0
and 1.) The filter value relation of the statement in Line 7
is

V C = { C(i)→ (0) | i ≥ 0 } (9)

with filter access relation

F C = { C(i)→ (C(i)→ t0(i)) }. (10)

Most of the analysis in Section 6 is based on filter values
being equal or different in different iterations. We there-
fore need to be able to identify that filter values accessed in
different iterations are actually the same. This information
can be obtained by applying dataflow analysis on the arrays
accessed by the filters. As explained below, the result of this
analysis may or may not depend on any parameters as de-
fined in Section 5. If any such parameters are involved, then
we keep the original filter access relations. If, on the other
hand, the resulting dependence relations do not depend on
any such parameters, then the original filter access relations
can be replaced by a composition with these dependence re-
lations. For the code in Listing 1, the dependence relation
for n in Line 12 is shown in (2). Applying this dependence
relation to the filter access relation in (6) yields

F H
1 = { H(0, i, j)→ (N1()→ n()) } ∪
{ H(k, i, j)→ (N2(k − 1)→ n()) | k ≥ 1 }. (11)

For the filter access relation in (10), no dataflow analysis
needs to be performed since we know each element of the
virtual array t0 is written by exactly one iteration of the
statement S0. The filter access relation can therefore be
replaced by

F C = { C(i)→ (S0(i)→ t0(i)) }. (12)

In principle, the meaning of V depends on whether sources
have been found for the filter array or not, i.e., whether we
have been able to compose the original filter access relations
with dependence relations or not. In particular, if sources
have been found, then V({ j → b }) is the value of b after
the write in iteration j, while if sources have not been found,
then V({ j → b }) is the value of b before the read in itera-
tion j. In practice, however, this difference is not important
since filter accesses for which no sources have been found
will never be matched to any other filter accesses.

5. PARAMETER REPRESENTATION
If the iteration domain of a potential source P is affected

by any filters, then we cannot simply compute the lexico-
graphical maximum in (4) since the maximal element in the
range of M may not actually be executed, even if some of
the other elements are. We will therefore introduce param-
eters that represent the “last executed” source iteration. By
equating the iterators in the range of M to these parame-
ters, the lexicographical maximization operation will simply
return these parameters, which are guaranteed to represent
an executed iteration.

The exact form and meaning of the parameters depends
on whether we are considering the final result of the data-
flow analysis or intermediate results. Let us first consider
the final result. Let DC,P be the final dependence relation,

the description of which may involve some parameters βQ
C (k)

and λQ
C(k), where Q may be either P or some other poten-

tial source and k is an element of the sink access relation
AC . Note that in principle the parameters depend on the
sink access k, but as we will explain below, we do not need
to make this dependence explicit in our representation. Let
D′C,P be the result of projecting out all these parameters.
The parameters then have the following meaning. The pa-
rameter βQ

C (k) is a boolean variable that expresses whether

any of the elements in D′C,P (k) is executed. If βQ
C (k) = 1,

then λQ
C(k) represents the last element in D′C,P (k) that is

executed. (If βQ
C (k) = 0, then λQ

C(k) is undefined.) In other
words, we have

βP
C (k) = 0⇒∀j ∈ D′C,P (k) : ¬executedSP (j)

βP
C (k) = 1⇒executedSP (λP

C(k)) ∧
∀j ∈ D′C,P (k) : j � λP

C(k)⇒ ¬executedSP (j),
(13)

with SP the statement containing access P and executed as
defined in (5). For example, let C by the access to state in
the statement S0 evaluating the condition in Line 4 of List-
ing 2. Let P by the access to the same variable (state) from
statement C. The dependence relation for the dependence
of C on P is of the form (βP

C , λ
P
C)→ { (S0(i)→ state())→

(C(λP
C(i))→ state()) | βP

C (i) = 1∧i = λP
C(i)+1 ≥ 1 }. That

is, there is only a dependence if access P (from statement
C) was ever executed (before S0(i)) and if the last execution
was in the previous iteration. Note that if the last execution

26

was in some earlier iteration, then C would not depend on
the access in statement C, but on that in statement D. This
result is obtained in Section 6.4.

During the computation, the resulting dependence rela-
tion is obviously not known, but we do know that it is a
subset of Dmem

C,P (3). The relation M in the current maxi-
mization problem (4) is also a subset ofDmem

C,P . We can there-

fore temporarily treat λP
C(k) as the last element of Dmem

C,P (k)
that is executed. Note that because we still assume static
affine index expressions, the array element accessed by this
last executed element of Dmem

C,P (k) is necessarily the same as
that accessed by k. We can also exploit additional informa-
tion to reduce the number of elements in the λP

C(k) vector
that need to be explicitly represented. In particular, we
know that the first ` iterators in the domain and range of M
(with ` as in Section 3) are pairwise equal and that the same
property holds for the previously considered maximization
problems within the current dataflow problem, i.e., for the
same C. This allows us to avoid introducing elements of the
λP

C(k) vector until we really need them. In particular, we
keep track in σP

C (k) of the number of initial elements in the
domain of k and in λP

C(k) that are (implicitly) equal to each
other. Values of σP

C (k) smaller than ` then mean that there
is no element in Dmem

C,P (k) that is executed and that shares
the values of the first ` iterators with k. As a special case,
σP
C (k) < 0 means that no element in Dmem

C,P (k) is executed.
Summarizing, (13) is replaced by

σP
C (k) < `⇒∀j ∈ D′′C,P (k) : ¬executedSP (j)

σP
C (k) ≥ `⇒executedSP (λP

C(k)) ∧
∀j ∈ D′′C,P (k) : j � λP

C(k)⇒ ¬executedSP (j),
(14)

where D′′C,P = Dmem
C,P ∩E`

≥, with E`
≥ expressing that at least

` outer iterators have the same value.
After the dataflow computation has finished, we need to

convert the intermediate representation (14) to the final rep-
resentation (13). If `P≤ is the smallest value of ` for which we
had to apply parametrization for a given potential source P ,
then we do not need to introduce dimensions of λP

C before
`P≤. Instead, we need to make the equalities implied by σP

explicit and set βP
C (k) = 1 when σP ≥ `P≤ and βP

C (k) = 0

when σP < `P≤. The parameter σP can then be projected

out. Besides dimensions before `P≤, we also do not need to

introduce dimensions of λP
C for which Dmem

C,P (k) attains a
single value (for any given value of k) or that correspond to
loops inside the innermost condition that is not static affine.

Since λP
C and σP

C depend on the sink iteration, it may
appear that we would need to treat them as uninterpreted
functions. During the entire computation, there is however
no interaction between different sink iterations. That is,
any of the intermediate relations during the computation
only refers to a single sink iteration and the parameters λP

C

and σP
C (if present) always refer to that single sink iteration.

This means that we can keep the relation between λP
C and

σP
C on one hand and k on the other hand entirely implicit

and simply treat λP
C and σP

C as parameters. The intended
meaning of those parameters is then the value of the cor-
responding functions at the particular value of k involved
in the given access or dependence relation. This reasoning
is essentially the same as that of [1] for showing that his α
vectors can be treated as parameters.

Algorithm 1: Parametric partial lexicographical maxi-
mum

(type, S1, S2) = parametrization(M , U)
if type = Input then

M := intersect range(M , S1)
U := intersect(U , S2)

else if type = Empty then
M := empty(M)

end
(R,E) = partial lexmax(M , U)
if type = Output then

R := intersect range(R, S1)
end

6. PARAMETRIZATION
Recall that during dataflow analysis (Section 3), we fre-

quently compute a partial lexicographical maximum of the
form (4). The inputs to this operation are based on the
static affine iteration domains and so we may need to in-
troduce parameters representing the last executed source
iteration (Section 5) to take into account the filters (Sec-
tion 4) on the iteration domains. In particular, we replace a
call “(R,E) = partial lexmax(M , U)”, corresponding to (4),
by the pseudocode in Algorithm 1. The different types of
parametrization in this code are explained in Section 6.1,
while the determination of which of these parametrizations
should be applied is explained in Section 6.3. The sets S1

and S2 used during the parametrization are constructed in
Section 6.2 and Section 6.4.

6.1 Types of Parametrization
We are presented with a maximization problem of the

form (4), with U a set of iterations of a sink C and M
a relation between sink iterations and iterations of a po-
tential source P and we want to decide if we need to in-
troduce parameters. In principle, the result is that either
parametrization is required (type = Input) or it is not re-
quired (type = None). However, we also consider a couple
of other special cases (type = Empty and type = Output).
In particular, we may find that it is impossible for any of
the source iterations to execute given that the corresponding
sink is executed. In such cases we want to avoid introducing
parameters since there is no dependence and we therefore
do not need any extra parameters to represent the depen-
dence. However, we cannot indicate to the dataflow analysis
that no parametrization is required (type = None) as then
it would treat the source iterations as definitely being ex-
ecuted. Instead, we communicate to the dataflow analysis
that M should be replaced by an empty relation (type =
Empty). Another special case occurs when we are able to
determine that no parametrization is required, but that this
detection depends on information available about other po-
tential sources. For reasons beyond the scope of the present
paper, the construction of process networks can in this case
be facilitated by introducing parameters anyway, but only
on the result of the maximization problem rather than on
the input of the maximization problem (type = Output).
A schematic overview of the determination of the type of
parametrization to apply is shown in Algorithm 2. The pro-
cess is explained in more detail in Section 6.3.

27

6.2 Application
If parametrization is required, then we need to equate the

source iteration to the parameters λP representing the last
executed iteration of the potential source P (14). That is,
the range of M (or, more precisely, the domain of the nested
relation in this range) is intersected with

(λP
I , σ

P)→ { SP (j) | jI = λP
I ∧ σP ≥ ` }, (15)

where I selects the elements of λP that need to be explicitly
represented as explained in Section 5 and ` the number of
equal outer iterators in the domain and range of M as in
Section 3. These constraints determine the set S1 in Algo-
rithm 1. For example, let C be the read of A in Line 14 of
Listing 1 and let P be the write in Line 11. The correspond-
ing statements share at most one loop iterator. When ` = 1,
then we have that M is equal to

{ (H(k, i, j)→ a(i+ 1, j))→ (A(k, j, i+ 1)→ a(i+ 1, j)) },
(16)

where the outer dimensions k are equal because ` = 1 and
the inner dimensions i′ and j′ are equal to j and i + 1 be-
cause the same array element is accessed. As we will see in
Section 6.3, no parametrization is required for this problem,
but let us for illustrative purposes assume that we do want
to apply parametrization. Dimension 0 of λ does not need
to be introduced (yet) because 0 < `. Since Dmem

C,P is equal
to

{ (H(k, i, j)→ a(i+ 1, j))

→ (A(k′, j, i+ 1)→ a(i+ 1, j)) | k′ ≤ k },
the remaining dimensions of λ do not need to be intro-
duced either because they are fully determined by Dmem

C,P

(and therefore also by D′C,P ⊆ Dmem
C,P). In effect, we would

only need to introduce σP with constraint σP ≥ 1.
The parametrization of the source domain expresses that

the source is (essentially) the last of the potential source it-
erations associated to the sink through Dmem

C,P . However, it
only does so through the introduction of parameters that im-
plicitly depend on the sink iteration k. The parametrization
of the sink takes care of expressing that this last iteration,
if it exists, actually belongs to Dmem

C,P (k). In particular, we
first split the set of sink iterations U into two parts, one with
associated potential source iterations and one without, i.e.,

U1 = U ∩ (domM) and U2 = U \ (domM). (17)

The parametrization is only applied to U1 and expresses that
either none of the potential source iterations in Dmem

C,P (k)
that share the first ` iterators is executed or that there is
such an executed potential source iteration and that it be-
longs to Dmem

C,P (k). That is, the sink C is intersected with

(λP , σP)→
{
k | σP < ` ∨

(
λP ∈ Dmem

C,P (k) ∧ σP ≥ `
)}

.

(18)
These constraints, together with those of Section 6.4 below,
determine the set S2 in Algorithm 1. In practice, we only
introduce the same set of dimensions of the λP vector as
introduced by (15). In particular, the second disjunct is ob-
tained by applying the parametrization of (15) to the range
of Dmem

C,P and computing the domain of the result.

6.3 Detection
Let us now explain in more detail the steps in the de-

termination of which parametrization to apply as sketched

Algorithm 2: Type of parametrization

1 if M is empty, U is empty or there are no filters on the
source then

2 return None
3 end
4 F := filters on the sink
5 if filters on the source contradict F then
6 return Empty
7 end
8 F ′ := update(F , filters on other sources)
9 if filters on the source contradict F ′ then

10 return Empty
11 end
12 if filters on the source imply F then
13 return None
14 end
15 if filters on the source imply F ′ then
16 return Output
17 end
18 return Input

in Algorithm 2. If M and/or U are empty or if P is not
affected by any filter, then no parametrization is required
(Line 2). Otherwise, we compute the possible values for the
filter elements at the potential source, given that the sink is
executed. Clearly, we can only do this if the sink is affected
by a filter and if source and sink have some filter accesses in
common. If the computed possible values are disjoint from
the filter value relation on the source, then no source itera-
tion is executed when the sink is executed and we indicate
that M should be replaced by an empty relation (Line 6).
Otherwise, we check if U references any parameters that
were introduced by previous calls to the parametrization.
If so, we use the constraints on those parameters and the
filters of the associated (other) potential sources to derive
extra information about the filters at the sink (Line 8). This
derivation is explained in Section 6.3.2. The resulting infor-
mation is then propagated again to potential source P and
a new relation of possible values is computed. If this rela-
tion is disjoint from the filter value relation on the source,
then we again indicate that M should be replaced by an
empty relation (Line 10). Otherwise, if the computed re-
lation is a subset of the filter value relation on the source,
then we know the source is always executed and we indi-
cate that either no parametrization is required (Line 13) or
that parametrization is only required on the output of the
maximization (Line 16), depending on whether the relation
computed based on only information on the sink was already
a subset of the filter value relation. Finally, if none of these
cases apply, then parametrization is required (on the input
of the maximization problem, Line 18).

6.3.1 Filter Values implied by the Sink
Let us illustrate the derivation of filter value constraints

on the potential source from those on the sink based on an
example. The general case is explained in Section A.2. In
particular, let us reconsider the example from Section 6.2.
Let M1 be the result of projecting out the array elements
from M , i.e.,

M1 = { H(k, i, j)→ A(k, j, i+ 1) | 0 ≤ i ≤ 98 },

28

where we omit the constraints on j and k for brevity. The
filters on statement A are similar to those on H in (6) and (7).
The first of these was updated in (11) to take into account
the filter source. The second can be updated to

F H
2 = { H(k, i, j)→ (M(k)→ m()) | 0 ≤ i ≤ 98 }.

For statement A, we have, say,

F A
1 = { A(k, i, j)→ (M(k)→ m()) | 0 ≤ j ≤ 99 }.

We want to check whether the fact that the sink is executed
tells us anything about the values of these filter variables at
the source. Note that if the sink is not executed, then it
does not need any values and so there is no need to com-
pute dataflow dependences for sink iterations that are not
executed.

The first step is to check whether any of the source filter
arrays are also accessed by the corresponding sink iterations.
To do so, we pull back the filter access relations over M1,
resulting in

F A
1 ◦M1 = { H(k, i, j)→ (M(k)→ m()) | 0 ≤ i ≤ 98 },

where the constraints 0 ≤ i ≤ 98 derive from 0 ≤ i+ 1 ≤ 99
and the domain constraints of M1. Since this relation is a
subset of F H

2 i.e., ∀j ∈M1(k) : F A
1 (j) ⊆ F H

2 (k), and similarly
for F A

2 ◦M1 ⊆ F H
1 , we know that (5) also holds for the source

filter accesses for all j ∈M1(k), i.e.,
(
V
(
F A
i (j)

))2
i=1
∈ V1(k)

with V1 derived from V H in (8) by changing the order of the
range dimensions to match the matching of the filters, i.e.,

{ H(k, i, j)→ (m,n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < n ∧ 0 ≤ j < m }.
Note that in this particular example, we have F A

1 ◦M1 = F H
2

and F A
2 ◦M1 = F H

1 but equality is not required in the general
case. There is also no need for every filter access relation on
the source to match a filter access relation on the sink and
vice versa. Besides reordering dimensions of V H, we may in
the general case also have to project out dimensions and/or
introduce unconstrained dimensions.

Precomposing V1 with M−1
1 , we obtain a mapping from

source iterations to filter values that allow one or more cor-
responding sink iterations to be executed. In the example,
we obtain

{A(k, i, j)→ (m,n) | 0 ≤ k ≤ 99∧0 ≤ j−1 < n∧0 ≤ i < m}.
Since this relation is a subset of the filter value relation on
A, i.e.,

{ A(k, i, j)→ (m,n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < m ∧ 0 ≤ j ≤ n },
we know that for each sink iteration in the domain of M ′

that is executed, the corresponding source iterations are also
executed and therefore no parametrization is required.

6.3.2 Filter Values implied by Other Sources
The derivation of extra information from other potential

sources is again illustrated based on an example. The gen-
eral case is explained in Section A.3. In particular, let us
consider the determination of the sources for the access to
state in Line 4 of Listing 2. We first consider the write P
in Line 7 as a potential source for ` = 0. Parametrization is
required and in particular (18) specializes to

(λP
0 , σ

P)→
{
S0(i) | σP < 0 ∨

(
0 ≤ λP

0 < i ∧ σP ≥ 0
)}

.

The dataflow analysis then continues looking for sources
from the write Q in Line 5. Let us now consider the case
where σP < 0. Since statement S0 is not affected by any
filters, we need to turn to the other potential sources, in
particular P , for any constraints that could help us deter-
mine whether parametrization is required.

We first construct a relation N mapping sink iterations
to iterations of P that have definitely not been executed
(according to (14) and given σP < 0), i.e.,

N = { S0(i)→ C(i′) | 0 ≤ i′ < i }.

This relation can be constructed by subtracting iterations
that may have executed from Dmem

C,P (with the array ele-
ments projected out). In the example, there are no itera-
tions that may have executed (since σP < 0) and so in this
case N = Dmem

C,P . From (5), we know that the values of the
corresponding filter elements (12) do not satisfy the filter
access relation (9), i.e., for all S0(i)→ C(i′) ∈ N we have

V(F C(C(i′))) 6∈ V C(C(i′)).

In other words,

V(F C(C(i′))) ∈ V1(C(i′)),

with

V1 = { C(i)→ (1) | i ≥ 0 }.
Note that t_0 is a boolean variable, so if its value is not 0, it
must be 1. Combining N and F C (12) into a single relation,
we obtain

N1 = { (S0(i)→ (S0(i
′)→ t0(i

′))→ C(i′) | 0 ≤ i′ < i }.

Let R1oR2 be the domain product of two relations, mapping
nested pairs of domain elements from R1 and R2 to their
shared images, i.e.,

R1 oR2 = { (s→ t)→ u | s→ u ∈ R1 ∧ t→ u ∈ R2 }.

In general, we then have N1 = N o
(
F C
)−1

. The relation
N1 maps a pair of sink iteration and filter access to source
iterations that have definitely not been executed and that
perform the filter access, with value in V1. The same filter
element may be accessed by multiple source iterations, each
of them imposing the V1 constraints. We therefore compute
the intersection of the V1 images over all associated source
iterations. In the example, only a single source iteration is
associated to a given filter element and we obtain

V2 = { (S0(i)→ (S0(i
′)→ t0(i

′))→ (1) | 0 ≤ i′ < i }.

Projecting out the filter access, we obtain the filter value
relation

V3 = { S0(i)→ (1) | 1 ≤ i },
which is valid for any element of F C(N(S0(i))), with i ≥ 1.
This information can then be propagated to the potential
source Q using the technique of Section 6.3.1, from which it
can be concluded that Q is always executed (in the current
case where σP < 0) and that therefore no parametrization is
required. Note that the combined filter access relation F C◦N
is no longer a function, but, as explained in Section A.2, the
computations are also valid for multi-valued access relations.
We just need to be careful about the domains of the access
relations.

29

6.4 Additional Constraints
If we determine that we need to apply parametrization,

then we may in some cases wish to impose additional con-
straints on the introduced parameters beyond those of Sec-
tion 6.2. In particular, we may find that not all potential
source iterations are executed (otherwise no parametriza-
tion would be required), but that some potential source it-
erations are definitely executed. If so, we add constraints
that impose that there is a last execution (σP ≥ `) and that
this last execution is no earlier than any of the definitely
executed iterations.

Additionally, we check for conflicts between the filters as-
sociated to the source of the newly added parameters and
those of previously added parameters, introducing extra con-
straints that avoid the conflicts. As usual, we only show an
example, while the details are explained in Section A.4. Con-
tinuing from the example in Section 6.3.2, let us consider the
case where we are looking for an instance of the write Q in
Line 5 of Listing 2 that is executed after the last execution
of the write P in Line 7. Parametrization is required in this
case, but the sink already contains parameters that refer to
P , so we look for possible conflicts between the parameters
of P and Q.

Based on dataflow analysis on the filter arrays, e.g., (12),
we know that identical iterations of D and C access the same
filter element, written in the same iteration. These filter
elements therefore need to have the same value. Let us try
to derive conflicts from iterations of both statements that are
not executed. To ease the notation, we will only consider the
case σP , σQ ≥ 0 and omit these variables and constraints.
The iterations in Dmem

C,P that are not executed are given by

λP
0 → { S0(i)→ C(i′) | 0 ≤ λP

0 < i′ < i }

with filter value { C(i′)→ (1) } and similarly for Q. Pairing
up the non-executed iterations of C and D and restricting
them to the pairs that should have the same value, we obtain

(λP
0 , λ

Q
0)→ { S0(i)→ (C(i′)→ D(i′)) | 0 ≤ λP

0 , λ
Q
0 < i′ < i }.

Considering now the pairs of iterations from the two state-
ments that map to values that allow the iterations to not be
executed and such that these values are the same, we find
that there are no such pairs. Subtracting this set of pairs
of iterations that have the same value from the range of the
relation above, we obtain a mapping from sink iterations to
pairs of source iterations that should have the same values
for their filters but in fact do not. In this example, an empty
set is subtracted so that the relation remains the same. The
domain of this relation, i.e.,

(λP
0 , λ

Q
0)→ { S0(i) | 0 ≤ λP

0 , λ
Q
0 ≤ i− 2 }.

represents conflicting values of the parameters. In particu-
lar, it is impossible for the last executed iterations of P and
Q to both be before the previous iteration of the loop. These
impossible cases are removed from the sink parametrization
S2.

7. EXTENSIONS
In this section, we briefly discuss two extensions, dynamic

loop bounds, which are supported by our dataflow analysis
implementation, and dynamic index expressions, which are
currently not supported.

1 for (int x1 = 0; x1 < n; ++x1) {

2 S1: s = f();

3 for (int x2 = 0; P(x1, x2); ++x2) {

4 S2: s = g(s);

5 }

6 R: h(s);

7 }

Listing 3: C version of example E1 from [1, Sec-
tion 3.2.2]

7.1 Dynamic Loop Conditions
In principle, dynamic loop conditions can be handled by

introducing a filter that represents the last executed itera-
tion of the loop. Consider, for example, the loop in Line 3
of Listing 3. The loop condition depends on some unknown
function P applied to the loop iterator and is therefore not
(locally) static affine. We could introduce a virtual scalar,
say m, that represents the final iteration of the loop and that
implicitly depends on x1. The filter value relation would
then be of the form (n) → { S2(x1, x2) → (m) | 0 ≤ x1 <
n ∧ 0 ≤ x2 ≤ m }. Unfortunately, the resulting dataflow
dependence relations would not be practically useful for the
construction of process networks since this last executed it-
eration is not known in advance.

Instead, we record the result of the dynamic loop condi-
tion in a virtual array and make the body of the loop depend
on the value of the current and all previous iterations of the
loop being 1. That is, the statement on Line 4 has filter
value relation

V S2 = (n)→ { S2(x1, x2)→ (1) | 0 ≤ x1 < n ∧ x2 ≥ 0 }
with filter access relation

F S2 = n→ { S2(x1, x2)→ t0(x1, a) | 0 ≤ a ≤ x2 }.
Note that this filter access relation is not a function, but
a multi-valued filter access relation and therefore requires
the treatment of Appendix A. The statement evaluating
the condition is made to depend on all previous iterations.
Note that we currently only handle dynamic loop conditions
for the purpose of dataflow analysis and not for the actual
construction of process networks.

7.2 Dynamic Index Expressions
Our implementation currently does not support dynamic

index expressions. We would have to allow the access rela-
tions to be approximate as well and the parameters would
change to mean that the iteration is executed and that the
element being accessed is the same as that accessed by the
sink. This change in meaning would limit the conclusions
we could draw from the new parameters.

8. EXPERIMENTS
Our approach has been implemented in the da and pn

tools of the isa prototype tool suite (git://repo.or.cz/
isa.git). The da tool performs dataflow analysis and sup-
ports dynamic loop conditions, while the pn tool addition-
ally constructs a process network and currently does not
support dynamic loop conditions. Table 1 shows the re-
sults of a preliminary experimental comparison of our da

tool against that of [6], which is an implementation of the

30

input da fadatool fadatool -s
time p d time p l time p l

Lst 1 0.01s 0 5 0.01s 6 6 0.01s 6 6
Lst 2 0.01s 4 9 0.01s 6 16 incorrect
fuzz4 0.06s 3 9 0.02s 4 9 0.01s 0 9
for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
c if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
c if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
c if3 0.03s 2 22 0.03 6 723 0.36s 3 16
c if4 0.02s 2 10 0.17s 8 9k 1m 4 28
whil1 0.01s 0 4 0.00s 1 4 0.01s 0 4
whil2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if wh 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2

Table 1: Experimental Results

approach that most closely resembles our own. In particu-
lar, we use version isa-0.11-319-gead5e27 of da and version
fda6009 of fadatool. We use fadatool both with and with-
out the -s option, since the results can be wildly different.
It should be noted that both tested tools are prototypes.
We should therefore be careful about drawing conclusions
from these results, especially since fadatool -s sometimes
produces incorrect results. Since the inputs in the table are
relatively simple, correctness was determined through visual
inspection.

For each tool and for each test case, we report the time
taken by the analysis, the number of parameters introduced
and the number of disjuncts in the dependence relations (for
da) or the number of leaves in the quasts (for fadatool).
Note that as explained in Section 9 below, the internal rep-
resentation of dependence relations inside fadatool includes
an additional parameter similar to our β. Since these inter-
nal parameters are not explicitly printed in the output of
the tool, they are not included in the parameter count for
fadatool. By contrast, the β parameters are included in
the parameter count for da. The first two inputs are those of
Listing 1 and Listing 2, modified to pass through the default
fadatool parser. In particular, the parser does not support
multiple writes in a single statement. It was therefore diffi-
cult to convert our more extensive test cases. The remaining
cases (with some of the names abbreviated) come from the
fadalib distribution. We omit those test cases that contain
index expressions that are not static affine since we cannot
handle them. Of note is that fadatool fails to recognize that
no parameters need to be introduced on Listing 1 and that
without the -s option, it quickly runs out of control on the
for test cases. The cascade_if results may be somewhat
misleading since pet recognizes that the filter variables used
in the if conditions are the same and that some of the inner
tests are implied by the outer test, greatly simplifying the
input to da.

9. RELATED WORK
Despite its name, FADA is to the best of our knowledge

the only alternative approach that allows for an exact (but
run-time dependent) dataflow analysis in the presence of
dynamic and/or non-affine conditions or index expressions.
The main differences are that FADA introduces different pa-
rameters (with a different meaning), that they are only ana-
lyzed after all parameters have been introduced and that the
analysis is performed using resolution on general first order
logic formulas. A new vector of parameters α is introduced
for every maximization problem similar to (4), meaning that
potentially many more parameters are introduced. The ab-
sence of a solution (similar to our β = 0) is represented as ⊥
on paper and is reported to be represented by a scalar vari-
able similar to our β inside the implementation of [6]. Note
that it is sometimes suggested [8, 22] to use a value outside
the iteration domain, but this may not always be easy to
determine and is impossible for 0D iteration domains. Our
dataflow analysis on filter arrays is a special case of the it-
erative approach of [1].

Other approaches to dataflow analysis [16, 21] produce
approximate results in the presence of constructs that are
not static affine. The approach of [16] in particular prop-
agates values to discover static affine constraints in con-
structs that do not at first appear to be static affine. The
authors of [9] propose an algorithm for computing reach-
ing definitions for arrays that applies to both structured
and unstructured programs. However, they only focus on
how to collect constraints and do not explain how to solve
them. Instead, they introduce uninterpreted functions and
rely on Omega [19] for solving formulas containing such un-
interpreted functions. Unfortunately, the support in Omega

for uninterpreted functions is very limited and cannot han-
dle the constraints they collect. The iegenlib library [23]
has more extensive support for uninterpreted functions, but
does not support a difference operation and can therefore
not be used to perform value-based dependence analysis.

10. CONCLUSIONS AND FUTURE WORK
We have presented a novel approach for exact array data-

flow analysis in the presence of constructs that are not static
affine. Dynamic behavior in the input program is repre-
sented using filters. An analysis of these filters determines if
the dependences are also run-time dependent. If so, param-
eters are introduced to represent this run-time dependence,
where we are careful to introduce as few parameters as possi-
ble. This is made possible by a judicious definition of these
parameters. We plan on working on a closer integration
with pet so that we can perform the dependence analysis
incrementally, allowing us to locally treat some variables in
the input as symbolic constants (as advocated by [15]) and
more easily detect some cases (such as that of Listing 1)
where no parameters need to be introduced. Note that the
techniques developed in this paper would still be useful on
more complicated inputs.

11. ACKNOWLEDGMENTS
This work was partially funded by a gift received by LIACS

from Intel Corporation and by the European Commission
through the FP7 project CARP id. 287767.

12. REFERENCES
[1] D. Barthou. Array Dataflow Analysis in Presence of

Non-affine Constraints. PhD thesis, PRiSM -

31

Laboratoire de recherche en informatique, Feb. 1998.

[2] D. Barthou, A. Cohen, and J.-F. Collard. Maximal
static expansion. Int. J. Parallel Program.,
28(3):213–243, 2000.

[3] D. Barthou, J.-F. Collard, and P. Feautrier.
Applications of fuzzy array dataflow analysis. In
Euro-Par Conference, volume 1123 of Lect. Notes in
Computer Science, pages 424–427, Lyon, Aug. 1996.
Springer-Verlag.

[4] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy
array dataflow analysis. J. Parallel Distrib. Comput.,
40(2):210–226, 1997.

[5] D. Barthou, P. Feautrier, and X. Redon. On the
equivalence of two systems of affine recurrence
equations. In Euro-Par Conference, volume 2400 of
Lect. Notes in Computer Science, pages 309–313,
Paderborn, Aug. 2002. Springer-Verlag.

[6] M. Belaoucha, D. Barthou, A. Eliche, and S.-A.-A.
Touati. FADAlib: an open source C++ library for
fuzzy array dataflow analysis. In Intl. Workshop on
Practical Aspects of High-Level Parallel Programming,
volume 1, pages 2075—2084, Amsterdam, The
Netherlands, May 2010.

[7] T. Bijlsma. Automatic parallelization of nested loop
programs for non-manifest real-time stream processing
applications. PhD thesis, University of Twente, 2011.

[8] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy
array dataflow analysis. In Proceedings of 5th ACM
SIGPLAN Symp. on Principles and practice of
Parallel Programming, July 1995.

[9] J.-F. Collard and M. Griebl. A precise fixpoint
reaching definition analysis for arrays. In Proceedings
of the 12th International Workshop on Languages and
Compilers for Parallel Computing, LCPC ’99, pages
286–302, London, UK, 2000. Springer-Verlag.

[10] P. Feautrier. Array expansion. In ICS ’88: Proceedings
of the 2nd international conference on
Supercomputing, pages 429–441. ACM Press, 1988.

[11] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[12] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[13] P. Feautrier. Some efficient solutions to the affine
scheduling problem. Part I. One-dimensional time.
International Journal of Parallel Programming,
21(5):313–348, Oct. 1992.

[14] P. Feautrier. The Data Parallel Programming Model,
volume 1132 of LNCS, chapter Automatic
Parallelization in the Polytope Model, pages 79–100.
Springer-Verlag, 1996.

[15] V. Maslov. Lazy array data-flow dependence analysis.
In H.-J. Boehm, B. Lang, and D. M. Yellin, editors,
POPL, pages 311–325. ACM Press, 1994.

[16] V. Maslov. Enhancing array dataflow dependence
analysis with on-demand global value propagation. In
ICS ’95: Proceedings of the 9th international
conference on Supercomputing, pages 265–269, New
York, NY, USA, 1995. ACM.

[17] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel,
S. Polstra, R. Bose, C. Zissulescu, and E. Deprettere.

Daedalus: toward composable multimedia MP-SoC
design. In Proceedings of the 45th annual Design
Automation Conference, DAC ’08, pages 574–579,
New York, NY, USA, 2008. ACM.

[18] S. Pellegrini, T. Hoefler, and T. Fahringer. Exact
dependence analysis for increased communication
overlap. Recent Advances in the Message Passing
Interface, pages 89–99, 2012.

[19] W. Pugh and D. Wonnacott. Going beyond integer
programming with the omega test to eliminate false
data dependences. Technical Report Technical Report
CS-TR-3191, Department of Computer Science,
University of Maryland, College Park, Maryland, Dec.
1992. An earlier version of this paper appeared at the
ACM SIGPLAN ’92 Conference on PLDI.

[20] W. Pugh and D. Wonnacott. An exact method for
analysis of value-based array data dependences. In
Proceedings of the 6th International Workshop on
Languages and Compilers for Parallel Computing,
pages 546–566. Springer-Verlag, 1994.

[21] W. Pugh and D. Wonnacott. Nonlinear array
dependence analysis. Technical report, College Park,
MD, USA, 1994.

[22] T. Stefanov. Converting Weakly Dynamic Programs to
Equivalent Process Network Specifications. PhD thesis,
Leiden University, Leiden, The Netherlands, Sept.
2004.

[23] M. M. Strout, G. George, and C. Olschanowsky. Set
and relation manipulation for the sparse polyhedral
framework. In Proceedings of the 25th International
Workshop on Languages and Compilers for Parallel
Computing (LCPC), Sept. 2012.

[24] A. Turjan, B. Kienhuis, and E. Deprettere.
Translating affine nested-loop programs to process
networks. In CASES ’04: Proceedings of the 2004
international conference on Compilers, architecture,
and synthesis for embedded systems, pages 220–229,
New York, NY, USA, 2004. ACM Press.

[25] S. Verdoolaege. isl: An integer set library for the
polyhedral model. In K. Fukuda, J. Hoeven,
M. Joswig, and N. Takayama, editors, Mathematical
Software - ICMS 2010, volume 6327 of Lecture Notes
in Computer Science, pages 299–302. Springer, 2010.

[26] S. Verdoolaege and T. Grosser. Polyhedral extraction
tool. In Second International Workshop on Polyhedral
Compilation Techniques (IMPACT’12), Paris, France,
Jan. 2012.

[27] S. Verdoolaege, G. Janssens, and M. Bruynooghe.
Equivalence checking of static affine programs using
widening to handle recurrences. In Computer Aided
Verification 21, pages 599–613. Springer, June 2009.

[28] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: A
tool for improved derivation of process networks.
EURASIP Journal on Embedded Systems, special issue
on Embedded Digital Signal Processing Systems, 2007,
2007.

32

APPENDIX
A. MULTI-VALUED FILTER ACCESS RE-

LATIONS
In this appendix, we describe how to extend the repre-

sentation and manipulation of filters to handle multi-valued
filter access relations.

A.1 Filters
In Section 4, we assumed that all filter access relations

access a single element in each iteration. Here, we describe
how to extend the definitions to handle multi-valued filter
access relations. The trickiest part is not so much handling
filter access relations that access more than one data ele-
ment, but filter access relations that may access zero data
elements for some iterations. We therefore allow several fil-
ters on the same iteration domain, with disjoint domains,
and impose that in each filter the domain of the filter value
relation is a subset of the domains of all the filter access
relations. In particular, each statement S has µS filters on
its iteration domain, with µS ≥ 0. Each of the filters Fi,
with 1 ≤ i ≤ µS , is represented by a sequence of filter access
relations FS

i,j with 1 ≤ j ≤ nS
i and nS

i the number of filter

access relations, and a filter value relation V S
i . As in Sec-

tion 4, we have FS
i,j ⊆ IS → (IS → A) and V S

i ⊆ IS → ZnS
i .

Furthermore, we impose

domFS
i,j ⊇ domV S

i ,

for all 1 ≤ i ≤ µS and 1 ≤ j ≤ nS
i , to ensure that all

the filter access relations are total on the domains of the
corresponding filter value relations, and

domV L
i1 ∩ domV L

i2 = ∅
for all 1 ≤ i1, i2 ≤ µS such that i1 6= i2, to ensure that the
domains of the filter value relations are disjoint.

The definition of executedS(k) (5) is then replaced by

∀(f1, . . . , fnS
i

) ∈
nS
i∏

j=1

FS
i,j(k) : (V (f j))

nS
i

j=1 ∈ V S
i (k) (19)

if k ∈ domV S
i and is simply true on those parts of the it-

eration domain IS that do not intersect any of the domV S
i .

That is, an element of the iteration domain IS is only exe-
cuted if the tuples of values of all the tuples of accessed filter
array elements satisfy the active filter value relation.

A.2 Filter Values implied by the Sink
In this section, we describe the derivation illustrated in

Section 6.3.1. We will assume that only a single sink filter
and a single potential source filter apply to the domain and
range of M . That is, we will assume that domM1 ⊆ domV C

and ranM1 ⊆ domV P , with M1 the result of projecting out
the array elements from M as in Section 6.3.1. In general,
M needs to be split up according to the filters.

Let the sink filter consist of n filter access relations Fi

and the potential source filter of m filter access relations
Gj . Since we are going to compare the filters, we replace
the filter access relations by their sources, as explained at
the end of Section 4. In particular, Fi ⊆ IC → (I → A) and
Gi ⊆ IP → (I → A). We construct a relation H between
their possible values, initialized as

H = Zn → Zm.

Let Bj represents the bounds on the values of the array
elements accessed by Gj as specified by the user through a
pragma value_bounds [26, Section 2], or Z if no such bounds
have been specified. Let B be the Cartesian product of these
bounds, i.e.,

B =

m∏

j=1

Bj . (20)

The relation can then be refined to

H = Zn → B.

In the next step, we iterate over the potential source fil-
ter access relations and check if we have any information
about them in the sink filter value. In particular, we check
if any of the sink filter access relations accesses “the same”
value(s). If so, we equate the corresponding dimensions in
the mapping between filter values. To check if “the same”
value(s) are accessed, we pull back the filter access relation
over M1. This results in a relation between sink domain
iterations and filter sources such that there is at least one
potential source corresponding to the sink domain iteration
that accesses that filter source. If this relation is a subset
of the filter access relation at the sink, then we know that
everything we know about the values of the filter accesses at
the sink also applies to the values of the corresponding fil-
ter accesses at the corresponding potential source iterations.
Note that there may be more than one potential source it-
eration associated to a given sink iteration and that each of
these potential source iteration may access a different ele-
ment from the filter array. The above process ensures that
source and sink values are only equated if all of these filter
array elements are covered by the sink filter access relation.

In particular, for any k ∈ domV C that is executed, we
know from (19),

∀(f1, . . . , fn) ∈
n∏

j=1

FC
j (k) : (V (f j))

n
j=1 ∈ V

C(k).

If we haveGP
j ◦M1 ⊆ FC

i , i.e., ∀t ∈M1(k) : GP
j (t) ⊆ FC

i (k),
then we know

∀t ∈M1(k) :∀(f1, . . . , fm) ∈
n∏

j=1

GP
j (t) : (V (f j))

n
j=1 ∈ V1(k),

(21)
with V1 = H ◦ V C . The relation H takes care of projecting
out those dimensions in V C for which we were unable to find
a corresponding filter access GP

j , reordering those for which
we did find a correspondence and introducing dimensions for
those filter accesses GP

j for which we were unable to find a

corresponding filter access FC
i . The relation V1 ⊆ IC → Zm

represents what we know about the filter values at the po-
tential sources associated to a given sink domain iteration,
given that the sink domain iteration is executed. A further
composition with (the inverse of) M1 ⊆ IC → IP , yields a
subset of IP → Zm. This relation maps potential source iter-
ations to filter values that allow for one or more correspond-
ing sink iterations to be executed. In particular, if there is
an element k ∈M−1

1 (t) that is executed, then (V(f j))
m
j=1 is

an element of V1(k). Given that there is such a k, the tu-
ple (V(f j))

m
j=1 is therefore an element of the union of V1(k′)

over all k′ ∈ M−1
1 (t). That is, (V(f j))

m
j=1 is an element of

(V1 ◦M−1
1)(t). In other words, for values of the filters out-

side the relation V1 ◦M−1
1 , no corresponding (according to

33

M1) sink domain iterations are executed. Note that we can-
not take the intersection of V1(k′) over all k′ because (21)
only applies to those k that are executed and we only know
that at least one of the k′ ∈ M−1

1 (t) is executed, not that
all of them are executed.

A.3 Filter Values implied by Other Sources
In this section, we describe the derivation illustrated in

Section 6.3.2. In particular, we describe the “update” func-
tion in Line 8 of Algorithm 2. In particular, during the com-
putation of the partial lexicographical maximum of M on U
(4), the set U may already involve parameters that refer to
the last iterations of (other) potential sources. We describe
how we can exploit the constraints on these parameters to
derive extra information about the filter values at the sink.
The procedure of Section A.2 then needs to be applied to
the updated sink filter to actually derive information about
the filter values at the original potential source.

Specifically, we will derive information from the fact that
some potential source iterations have not been executed.
The conditions on the filter values at the potential source
that allow the sink to be executed, but not the potential
source are mapped back to the sink, first by taking the in-
tersection over all potential source iterations associated to
a given sink iteration and filter element and then by taking
the union over all accessed filter elements. We take the in-
tersection over the potential source iterations since we know
that all those iterations are not executed and so all of the
corresponding constraints apply. We take the union over the
accessed filter elements, since we need to obtain constraints
that are valid for all of those elements. As in Section A.2, we
assume that only a single sink filter and a single potential
source filter applies to the domain and range of M , i.e., that
domM1 ⊆ domV C and ranM1 ⊆ domV P . As before, M1

is the result of projecting out the array elements from M .
Let us similarly define a U1 that is the result of projecting
out the access array element from U . In the remainder of
this section, we will take Dmem

C,Q to have the array elements
projected out, i.e., Dmem

C,Q ⊆ IC → IQ.
Let us now look at the construction in more detail. We

start with the construction of a mapping from sink iter-
ations to iterations of some access Q that have not been
executed (according to information in U). We first apply
the parametrization of (15) to the iteration domain of Q
and construct a relation N0 ⊆ U1 → I ′Q (with I ′Q the re-
sult of the parametrization) that is universal, except that
the first ` dimensions in domain and range are equated.
Note that some of the extra parameters in I ′Q also appear in
U1 (otherwise we would not consider this potential source).
This means that the relation N0 relates sink iterations to
potential source iterations that include the last potential
source iteration executed before the sink iteration. That
is, {k → λQ

C(k) | k ∈ U1 ∧ σQ
C (k) ≥ ` } is a subset of

N0. In particular, according to (14), the last element of
Dmem

C,Q (k), with k ∈ U1, that shares the first ` iterators and
where the filter values satisfy the filtered iteration domain
of Q is included in this relation. The relation may also con-
tain additional elements since we may not have introduced
a parameter for each dimension as explained in Section 5.
Projecting out all parameters introduced in (15) (for any
iteration domain), we obtain a relation between sink iter-
ations and potential source iterations that include the last
potential source iteration for any value of the other param-

eters. Further combining this relation with a relation map-
ping potential source iterations to earlier potential source
iterations { SQ(i) → SQ(i′) | i < i′ } results in a relation
between sink iterations and potential source iterations that
may have executed. In particular, the potential source it-
erations that are not related to a given sink iteration (and
that share the first ` iterators) are definitely not executed.
To obtain this relation between sink iterations and potential
source iterations that are definitely not executed we subtract
the relation computed above from the corresponding mem-
ory based dependences Dmem

C,Q (with the first ` dimensions
equated). Let us call the resulting relation N ⊆ IC → IQ.
Due to the construction, we have for each k → j ∈ N that
¬executedSQ(j).

If N is empty, then we cannot use it to derive any in-
formation and the computation stops. Otherwise, the first
step in our derivation is to apply the computation of Sec-
tion A.2 to N . This assumes that domN ⊆ domV C and
ranN ⊆ domV Q, for some filter of Q. The first condi-
tion can be enforced by intersecting N with domM → IQ,
since we are only interested in sink iterations that belong
to domM in any case. If we cannot find a filter on Q such
that the second condition holds, then the computation stops.
During the course of the computation, we will remove filter
access relations GQ

j that are not single-valued. We therefore
check if the filter on Q has any single-valued filter access
relations. If not, the computation stops.

Applying the computation in Section A.2 (with M re-
placed by N and the potential source P by the other po-

tential source Q), we obtain a relation V0 ⊆ IQ → Zm′
such

that for each k→ j ∈ N , we have

∀(f1, . . . , fm′) ∈
m′∏

i=1

GQ
i (j) : (V(f i))

m′
i=1 ∈ V0(j).

For the same j, since ¬executedSQ(j), we also know

∃(f1, . . . , fm′) ∈
m′∏

i=1

GQ
i (j) : (V(f i))

m′
i=1 6∈ V

Q(j).

Combining these results, we have

∃(f1, . . . , fm′) ∈
m′∏

i=1

GQ
i (j) : (V(f i))

m′
i=1 ∈

(
V0 \ V Q

)
(j).

Unfortunately, knowing that there is some sequence of filter
elements f i will not allow us to derive any further informa-
tion. We will therefore assume that that all filter access
relations GQ

i are single-valued. Effectively, this means that
we remove those filter access relations that are not single-
valued and project out the corresponding dimensions from
V0 \V Q. Let V1 be the result of this projection. That is, for
each k→ j ∈ N ,

(
V(GQ

i (j))
)m′′

i=1
∈ V1(j).

Let G be the range product of the single-valued filter access
relations GQ

i .
At this point we have a relation N ⊆ IC → IQ map-

ping sink iterations to corresponding non-executed potential

source iterations, a relation G ⊆ IQ → (I → A)m
′′

, map-
ping potential source iterations to (single) filter elements,

and a relation V1 ⊆ IQ → Zm′′
, mapping potential source

34

iterations to corresponding filter values that do not allow
the potential source iteration to be executed, but do allow
the corresponding sink iteration to be executed. We first
combine N and G into a single relation

N1 = N oG−1

The result is a subset of (IC → (I → A)m
′′

) → IQ. We
have, for each (k→ (f)i)→ j ∈ N1,

(V(f i))
m′′
i=1 ∈ V1(j).

Note that because they represent (part of) a filter, we have
domG ⊇ domV Q. Combined with our assumption that
ranN ⊆ domV Q, this ensures that we do not remove any
elements from the range of N . We now connect the pairs of
sink iterations and filter elements to the possible values of
those filter elements at the corresponding potential source
iterations by computing

V2 : domN1 → Zm′′
: V2(k→ f) =

⋂

j∈N1(k→f)

V1(j). (22)

That is, we consider the potential source iterations j that
have definitely not been executed before a certain sink iter-
ation k and compute the intersection of the possible values
of the filter elements f over all those definitely not executed
source iterations. We have, for each k→ (f)i ∈ domV2,

(V(f i))
m′′
i=1 ∈ V2(k→ (f)i).

Note that different potential source iterations associated to
the same sink iteration may access different elements from
the filter arrays. We therefore need to be careful to only
combine constraints on values associated to the same ele-
ments. If N1 is single-valued, the intersection in (22) is
computed over a single element and so we can simply com-
pute V2 as

V2 = V1 ◦N1.

Otherwise, it is computed as

V2 = N1 v V −1
1 ,

with v the non-empty subset operation on two relations,
which constructs a relation between the domain elements of
the two relations such that the image of the first domain ele-
ment is a subset of the image of the second domain element.
That is, R1 v R2 is equal to

{ s→ t | s ∈ domR1 ∧ t ∈ domR2 ∧R1(s) ⊆ R2(t) }

The constraint R1(s) ⊆ R2(t) can be expressed as

∀u : s→ u ∈ R1 ⇒ t→ u ∈ R2

or

¬∃u : s→ u ∈ R1 ∧ t→ u 6∈ R2

where u may be restricted to ranR1. The operation can
therefore be computed as

R1 v R2 = R−1
2 ◦R1 \

(
((domR2 → ranR1) \R2)−1 ◦R1

)
.

Finally, we project out filter elements and compute

V3 : IC → Zm′′
: V3(k) =

⋃

f∈(domV2)(k)

V2(k→ f).

The resulting relation contains all values of all filter elements
read by any non-executed iteration associated to a certain
sink iteration. That is, for every k ∈ domV3 = domN ,

∀(f1, . . . , fm′′) ∈
m′′∏

i=1

GQ
i (N(k))) : (V(f i))

m′′
i=1 ∈ V3(k).

V3 can be computed as

V3 = V2 ◦ (dom−−→(W−1(domV2)))−1,

with W−1S extracting the nested relation from the set S,
i.e.,

W−1S = { s→ t | (s→ t) ∈ S }.
The relation V3 may only apply to a subset of the domain of
M1. Since we do not have any information about elements
outside domV3 = domN , we extend V3 to the entire domain
of M1 as

V4 = V3 ∪
(

(domM1 \ domN)→ Zm′′)
.

We now want want to intersect V C with V4, but as in
Section A.2 we first need to align the filter access relations,
by constructing a relation H mapping the filter values of V4

to those of V C . In this case, however, we also allow extra
filter access relations to be added, both to the original set
of filter access relations of the sink and to the filter access
relations associated to V4. We do this to be able to collect as
much information as possible at the sink. In particular, some
of the sources may involve the same filter access relations
even if these filter access relations do not originally appear
among those of the sink and we still want to combine the
information from different sources at the sink.

More specifically, we look for filter access relations FC
i

that are identical to some GQ
j ◦N . If we cannot find such an

FC
i , we add GQ

j ◦N to the sink filter access relations (adjust-

ing V C). In both cases, we express the correspondence in
H. Additionally, we look for filter access relations FC

i that
form a (strict) subset of some GQ

j ◦N . If so, we add FC
i to

the filter access relations associated to V4, adjusting V4 by
duplicating the constraints on the corresponding dimension
to the new dimension that corresponds to the extra filter
access relation. Again, we express the correspondence in H.
At the end, we apply H to V4 and intersect V C with the
result.

A.4 Avoid Inconsistencies
As explained in Section 6.4, some values of the parame-

ters expressing the last iteration of potential source P , in-
troduced in Section 6.2 and constrained by (18), may not
be consistent with the fact that the sink C is executed or
with the values of parameters expressing the last iteration of
other potential sources introduced before. In this section, we
describe how we can remove some of these inconsistencies.
Note that leaving in these inconsistencies does not lead to
incorrect results, but only to less accurate results. We there-
fore do not need to remove every possible inconsistency, but
instead try to remove those that we can easily discover.

Let us start with inconsistencies that arise from the fact
that two potential sources, the current one (P) and one that
was considered before (Q), are executed. In particular, as-
sume that iteration i of P is executed and iteration j of Q

35

as well. According to (19), we then have

∀(f1, . . . , fm) ∈
m∏

j=1

FP
j (i) : (V(f j))

m
j=1 ∈ V

P (i) (23)

for some filter of P and

∀(f1, . . . , fm′) ∈
m′∏

j=1

FQ
1 (j) : (V(f j))

m′
j=1 ∈ V

Q(j) (24)

for some filter of Q. If we can find a pair of subsequences of
filter access relations that access some sequence of filter ar-
ray elements in common, then the corresponding dimensions
of V P (i) and V Q(j) need to have some value in common. Let
K ⊆ IP × IQ contain those pairs of iteration that access the

same filter array elements and let H ⊆ Zm × Zm′
express

the correspondence of values. That is, H is expressed as one
or more equalities equating pairs of dimensions, one from
V P (i) and one from V Q(j). The relation

T =W−1

((
V P × V Q

)−1

(WH)

)
, (25)

where

WR = { (s→ t) | s→ t ∈ R },
then contains those pairs of iterations that allow for a com-
mon value. Removing those from K, we obtain the relation

K′ = K \ T
of pairs of iterations that should allow for a common value,
but in fact do not. To map these inconsistencies to the pa-
rameters we construct a relation D1 from Dmem

C,P (with array
elements projected out). In particular, we intersect the do-
main of Dmem

C,P with the parametrization of (15) and equate
the first ` dimensions of domain and range. We similarly
construct a relation D2 from Dmem

C,Q . The inconsistent values
of the parameters are then obtained as

(D1 oD2) (WK′) (26)

and the result is removed from the sink parametrization.
The above procedure may be repeated for any appropriate

pair of K and H. In our implementation, we currently only
construct a single such pair in a greedy way. In particular,
we start out with a universal K and H and consider pairs of
filter access relations FP

i ⊆ IP → (I → A) and FQ
j ⊆ IQ →

(I → A) that access the same array. For each such pair, we
compute

Ki,j =
(
FQ
j

)−1

◦ FP
i ⊆ IP → IQ (27)

and check if Ki,j has a non-empty intersection with the cur-
rent value of K. If so, we replace K with this intersection
and adjust H accordingly. Otherwise, we skip this pair of
filter access relations.

We have only considered inconsistencies based on pairs of
potential sources that are executed. It is also possible to
derive inconsistencies based on one or both of the potential
sources not being executed. Let us first consider the case
where P is not executed and Q is executed. In this case,
(23) is replaced by

∃(f1, . . . , fm) ∈
m∏

j=1

FP
j (i) : (V(f j))

m
j=1 6∈ V

P (i).

Whereas in the case of (23) and (24) a conflict occurs as
soon as there is any sequence of accessed elements for which
no matching value can be found, in this case we only know
something about some sequence of accessed elements at P
and we can therefore only arrive at a conflict if all of the
accessed elements are also accessed by Q. In particular, (27)
needs to be replaced by

Ki,j = FLP
i v FLQ

j ⊆ ILP → ILQ .

Additionally, V P in (25) should be replaced by

(ILP → B) \ V LP

with B the bounds on the possible values on the array el-
ements, as computed in (20), while D1 in (26) should refer
to iterations that are not executed. That is, rather than
intersecting Dmem

C,P with the parametrization of (15), we first
map this parametrization to lexicographically later elements
and take the union with the set

(σP)→ { SSP (j) | σP < ` }.
This second part accounts for the fact that when σP < `,
none of the iterations that share the first ` iterators have
executed.

The case where P is executed and Q is not executed is
handled similarly. For the case where both P and Q are
not executed, we can only draw any conclusion for those
iterations that access a single filter element. That is, Ki,j

of (27) is replaced by

{ i→ j ∈ (domFP
i)→ (domFQ

j) |
∀f1, f2 ∈ FP

i (i), f3, f4 ∈ FQ
j (j) : f1 = f2 = f3 = f4 }.

This relation can be computed by removing

dom
((
FP
i n FP

i

)
\ (IP → 1I→A)

)

from the domain of
(
FQ
j

)−1

◦ FP
i and

dom
((
FQ
j n FQ

j

)
\ (IQ → 1I→A)

)

from its range, with

R1 nR2 = { s→ (t→ u) | s→ t ∈ R1 ∧ s→ u ∈ R2 }.
That is, we consider pairs of image elements associated to
the same domain element of FP

i or FQ
j and remove pairs of

identical image elements. That only leaves pairs of different
image elements and the domain of the relation represents
those domain elements that have multiple image elements
associated to them.

Inconsistencies between the potential source P and the
sink C are removed in a similar way, except that C is al-
ways executed so that we only need to consider two cases,
one where P is executed and one where P is not executed.
Furthermore, the relation D2 in (26) is replaced by the iden-
tity relation on the iteration domain of the sink, i.e., 1IC .

36

Multifor for Multicore

Imèn Fassi
Dpt of Computer Science

Faculty of Sciences of Tunis
University El Manar
1060 Tunis, Tunisia

fassi.imen@gmail.com

Philippe Clauss
Team CAMUS, INRIA

University of Strasbourg
boulevard S. Brant

67400 Illkirch, France
philippe.clauss@inria.fr

Matthieu Kuhn
Team ICPS, LSIIT lab.

University of Strasbourg
boulevard S. Brant

67400 Illkirch, France
kuhn@unistra.fr

Yosr Slama
Dpt of Computer Science

Faculty of Sciences of Tunis
University El Manar
1060 Tunis, Tunisia

yosr.slama@gmail.com

ABSTRACT
We propose a new programming control structure called
“multifor”, allowing to take advantage of parallelization mod-
els that were not naturally attainable with the polytope
model before. In a multifor-loop, several loops whose bodies
are run simultaneously can be defined. Respective iteration
domains are mapped onto each other according to a run
frequency – the grain – and a relative position – the off-
set –. Execution models like dataflow, stencil computations
or MapReduce can be represented onto one referential it-
eration domain, while still exhibiting traditional polyhedral
code analysis and transformation opportunities. Moreover,
this construct provides ways to naturally exploit hybrid par-
allelization models, thus significantly improving paralleliza-
tion opportunities in the multicore era. Traditional polyhe-
dral software tools are used to generate the corresponding
code. Additionally, a promising perspective related to non-
linear mapping of iteration spaces is also presented, yielding
to run a loop nest inside any other one by solving the prob-
lem of inverting “ranking Ehrhart polynomials”.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

General Terms
Performance

Keywords
programming control structure, parallel programming, poly-
tope model

1. INTRODUCTION
We have definitely entered a new era in programming.

Parallelism is everywhere, from the many-core processor ar-
chitectures that are from now on fitting mainstream com-
puters, to the software applications that are now mixing
intensive computations, specialized routines, network com-
munication and multi-threading. Many researches focus in
proposing new languages supposed to facilitate program-
ming inside this complex environment [8, 10, 11, 13], or in

proposing hardware or software support like transactional
memory systems [6, 14, 15], supposed to prevent incorrect
computations while still providing good performance. How-
ever, all these proposals face intractable issues. Most pro-
posed languages imply to change drastically programmers
habits and have weak chances to be adopted by the soft-
ware industry [4]. Moreover, even if they offer interesting
constructions to express parallel tasks, they are not solving
the fundamental problem of correct and efficient parallelism
extraction, which induces dependency analysis, data local-
ity optimization, task grain adjustment, etc. Performance is
also strongly dependent of their implementation, i.e. of their
compilers or runtime systems. On the other hand, hardware
or software support does not either result in hiding paral-
lelization complexity to the user. And overall, these mech-
anisms are of high complexity by themselves, which mostly
often make them unrealistic for a real usage [3].

Nevertheless, parallel programming has already a long his-
tory, where gradual extensions have been proposed. Some
of them were pretty successful and are still current. For ex-
ample, directive-based languages, as OpenMP [2], are ex-
tensions to mainstream languages. The use of their in-
structions is not mandatory when inserted in a source code,
and they can be discovered and adopted progressively by
any developer. They are not breaking the programming
habits, while offering efficient parallelization opportunities.
Although they are not solving either the fundamental com-
plexity of parallelization, they nicely open the door of high
performance computing to anyone.

At the same time, a lot of relevant transformation tech-
niques have been discovered in order to exhibit parallelism or
to optimize code, particularly on loops, as software pipelin-
ing, loop unrolling, tiling, skewing, etc [1, 16, 12]. These
are applied either by experienced programmers, or auto-
matically by compilers or optimization tools. In the par-
allelism era, compilers and runtime systems have to accel-
erate their progresses in automatic parallelization, but at
the same time, programmers have to be brought to become,
at least, who we called “experienced programmers” ten or
twenty years ago.

We argue that a good way to achieve such an emancipa-
tion to parallel programming is to gradually extend main-
stream languages with new programming control structures

37

that are derived from already existing ones. Our idea is that
many well-known optimizing and parallelizing code transfor-
mations should now be applied naturally by developers, but
only in their minds, while using a control structure translat-
ing their enriched algorithmic reasonings. The existence of
such control structures will condition them to enlarge their
way of reasoning while programming. In the same way that
it is currently natural to express the repetition of code blocks
by using loops, or to abstract parametrized code by using
functions, it should now be natural to bring closer instruc-
tions that are using the same operands, or to arrange code
snippets in vertical and horizontal directions to express si-
multaneity, sequencing and overlapping.

Following this idea, we propose a new control structure
called Multifor, which can be seen as an extension of for-
loops to multiple for-loops running at the same time, whose
respective instructions are run sequentially inside one loop
body as a traditional for-loop, but run in any interleaved
order, or in parallel, between the bodies. Additionally to
traditional parameters as indices, bounds and steps, we pro-
pose to introduce a grain and an offset, allowing to mix loops
of different execution frequencies and of different starting
positions. Such programming construction translates natu-
rally to code transformations as loop fusion, loop pipelining
or loop partitioning. Moreover, it facilitates many code op-
timizations as data locality improvement or parallelization.
It can be seen as an extension of for-loops from “vertical” to
“horizontal” programming.

The second motivation of this proposal is related to the
parallel programming models that are covered by the poly-
tope model. Traditional application of this model does not
allow to naturally express parallel programming models as
task parallelism, dataflow or MapReduce. We show that
the multifor construct allows to schedule loop nest processes
by mapping together their respective iteration domains. A
multifor code can be represented geometrically by a partic-
ular union of polyhedra, each being previously dilated, com-
pressed or translated, either entirely or partially, according
to transformation factors defined by constants or affine func-
tions.

This new programming structure implies interesting im-
plementation challenges for a compiler, from its front-end to
its backend. We show that, as it is already the case with
for-loops, the polytope model is quite well adapted to ana-
lyze, optimize and translate multifor constructs into efficient
code.

Finally, as a promising perspective, we also propose a non-
linear mapping of the iteration domains guided by the ranks
of the iterations. This approach opens the possibility of
mapping any iteration domain onto any other domain with-
out being constrained by their shapes. It leads to solve the
general problem of executing any loop nest by any other
loop nest of the same trip count. Mathematically speaking,
the general solution to this problem is based on inverting
“ranking Ehrhart polynomials” [5, 9].

The paper is organized as follows. In the next section,
syntax and semantics of multifor loops are described, illus-
trated with a few examples of multifor headers and graphical
representations. We also highlight the code parallelization
and transformation schemes that are possible with multifor-
loops. In Section 3, we discuss the main issues related to
the implementation of multifor constructs and their corre-
sponding code generation. Several real and representative

code examples are presented in Section 4, highlighting the
interesting contributions of this new control structure. The
promising perspective of non-linear iteration space mapping
is the topic of Section 5, where a solution for inverting rank-
ing Ehrhart polynomials is proposed. Finally, conclusions
and further perspectives are given in Section 6.

2. SYNTAX AND SEMANTICS
In this paper, we describe the initial syntax and seman-

tics for the multifor construct. However, they can be ex-
tended in many ways in the future. We first present the
case of one unique multifor construct, as the case of nested
multifor-loops present some specificities which are presented
afterwards.

2.1 Non-nested multifor-loops
The multifor syntax is defined by:

multifor (index1 = expr, [index2 = expr, ...] ;
index1 < expr, [index2 < expr, ...] ;
index1+ = cst, [index2+ = cst, ...] ;
grain1, [grain2, ...] ;
offset1, [offset2, ...]) {
prefix : {statements}

}

where [...] denotes optional arguments, indexi denotes the
indices of the loops composing the multifor, expr denotes
affine arithmetic expressions on enclosing loop indices, or
constants, cst denotes an integer constant, grain and offset
are positive integers, grain ≥ 1, offset ≥ 0, and prefix is
a positive integer associating each statement to a given for-
loop composing the multifor-loop, according to the order in
which they are defined (0 for the first loop, 1 for the second
loop, etc.). Without loss of generality, we consider in the
following that the index steps, cst, always equal one, since
the general case can be easily deduced.

Each for-loop composing the multifor behaves as a tradi-
tional for-loop, but all are mapped on a same global “virtual
referential” domain, which can also be seen as a template.
The way iterations of the for-loops are mapped is defined
by their respective offset and grain. The grain defines the
frequency in which the associated loop has to run, relatively
to the referential. For instance, if the grain equals 2, then
one iteration of the associated loop will run over 2 iterations
of the referential. The offset defines the gap between the
first iteration of the referential and the first iteration of the
associated loop. For instance, if the offset equals 3, then the
first iteration of the associated loop will run at the fourth
iteration of the referential loop.

The size and shape of the referential is deduced from the
for-loops composing the multifor-loop. Geometrically, it is
defined as the disjoint union of the for-loop domains, where
each domain has been previously shifted according to its off-
set and dilated according to its grain. The disjoint union is
the union of adjacent convex domains, each being scanned
by a referential for-loop. The relative positions of the it-
erations of the for-loops composing the multifor-loop inside
the referential depends of the overlapping of their respec-
tive domains. It means that on domains where only one
for-loop iterations are run, the grain becomes a compression
factor. In general, the greatest common divisor of the grains
of all the for-loops overlapping on a same referential domain

38

is used as the factor for compressing the points of this ref-
erential domain, according to the lexicographic order. On
domains where several for-loops iterations are run, these are
run in interleaved fashion, or simultaneously.

Let us illustrate this definition with a few examples. Con-
sider the following multifor-loop header:

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1++, i2++; 1, 1; 0, 2)

In this example, the offset of index i1 is zero, and the one of
index i2 is 2. Thus, the first iteration of the i1-loop will run
immediatly, while the first iteration of the i2-loop will run
at the 3rd iteration of the multifor, but with i2 = 0. This
behavior is illustrated by the figure below:

i1

i2

i

Notice that the index values have no effect on the relative
positions of the for-loops bodies, which are uniquely deter-
mined by the grain and the offset. Another example is:

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1++, i2++; 1, 4; 0, 0)

Now, the i1-grain is 1 and the i2-grain is 4. In such a case,
for one iteration of the i2-loop, four iterations of the i1-loop
will be run on the domain on which they overlap. The second
domain is compressed by a factor of 4, since only the i2-loop
is run, as it is illustrated below:

i1

i2

i

2.2 Nested multifor-loops
Nested multifor-loops present some particularities and spe-

cific semantics has to be described. Without loss of gener-
ality, let us consider two nested multifor-loops composed of
two for-loop nests:

multifor (index1 = expr, index2 = expr;
index1 < expr, index2 < expr;
index1+ = cst, index2+ = cst;
grain1, grain2;
offset1, offset2) {
prefix : {statements}

multifor (index3 = expr, index4 = expr;
index3 < expr, index4 < expr;
index3+ = cst, index4+ = cst;
grain3, grain4;
offset3, offset4) {
prefix : {statements}

}
prefix : {statements}

}
Such a nest behaves as two for-loop nests, (index1, index3)
and (index2, index4) respectively, running simultaneously in
the same way as it is for one unique multifor-loop. The
grain of the inner multifor-loop introduces a delay for the
associated for-loop, since the same reasoning as with the
non-nested case is applied at each loop depth. The lower
and upper bounds are affine functions of the enclosing loop
indices of the same for-loop1. Let us consider some examples
of nested multifor headers.

1Notice that this restriction could be evicted for some amaz-
ing extensions.

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 5; i1 ++, i2 ++; 1, 1; 0, 2)
multifor (j1 = 0, j2 = 0; j1 < 10, j2 < 5; j1 ++, j2 ++; 1, 1; 0, 2)

The second for-loop nest has a 2-offset at each loop depth.
Hence it is delayed in each dimension of the referential do-
main:

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 3; i1 ++, i2 ++; 1, 4; 0, 0)
multifor (j1 = 0, j2 = 0; j1 < 10, j2 < 3; j1 ++, j2 ++; 1, 4; 0, 0)

The second for-loop nest has a 4-grain at each loop depth.
Hence its iterations are spaced by 4 in each dimension of the
referential domain:

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

multifor (i1 = 0, i2 = 0; i1 < 6, i2 < 6; i1 ++, i2 ++; 1, 1; 0, 1)
multifor (j1 = 0, j2 = 0; j1 < 6− i1, j2 < 6; j1 ++, j2 ++; 1, 1; 0, 0)

In this example, the upper bound of the inner loop of the
first loop nest is an affine function.

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

:itérations (i2,j2)

2.3 Multifor-loop parallelization and code trans-
formations

The multifor construct exhibits a straightforward paral-
lelization strategy which is to run, at each iteration, the
loop bodies of the defined for-loops in parallel. This model
of parallelization provides new opportunities to the poly-
tope model, since it enables the expression of parallel pro-
gramming models that were unattainable before, as dataflow
computing or fixed-depth MapReduce, as it will be shown
on code examples in Section 4.

Nevertheless, the multifor construct still allows OpenMP-
like loop parallelization for each for-loop of the multifor, thus
providing hybrid parallelization strategies.

39

Moreover, each for-loop, or for-loop nest, of a multifor, can
be transformed using any well-known polyhedral transfor-
mation. However, in the context of a multifor, these trans-
formations may be guided by the interactions between the
for-loops, in order to achieve better performance or better
data locality for instance. Another opportunity is the trans-
formation of imperfect loop nests into multifor-loop nests of
perfectly nested loops.

3. IMPLEMENTATION ISSUES

3.1 Reference domain
Consider one multifor-loop level. The referential for-loops

cadencing the multifor execution have the constraint of scan-
ning a sufficient number of iterations. Let us denote by f
the number of for-loops. By computing the disjoint union of
all for-loops iteration domains, we obtain a set of adjacent
domains Di on which some of the f loops overlap. Let us
denote by lbi, ubi, graini and offseti, i = 1..f the parame-
ters characterizing each for-loop in the multifor header. Let
us set nlbi = offseti and nubi = (ubi − lbi + 1)× graini +
offseti, which define the lower and upper bounds of each
loop in the referential domain, since the computation of nlbi
consists in translating the domain and the computation of
nubi in dilating the domain by a factor which equals the
grain. The disjoint union of Di’s is computed using these
latter bounds. The initial index value of the referential do-
main is MINi=1..f (nlbi). Hence, the total number of itera-
tions in the referential domain, before compression, is:

MAXi=1..f (nubi)−MINi=1..f (nlbi) + 1

In order to generate the referential for-loops for each domain
Di, the last step consists in compressing each Di by a factor
defined by lcm(grainj), for all loops j overlapping on Di.

More generally for any multifor-loop nest, the computa-
tion of the referential domain is performed in three steps.
First, each iteration domain associated to one for-loop nest
composing a multifor-loop nest is translated from the origin
according to its offsets, and dilated according to its grains
in every dimension. Notice that values actually taken by
the indices of the for-loop nests are not defining their posi-
tions in the referential domain. Second, a disjoint union is
computed and resulting in a union of adjacent convex do-
mains Di. Third, each Di may be compressed according to
the greatest common divisor of the grains of the associated
for-loop nests, and according to the lexicographic order.

3.2 Code generation
When considering sequential code, there are two dual ways

to generate the code corresponding to a multifor-loop nest.
A first way is to generate loop nests scanning the referential
domains through a minimal set of convex domains, and to in-
sert guards in their bodies in order to execute the convenient
instructions at each iteration. The number of these guards
can be optimized by computing their common sub-domains.
The second way is to scan each Di using a dedicated loop
nest with a constant loop body, without guards.

Both solutions can be generated automatically using poly-
tope model tools like PolyLib or CLooG, and by inserting
phases to compute the translated and dilated domains, or
to compress parts of the resulting referential domains.

If for-loops of given depth of a multifor-loop nest have to
be run in parallel, each for-loop has to be run in a sepa-

for (i = 0; i < K; i++)
for (j = 0; j < N ; j ++)
a[i][j] = ReadImage();

for (i = 1; i < K − 1; i++)
for (j = 1; j < N − 1; j ++){
Sbl[i][j] = Sobel(a[i− 1][j − 1], a[i][j − 1], a[i+ 1][j − 1],

a[i− 1][j], a[i][j], a[i+ 1][j],
a[i− 1][j + 1], a[i][j + 1], a[i+ 1][j + 1]);

WriteImage(Sbl[i][j]);
}

Figure 1: Sobel edge detection code

multifor (i1 = 0, i2 = 1; i1 < K, i2 < K − 1;
i1 ++, i2 ++; 1, 1; 0, 3)

multifor (j1 = 0, j2 = 1; j1 < N, j2 < N − 1;
j1 ++, j2 ++; 1, 1; 0, 3) {

0 : a[i1][j1] = ReadImage();
1 : {Sbl[i2][j2] = Sobel(a[i2 − 1][j2 − 1], a[i2][j2 − 1],

a[i2 + 1][j2 − 1], a[i2 − 1][j2],
a[i2][j2], a[i2 + 1][j2],
a[i2 − 1][j2 + 1], a[i2][j2 + 1],
a[i2 + 1][j2 + 1]);

WriteImage(Sbl[i2][j2]); }
}

Figure 2: Sobel edge detection multifor code

rated thread and all threads have to be synchronized at the
multifor-loop completion. Notice that this could be enriched
by providing OpenMP-like options as NOWAIT.

Original indices of the multifor (i1, i2, j1, ...) have to be
retrieved at the beginning of each loop body, by being com-
puted from the referential loop indices. These computations
consists in subtracting offsets, or in adding modulos of the
referential loop indices relatively to grains, or in multiplying
by grains in case of compressed domains.

4. EXAMPLES
Sobel edge detection: We first consider the code for per-
forming Sobel edge detection of an image shown in Figure
1. The first loop nest of this program reads the input im-
age, while the second loop nest performs the actual edge
detection and writes out the output image.

Note that nine neighboring elements have to be read be-
fore its resulting pixel can be computed and written. Hence
both loop nests can be naturally overlapped by writing the
code using the multifor construct exhibiting a data-flow model
of computation, shown in Figure 2. The associated referen-
tial domain is shown in Figure 3.

Red-Black Gauss-Seidel: The second example is the Red-
Black Gauss-Seidel algorithm composed of two phases. The
first phase consists in updating the red elements of a grid,
which are one point over two in the i and j directions of the
grid, starting from the first bottom left corner, using their
North-South-East-West (NSEW) neighbors, which are black
elements. The second phase consists obviously in updating
the black elements from the red ones. For a 2D N×N prob-
lem, the usual code, is of the form shown in Figure 4 (the
border elements initialization has been omitted).

On the iteration domain and at each phase, a different

40

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

:itérations (i2,j2)

Figure 3: Sobel edge detection referential domain

// Red phase
for (i = 1; i < N − 1; i++)
for (j = 1; j < N − 1; j ++)
if ((i+ j) % 2 == 0)
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);

// Black phase
for (i = 1; i < N − 1; i++)
for (j = 1; j < N − 1; j ++)
if ((i+ j) % 2 == 1)
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);

Figure 4: Red-Black Gauss-Seidel code

lattice of iterations is active. Moreover, the NSEW depen-
dencies prevent any linear parallel schedule. This code can
be translated into a multifor-loop nest where the red and
black phases each yield two for-loop nests with convenient
grains and offsets as shown in Figure 5.

The referential initial domain of the multifor code is repre-
sented in Figure 6 on the left, also showing the transformed
dependency vectors which are now allowing a linear sched-
ule. On the right in Figure 6, the final iteration domains,
after compression, are represented.

This example shows that the multifor construct allows to
exploit different kind of parallelism – the so-called wavefront
parallelism in this case – since the traditional parallelization
consists in parallelizing each of the phases, and to execute
each phase one after the other. The multifor strategy can
be preferable to improve data locality and thus improve the

multifor (i0 = 1, i1 = 2, i2 = 1, i3 = 2; i0 < N − 1, i1 < N − 1,
i2 < N − 1, i3 < N − 1; i0+ = 2, i1+ = 2, i2+ = 2,
i3+ = 2; 2, 2, 2, 2; 0, 1, 0, 1)

multifor (j0 = 1, j1 = 2, j2 = 2, j3 = 1; j0 < N − 1, j1 < N − 1,
j2 < N − 1, j3 < N − 1; j0+ = 2, j1+ = 2, j2+ = 2,
j3+ = 2; 2, 2, 2, 2; 0, 1, 1, 0) {

0 : u[i0][j0] =
f(u[i0][j0 + 1], u[i0][j0 − 1], u[i0 − 1][j0], u[i0 + 1][j0]);

1 : u[i1][j1] =
f(u[i1][j1 + 1], u[i1][j1 − 1], u[i1 − 1][j1], u[i1 + 1][j1]);

2 : u[i2][j2] =
f(u[i2][j2 + 1], u[i2][j2 − 1], u[i2 − 1][j2], u[i2 + 1][j2]);

3 : u[i3][j3] =
f(u[i3][j3 + 1], u[i3][j3 − 1], u[i3 − 1][j3], u[i3 + 1][j3]);

}

Figure 5: Red-Black Gauss-Seidel multifor code

i
j

:itérations (i0,j0) (red phase)

:itérations (i2,j2) (black phase)

:holes

:itérations (i1,j1) (red phase)

:itérations (i3,j3) (black phase)

i
j

Figure 6: Red-Black Gauss-Seidel referential do-
main

for (j = 1; y < N − 1; j+ = 2)
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);
for (i = 2;x < N − 2; i+ = 2) {
for (j = 2; j < N − 1; j+ = 2) {
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);
u[i][j + 1] = f(u[i][j + 2], u[i][j],

u[i− 1][j + 1], u[i+ 1][j + 1]); }
for (j = 1; j < N − 1; j+ = 2) {
u[i+ 1][j] = f(u[i+ 1][j + 1], u[i+ 1][j − 1],

u[i][j], u[i+ 2][j]);
u[i+ 1][j + 1] = f(u[i+ 1][j + 2], u[i+ 1][j],

u[i][j + 1], u[i+ 2][j + 1]); } }
for (j = 2; y < N − 1; j+ = 2) {
u[N − 2][j] = f(u[N − 2][j + 1], u[N − 2][j − 1],

u[N − 3][j], u[N − 1][j]); }

Figure 7: Red-Black Gauss-Seidel generated code

resulting execution time. Here, some parallelism within the
red points and within the black points can still be exploited,
but also parallelism between red and black points. As an
example, we show as a source code the sequential code that
could be generated from this multifor-loop nest in Figure 7.

Notice also that more generally, when dependencies allow
it, such a decomposition of a loop-nest computation into
separated lattices, and expressed as a multifor-loop nest,
provides another parallelization strategy that may be often
quite interesting due to data locality issues.

Matrix product by blocks: The third example is an
algorithm to compute the product of two matrices n × n,
(A × B = C), by partitioning the matrices into uniform
blocks. The matrix product is then carried out block by
block. We split the two matrices A and B as follows:

• matrix A is divided into two matrices A1 and A2 whose
dimension is n/2× n.

• matrix B is divided into two matrices B1 and B2 whose
dimension is n× n/2.

The product A × B = C translates to four products: A1 ∗
B1 = C1, A1 ∗B2 = C2, A2 ∗B1 = C3 and A2 ∗B2 = C4, i.e.,

(
A1

A2

)
×

(
B1 B2

)
=

(
C1 C2

C3 C4

)

41

multifor (i1 = 0, i2 = 0, i3 = n/2, i4 = n/2;
i1 < n/2, i2 < n/2, i3 < n, i4 < n;
i1 ++, i2 ++, i3 ++, i4 ++;
1, 1, 1, 1 ; 0, 0, 0, 0) {

multifor (j1 = 0, j2 = n/2, j3 = 0, j4 = n/2;
j1 < n/2, j2 < n, j3 < n/2, j4 < n;
j1 ++, j2 ++, j3 ++, j4 ++;
1, 1, 1, 1 ; 0, 0, 0, 0) {

0 : c[i1][j1] = 0;
1 : c[i2][j2] = 0;
2 : c[i3][j3] = 0;
3 : c[i4][j4] = 0;

multifor (k1 = 0, k2 = 0, k3 = 0, k4 = 0;
k1 < n, k2 < n, k3 < n, k4 < n;
k1 ++, k2 ++, k3 ++, k4 ++;
1, 1, 1, 1 ; 0, 0, 0, 0) {

0 : c[i1][j1] = c[i1][j1] + a[i1][k1]× b[k1][j1];
1 : c[i2][j2] = c[i2][j2] + a[i2][k2]× b[k2][j2];
2 : c[i3][j3] = c[i3][j3] + a[i3][k3]× b[k3][j3];
3 : c[i4][j4] = c[i4][j4] + a[i4][k4]× b[k4][j4];
}

}
}

Figure 8: Multifor matrix product code

The dimension of matrices C1, C2, C3 and C4 is (n/2×n/2).
These four products might be performed simultaneously and
can be naturally expressed using the multifor structure as
shown in figure 8.

Geometrically, the multifor iteration domain is a (n/2 ×
n/2×n) rectangle parallelepiped where each point is associ-
ated to four iterations of the four included loop-nests. This
execution scheme corresponds to the MapReduce strategy
since each for-loop nest computes a n/2 × n/2 sub-block
(map step), and the combination of all sub-blocks forms the
resulting matrix C (reduce step).

Steganography: The fourth example is the decoding phase
of a steganography code where an hidden image is extracted
from an enclosing one. It is assumed that the upper left
pixel of the hidden image is hidden within the upper left
pixel of the enclosing image; HWidth and HHeight are the
width and the height of the hidden image ; EWidth and
EHeight are the width and the height of the enclosing im-
age ; EImage is the image hiding another image ; HImage
is the extracted output image that was hidden ; MImage is
the output enclosing image hiding no more the image that
was hidden in EImage. The proposed multifor code version
is composed of four simultaneous for-loop nests, the first
being dedicated to the extraction of the hidden image, the
second to the extraction of the part of the enclosing image
which is hiding the hidden image, the third and the fourth
being dedicated to copy the pixels directly to the retrieved
enclosing image. Since the union of the third and fourth do-
main is not convex, two loop-nests are necessary to scan it.
Notice that we introduce a shortcut in the syntax such that
similar loop bodies can be instantiated differently depending
on their associated loop-nest. The multifor code is shown in
Figure 9 and the referential iteration domain in Figure 10.
Notice that full parallelism is exhibited with this code.

Secret key cryptosystem: The fifth example is a classic
secret key cryptosystem that manipulates binary words. It

RGBApixel decode hidden(i, j)
{
RGBApixel P ixel1 = ∗EImage(i, j);
RGBApixel P ixel2;
Pixel2.Red = Pixel1.Red%2;
Pixel2.Green = Pixel1.Green%2;
Pixel2.Blue = Pixel1.Blue%2;
Pixel2.Alpha = Pixel1.Alpha%2;
returnP ixel2;
}

RGBApixel decode main(i, j)
{
RGBApixel P ixel1 = ∗EImage(i, j);
RGBApixel P ixel2;
Pixel2.Red = Pixel1.Red− Pixel1.Red%2;
Pixel2.Green = Pixel1.Green− Pixel1.Green%2;
Pixel2.Blue = Pixel1.Blue− Pixel1.Blue%2;
Pixel2.Alpha = Pixel1.Alpha− Pixel1.Alpha%2;
returnP ixel2;
}

multifor (i1 = 0, i2 = 0; i3 = 0, i4 = HWidth; i1 < HWidth,
i2 < HWidth, i3 < HWidth, i4 < EWidth;
i1 ++, i2 ++, i3 ++, i4 ++; 1, 1, 1, 1; 0, 0, 0, 0)

multifor (j1 = 0, j2 = 0, j3 = HHeight, j4 = 0; j1 < HHeight,
j2 < HHeight, j3 < EHeight, j4 < EHeight;
j1 ++, j2 ++, j3 ++, j4 ++; 1, 1, 1, 1; 0, 0, 0, 0)

{
0 : // Retrieve the hidden image
∗HImage(i1, j1) = decode hidden(i1, j1);

1 : // Retrieve the enclosing image
∗MImage(i2, j2) = decode main(i2, j2);

[2, 3] : // Retrieve the enclosing image
∗MImage([i3, i4], [j3, j4]) = ∗EImage([i3, i4], [j3, j4]);

}

Figure 9: Multifor steganography code for the de-
coding phase

proceeds by splitting a message m into blocks of constant
size. These cryptosystems are characterized by the length
of each block, the operating mode and the encryption system
of each block. Each cipher mode comprises:

1. Cutting in many blocks m1, ...,mk the plain text mes-
sage m;

2. Encrypting the blocks mi resulting in the encrypted
blocks c1, ..., ck;

3. Concatenating the blocks c1, ..., ck to construct the en-
crypted message c.

Each block is encrypted through the product of two cryp-
tosystems T1 and T2. It is classically computed using a loop
of the form:

for (i = 0; i < k; i++) {
c[i] = Encrypt(m[i], T1);
c[i] = Encrypt(c[i], T2); }

Suppose the encryption of each block by a given cryp-
tosytem consumes one unit of time. The time required to
encrypt the entire message using this loop is 2 × k. Let us
write this code using a multifor structure:

42

i
j

:itérations (i1,j1) and (i2,j2)

:itérations (i3,j3)

:itérations (i4,j4)

HHeight

EHeight

H
W

id
th

E
W

id
th

Figure 10: Referential domain for the multifor
steganography code

multifor (i1 = 0, i2 = 0; i1 < k, i2 < k;
i1 ++, i2 ++; 1, 1; 0, 1) {

0 : c[i1] = Encrypt(m[i1], T1);
1 : c[i2] = Encrypt(c[i2], T2); }

This form allows to take advantage of a pipeline scheme
where two successive blocks are encrypted in parallel re-
spectively by the cryptosystems T1 and T2. Thus, the time
required to encrypt the message is k + 1.

5. A PROMISING PERSPECTIVE:
NON-LINEAR MAPPING

Among the numerous possible extensions, an important
one is to map iteration spaces together following a non-linear
fashion, such that their shapes has no influence in the map-
ping. In general, this would allow to execute iterations of any
loop nest by any other one of the same trip count, and thus
to enlarge significantly the way iterations of different loops
can be mapped together. Hence a multifor construct could
express quite different computations in a concise way, and
augment the number of optimization and parallelization op-
portunities. Notice that loop nests with different trip counts
can also be handled by splitting the largest nest such that
one of the resulting nest has the convenient trip count.

Our idea is based on ranking Ehrhart polynomials. It has
been shown in previous works dealing with spatial data lo-
cality optimization, that it is possible to compute an Ehrhart
polynomial associated to a loop nest giving the rank of an
iteration [5, 9]. These polynomials have specific properties
as being necessarily monotonically increasing according to
the lexicographic order of the loop indices, and also defin-
ing a bijection between iteration points and the interval of
strictly positive integers between one and the total iteration
count of the loop nest.

Since ranking Ehrhart polynomials define such bijections,
the ability of inverting them would provide a way to retrieve
the loop indices corresponding to the rank of an iteration.
Hence at any iteration of a loop nest, it would be possible
to compute, from the rank, the values of loop indices that
would have been reached while running another nest. Thus,
any nest could be run by another one, and any iteration
space could be mapped onto another one, following the rank
of the iterations. Hence this Section deals with the problem
of inverting ranking Ehrhart polynomials.

Before proposing a general resolution, we first present a
2-dimensional example.

5.1 2-dimensional example
Consider the two loop nests in listings (1) and (2), where

instructionk(i1, i2) denotes the instruction block computed
at iteration (i1, i2). These loops have as respective ranking
Ehrhart polynomials:

P1(i, j) =
i(i− 1)

2
+ j and P2(i′, j′) = i′M2 + j′

for (i = 1, i < N, i++)
for (j = 0, j < i, j ++)

instructions1(i, j);
(1)

for (i′ = 0, i′ < M1, i′ ++)
for (j′ = 0, j′ < M2, j′ ++)

instructions2(i′, j′);
(2)

Taking the assumptions that both nests have the same
iteration count and that there is no dependency between
instructions1 and instructions2, we could merge the two
former loop nests and write (3).

for (i′ = 0, i′ < M1, i′ ++)
for (j′ = 0, j′ < M2, j′ ++) {

instructions1(i, j);
instructions2(i′, j′); }

(3)

However, we need to express indices (i, j) as a function of
(i′, j′) in order to preserve the execution order of the block
instructions1. More precisely, for each iteration number K
in loop nest (3), we want to execute the Kth iteration of loop
nest (1). This is why we must invert the ranking Ehrhart
polynomial P1, to compute (i, j) = P−1

1 (P2(i′, j′)).
For any rank K, we have to find a couple of indices (i0, j0)

such that P1(i0, j0) = K. The main idea is to cut the 2-
dimensional problem into two one-dimensional problems.

Let us define Q1(i) = P1(i, 0) = i(i−1)
2

. As ranking
Ehrhart polynomials are (strictly) increasing, the following
relation holds:

Q1(i0) = P1(i0, 0) ≤ P1(i0, j0) = K ≤ P1(i0 + 1, 0) = Q1(i0 + 1)

And, for the same reason, we know that index i0 is unique
on N+. Let us now consider polynomial Q1 as a polynomial
over R. By continuity of Q1 over R, there exists α ∈ [0, 1[
such that Q1(i0 + α) = K. This shows that the equation
Q1(x) = K has at least one real solution. So we have to find
x such that:

Q1(x) = K ⇔ Q1(x)−K = 0⇔ x(x− 1)

2
−K = 0

Obviously, this last equation has two real roots:

x1 =
1

2
−
√

1 + 8K

4
, x2 =

1

2
+

√
1 + 8K

4

To select the convenient root, we notice that for all K > 0,
x1 ≤ 0. As i0 ≥ 1 (according to the loop bounds in (1)),
i0 + α = x2, and thus: i0 = bx2c. We can now replace i0 by
its value in P1(i0, j0):

P (i0, j0) =
1

2

(⌊
1

2
+

√
1 + 8K

4

⌋)(⌊
1

2
+

√
1 + 8K

4

⌋
− 1

)
+j0

and finally deduce j0:

j0 = K − 1

2

(⌊
1

2
+

√
1 + 8K

4

⌋)(⌊
1

2
+

√
1 + 8K

4

⌋
− 1

)

The resulting code is shown in listing 4.

43

K = 0;
for (i′ = 0, i′ < M1, i′ ++)

for (j′ = 0, j′ < M2, j′ ++) {
K ++;
i = floor(sqrt((1 + 8 ∗K)/4) + 1/2);
j = K − i ∗ (i− 1)/2;
instructions1(i, j);
instructions2(i′, j′); }

(4)

We now present the general case, which can be easily de-
duced from the 2-dimensional case.

5.2 General case
Without any loss of generality, we assume all loop indices

lower bounds equal 0. We consider the N -dimensional rank-
ing Ehrhart polynomial P (i, j, k, ...), and for each K, we seek
the tuple (i0, j0, k0, ...) such that P (i0, j0, k0, ...) = K.

Similarly to the previous example, we start with the out-
ermost loop index i0. We define Qi(i) = P (i, 0, 0, ..., 0) and
solve Qi(x)−K = 0. Here is the only issue that differs from
the 2D case: as we can’t state that Qi is monotonically in-
creasing on R+, we have to find a criterion to select the root
giving the sought index.

First, we obviously eliminate complex and negative solu-
tions, since i0 ∈ N+, and consider n ≤ N positive real roots
{x1, .., xn}. As we know that i0 is unique, a way to select the
convenient root is to check which x ∈ {x1, .., xn} satisfies :

Qi(bxc = i0) ≤ Qi(x) ≤ Qi(dxe = i0 + 1)

However, this strategy is only applicable at runtime, and
may add non negligible time overhead. A compile-time so-
lution is to check if Qi is monotonically increasing on R+

by examining its derivative. If so, any root in {x1, .., xn} is
suitable.

Once i0 has been found, the process starts again with
Qj(j) = P (i0, j, 0, ..., 0), and so on until all indices have
been computed.

6. CONCLUSION
We have proposed a new programming control structure

called “multifor” and showed that it allows the polytope
model to handle programming models that were not attain-
able directly before. Important related theoretical studies
have still to be conducted, as dependency analysis between
the for-loops composing a multifor-loop, or optimizing code
transformations that considers interactions between the for-
loops.

Many interesting extensions can also be studied as mak-
ing header parameters, or instructions, dependent of several
for-loop indices composing the same multifor-loop level, or
defining non-invariant grains and offsets, or introducing con-
ditionals on the effective run of the for-loops, etc. In this
paper, we showed that it may be possible to handle non-
linear mapping of iteration spaces using inverted ranking
Ehrhart polynomials.

The multifor structure can also be used as a representa-
tion model for some interacting mechanisms, as concurrent
memory accesses, as it is done for sequential codes in [7].

We are planning to implement multifor structures in the
Clang/LLVM compiler as an extension to C/C++.

7. REFERENCES
[1] U. Banerjee. Loop Transformations for Restructuring

Compilers - The Foundations. Kluwer Academic
Publishers, 1993. ISBN 0-7923-9318-X.

[2] O. A. R. Board. Openmp application program
interface, version 3.1, 2011.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: Why is it only a research toy?
Queue, 6(5):46–58, Sept. 2008.

[4] I. Christadler, G. Erbacci, and A. D. Simpson. Facing
the multicore-challenge ii. chapter Performance and
productivity of new programming languages, pages
24–35. Springer-Verlag, Berlin, Heidelberg, 2012.

[5] P. Clauss and B. Meister. Automatic memory layout
transformations to optimize spatial locality in
parameterized loop nests. SIGARCH Comput. Archit.
News, 28(1):11–19, Mar. 2000.

[6] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proc. of the 22nd
annual symp. on Principles of distributed computing,
PODC ’03, pages 92–101. ACM, 2003.

[7] A. Ketterlin and P. Clauss. Prediction and trace
compression of data access addresses through nested
loop recognition. In 6th annual IEEE/ACM int. symp.
on Code generation and optimization, pages 94–103,
Boston, United States, Apr. 2008. ACM.

[8] C. E. Leiserson. The cilk++ concurrency platform. In
Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, pages 522–527, New York, NY,
USA, 2009. ACM.

[9] V. Loechner, B. Meister, and P. Clauss. Precise data
locality optimization of nested loops. J. Supercomput.,
21(1):37–76, Jan. 2002.

[10] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and
P. Trinder. Seq no more: Better strategies for parallel
haskell. In Proceedings of the 3rd ACM SIGPLAN
symposium on Haskell, pages 91–102, Baltimore, MD,
United States, Sept. 2010. ACM Press.

[11] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima Series. Artima Press, 2011.

[12] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, P. Sadayappan, and N. Vasilache.
Loop transformations: convexity, pruning and
optimization. In Proc. of the 38th annual ACM
SIGPLAN-SIGACT symp. on Principles of
programming languages, POPL ’11, pages 549–562,
New York, NY, USA, 2011. ACM.

[13] K. F. Sagonas. Using static analysis to detect type
errors and concurrency defects in erlang programs. In
FLOPS, pages 13–18, 2010.

[14] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. Mcrt-stm: a high
performance software transactional memory system
for a multi-core runtime. In Proc. of the 11th ACM
SIGPLAN symp. on Principles and practice of parallel
programming, PPoPP ’06, pages 187–197, New York,
NY, USA, 2006. ACM.

[15] N. Shavit and D. Touitou. Software transactional
memory. In Proc. of the 14th annual ACM symp. on
Principles of distributed computing, PODC ’95, pages
204–213, New York, NY, USA, 1995. ACM.

[16] M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

44

Facilitate SIMD-Code-Generation in the Polyhedral Model
by Hardware-aware Automatic Code-Transformation

Dustin Feld and Thomas Soddemann
Fraunhofer SCAI, Schloss Birlinghoven, 53754

Sankt Augustin, Germany
[dustin.feld|thomas.soddemann]

@scai.fraunhofer.de

Michael Jünger and Sven Mallach
Institut für Informatik, Universität zu Köln,

Weyertal 121, 50931 Köln, Germany
[mjuenger|mallach]

@informatik.uni-koeln.de

ABSTRACT
Although Single Instruction Multiple Data (SIMD) units
are available in general purpose processors already since the
1990s, state-of-the-art compilers are often still not capable
to fully exploit them, i.e., they may miss to achieve the best
possible performance.

We present a new hardware-aware and adaptive loop tiling
approach that is based on polyhedral transformations and
explicitly dedicated to improve on auto-vectorization. It is
an extension to the tiling algorithm implemented within the
PluTo framework [4, 5]. In its default setting, PluTo uses
static tile sizes and is already capable to enable the use of
SIMD units but not primarily targeted to optimize it. We
experimented with different tile sizes and found a strong re-
lationship between their choice, cache size parameters and
performance. Based on this, we designed an adaptive pro-
cedure that specifically tiles vectorizable loops with dynam-
ically calculated sizes. The blocking is automatically fitted
to the amount of data read in loop iterations, the available
SIMD units and the cache sizes. The adaptive parts are
built upon straightforward calculations that are experimen-
tally verified and evaluated. Our results show significant im-
provements in the number of instructions vectorized, cache
miss rates and, finally, running times.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers, Optimization; B.3.2 [Memory Archi-
tectures]: Design Styles—Cache Memories; C.1.2 [Proces-
sor Architectures]: Multiple Data Stream Architectures
(Multiprocessors)—single-instruction-stream, multiple-data-
stream processors (SIMD)

General Terms
Algorithms, Performance, Experimentation

Keywords
SIMD, SSE, AVX, TSS, polyhedral model, polyhedron model,
tiling, code generation, automatic parallelization, vectoriza-
tion, loop optimization, loop transformation

1. INTRODUCTION
Single Instruction Multiple Data (SIMD) units offer a

speedup-potential brought to a wide range of users. In order
to exploit the available concurrency of modern CPUs, one
must achieve shared memory parallelism by multithreading

and, at the same time, vectorization by effectively applying
instructions to multiple data. Both tasks impose a difficult
challenge to experienced programmers as well as state-of-
the-art compilers. In this paper, we focus on the effective
automatic exploitation of SIMD units. We found severe lim-
itations when we made some experiments with the vectorizer
of the GNU C Compiler (gcc, version 4.6). To our surprise,
even for loops that can be vectorized in a straightforward
manner, SSE-instructions were only set if the range speci-
fied by the loop bounds was a multiple of the SIMD register
width divided by the size of the data type.

Vectorization is difficult since it usually requires an analy-
sis of the dependence structure of the code to be optimized.
It demands for the right ordering of instructions and fast ac-
cesses to data in order to leverage its full speedup potential.
Unfortunately, in many cases even the existence of a legal
order of instructions cannot be easily recognized by humans
or compiler procedures. Here, polyhedral code optimization
is a powerful tool to detect and exploit parallelism in loop
structures. It provides a formal characterization of affine
loop nests, their iteration spaces, the dependencies between
statements and the iteration points in which they occur [2, 7,
9, 12, 13]. It can therefore be used to generate valid transfor-
mations of a given source code. Further, tiling (or blocking)
of nested loops is a well-known technique to improve data lo-
cality and, if concurrency concerning outer loop dimensions
is possible, to perform automatic parallelization [21]. In this
manner, transformations such as loop fusion, splitting, skew-
ing, or interchange may enable a coarse-grain (tile-wise) or a
fine-grain (loop-internal) concurrency (or both) even where
this is not the case for the original source code [2].

There is extensive literature dealing with the optimiza-
tion of tilings. However, to the best of our knowledge,
there is yet no implemented approach that integrates loop
transformations which broadly enable automatic vectoriza-
tion with tilings and an adaptive hardware-aware tile size
selection (TSS). Trifunovic et al. [20] analyze the impact
of loop transformations on the resulting possibilities to ap-
ply auto-vectorization and performance by means of a cost
model that can be seamlessly integrated into the polyhedral
model. Based on this, they propose a framework to choose
the best-suited loop for vectorization within a nest. Unfor-
tunately, it does not comprise a TSS model. As opposed to
that, there exist several TSS models which are, however, not
explicitly geared towards an improved vectorization. Cole-
man and McKinley [8] present an iterative technique to cal-
culate cache-fitting tile sizes for all loop dimensions. This
is interesting in conjunction with the approach presented

45

in this paper, especially for cases where there is no vec-
torizable loop available. This is also true for Sarkar’s and
Megiddo’s [17] approach to generate tile sizes via a memory-
oriented cost model of the given loop nest and an analytical
model to finally perform the TSS. However, it is restricted to
loop nests of depth two or three. Shirako et al. [18] present a
method to analytically bound the search space for tile sizes
that lead to a good performance. They potentially leave loop
dimensions unblocked and propose to tile a vectorizable loop
into large blocks. While these general ideas are similar to
ours, their approach is merely capable to perform a one-
level tiling and based on an empirical search method while
ours uses a straightforward polyhedral and analytical basis.
Ghosh et al. [11] propose to use cache miss equations [3] for
TSS and in order to detect poor cache performance. They
show how loop transformations (including tiling) can help
to improve on this. Abella et al. [1] use the equations to de-
termine optimal tile sizes by means of a genetic algorithm.
However its running time on some inputs is not applicable
for a common compilation process.

In this paper, we present a new hardware-oriented TSS
approach explicitly targeted to vectorization. It is an adap-
tive procedure that specifically tiles vectorizable loops with
dynamically calculated sizes. We implemented our approach
as an extension to PluTo [4, 5] which is an academic source-
to-source compiler framework that performs tilings based
on polyhedral optimization. The resulting code can be com-
piled by any C compiler. In particular, we use PluTo to
obtain valid transformations and tilings of loops as well as
to gather information about those loops that can actually
be vectorized. However, in contrast to PluTo, we orient the
tiling towards an effective use of SIMD units. Instead of
partitioning the iteration space with respect to all loop di-
mensions and into tiles of static size, we restrict the tiling
to those loops that are relevant for the data to be processed
in a vectorized manner. Further, we dynamically adapt the
size of tiles to the SIMD register width and the cache sizes
of the underlying hardware. Ideally, our approach leads to
a software pipeline of blocks to be processed by the SIMD
units. We show for two example source codes that we obtain
improved running times by a combination of a measurably
well-performing stream of data through the cache hierarchy
and an increased rate of issued SIMD instructions.

2. POLYHEDRAL TRANSFORMATIONS,
VECTORIZABLE LOOPS AND TILINGS

A loop qualifies for vectorization if it is innermost with
respect to its nest and parallelizable, i.e., there are no data
dependencies between its iterations.

In the polyhedral model, one considers the iteration points
of a loop nest and the dependencies between them using
Z-polyhedra [9, 12, 13], as depicted in Fig. 1. In this rep-
resentation, the index variable of each loop relates to one
dimension of the associated polyhedron. A valid transfor-
mation corresponds to a change in the order of execution
of the iteration points that preserves compliance with the
dependencies. This may include the manipulation of loop
dimensions (index variables) leading to a deformation of the
polyhedron such that computations can be processed in par-
allel with respect to one or more of the dimensions. By
applying integer programming techniques, PluTo is capable
to perform transformations such that the necessary com-

munication across the dimensions of the resulting loops is
minimized [6]. This is beneficial for parallelization. If com-
munication is not necessary with respect to an outer loop
dimension, then a parallelization of the inner loops’ itera-
tions is possible. If communication is not necessary with
respect to the innermost loop dimension, then the iterations
of this loop can be processed in parallel, e.g., by vectoriza-
tion. Fortunately, PluTo is able to mark loops that qualify
for vectorization, possibly by interchanging it to become the
innermost one (which we assume from now on to be the
case). Furthermore, PluTo can compute a partitioning of
the iteration space into tiles. Consider Fig. 1 for an exam-
ple where a legal (rectangular) tiling is possible only after
a transformation of the loop nest. The left tiling is illegal,
because iteration points between blocks have reciprocal de-
pendencies. After manipulating the loop dimensions, it is
possible to apply the tiling depicted in the right image since
it now allows for an order of execution that respects all de-
pendencies. We use the polyhedral representations within
PluTo to obtain such legal loop tilings.

j

i

j′

i′

Figure 1: A polyhedral representation of a nested
loop with its dependence structure and an invalid
tiling (left) as well as a valid one (right).

3. CENTRAL IDEAS
In order to fully exploit the speedup potential of SIMD

units, it is advantageous to have access to data that is ac-
cordingly prefetched into the available cache hierarchy. How
can we achieve this by a smart tiling?

As already stated, a loop to be vectorized must be (made)
innermost. Its index variable imposes a constant offset/stride
between the memory addresses of data that is to be succes-
sively packed into (SIMD) registers while the indices of all
other loops remain constant. It can thus be expected that it
is beneficial for the successful prefetching of operands, if the
innermost loop is executed for a relatively large number of it-
erations before the control flow leaves it and manipulates the
other loops’ index variables. Then, the prefetcher should be
able to better pre-load future operands while current calcu-
lations are served from the cache hierarchy. The prefetching
causes cache misses that do not significantly influence the
running time but impose cache hits when the operands are
really needed. On the other hand, a large number of itera-
tions in the innermost loop may also harm spatial locality
in comparison to fewer ones. This is particularly true if the
index variable of the innermost loop does not correspond to
the minor dimension of all accessed arrays (and therefore
not to one-strides in memory).

Clearly, there must be a trade-off between the advantages
and disadvantages of a large blocking of the innermost loop.
However, we believe that the blocking of (a) all loops into

46

(b) constantly sized blocks (like, e.g., the default tiling into
blocks of 32 iterations performed by PluTo) is unlikely to
perform well for every application and every system. This
is especially true for deeply nested loops with many state-
ments within the innermost loop. As an example, if d is the
depth of a loop nest, then the innermost statements of a
tile using PluTo’s default tiling are executed 32d times and
the data accessed by these statements is unlikely to fit into
a cache with increasing d. Nonetheless, this fits quite well
for ‘typical’ loop nests with depth two or three and today’s
usual cache sizes. PluTo allows to also enforce a second-level
tiling of the resulting loops into blocks of 8 which already
addresses the cache memory hierarchies of modern proces-
sors. Alternatively, the user may specify tile sizes manually.
We used this fact to elaborate on our ideas and made exper-
iments with different sizes for a specific tiling of one or two
loops only.

3.1 Experiments with manual tile sizes
We consider two test cases both of which are written in C

and have been taken from PluTo’s example suite:

• A standard matrix multiplication (see Fig. 18)

• A correlation matrix algorithm (see Fig. 21)

The environment for the tests and the benchmarks in the
subsequent section comprises the following Intel Xeon pro-
cessor and is running Scientific Linux 6.

CPU: IntelR© XeonR© CPU X5650 (2.67 GHz)

L1 / L2 / L3 cache: 32 KB (data) / 256 KB / 12288 KB

SSE version: 4.2 (128 bit registers)

All runs were performed single-threaded using gcc 4.6 or
icc 13.0, both with optimization level -O3 on single precision
floating point data.

3.1.1 Manual one-level tiling
To start, we consider a pure tiling of the vectorized loop

only with manually set tile sizes qL1 = 4, 64 and 256. We
compare it to the original source code and PluTo, configured
to also generate a one-level tiling of all loops using its default
sizes (see Fig. 23).

First, we evaluate the resulting matrix multiplication codes
for various choices of (symmetric) matrix sizes N = M = K
within a small range for a fine-grain analysis.

995 1000 10050

2

4

6

8

10

N

ru
n
n
in
g
ti
m
e

(s
)

not vectorized by gcc

995 1000 1005

0.4

0.6

0.8

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)
qL1 = 4
qL1 = 64
qL1 = 256

not vectorized by gcc

close-up of chosen measurements

Figure 2: Running times for the one-level-tiled ma-
trix multiplication (fine grain) with gcc

As is depicted in Fig. 2, the performance of the original
(source) version highly depends on the size of the matrix.
For sizes that are multiples of four, the code generated by
gcc performs about four times faster. Application of gcc’s

verbose mode confirmed the hypothesis that it is only able to
apply auto-vectorization in these cases. Likewise, already a
very fine-grain tiling with qL1 = 4 suffices in order to enable
auto-vectorization by gcc for any matrix size. Increasing
qL1 to 256 leads to running times that are comparable to
those achieved by the default tiling of PluTo or even faster.
The deviant behavior for sizes that are not multiples of four
can be explained with the ‘remainders’ that result from the
tiling in these cases. We experimentally determined a per-
fect correlation between the size of the last tiles and the rate
of vectorization, i.e., again gcc appears to not vectorize these
remaining loop iterations, especially if their number is odd.
We further elaborate on different parameters that influence
the sustained performance in Sect. 4.2.

In Table 1, the relative performance from the fine-grained
setting is confirmed for a larger interval of register-fitting
(multiples of four) and non-register-fitting matrix sizes.

N 256 512 1024 1536 2048

source 0.0096 0.0905 2.3191 7.9956 20.2370
PluTo (def.) 0.0063 0.0536 0.4645 1.4801 3.7902

qL1 = 4 0.0202 0.1829 2.1804 8.2643 26.1112
qL1 = 64 0.0071 0.0672 0.6092 2.4307 10.0529
qL1 = 256 0.0048 0.0454 0.3887 1.6499 5.2734

N 257 513 1025 1537 2049

source 0.0223 0.1956 9.9101 34.0321 82.7667
PluTo (def.) 0.0121 0.1076 0.8839 2.9326 7.5070

qL1 = 4 0.0444 0.3702 3.6207 14.8025 38.7883
qL1 = 64 0.0113 0.1081 0.9672 3.7944 14.0045
qL1 = 256 0.0079 0.0673 0.5736 2.2688 6.4815

Table 1: Running times for the one-level-tiled ma-
trix multiplication (coarse grain) with gcc

We apply the same test cases for the correlation matrix
algorithm which has a more complicated code structure. As
can be seen in Fig. 3 and Table 2, gcc is not able to vec-
torize its original version at all. However, again tiling the
loops corresponding to the M -matrix-dimension (together
with the corresponding code transformation) enables gcc to
auto-vectorize the code already when setting qL1 to 4. With
qL1 = 256, the running times are almost always faster than
with PluTo’s default one-level tiling.

995 1000 10050

1

2

3

4

5

N

ru
n
n
in
g
ti
m
e

(s
)

not vectorized by gcc

995 1000 1005
0.3

0.35

0.4

0.45

0.5

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)
qL1 = 4
qL1 = 64
qL1 = 256

not vectorized by gcc

close-up of chosen measurements

Figure 3: Running times for the one-level-tiled cor-
relation matrix algorithm (fine grain) with gcc

3.1.2 Manual two-level tiling
Now, we consider a two-level tiling (of the vectorized loop

and additionally the outermost loop of its nest) again using
manually set tile sizes qL1 = 4, 64 and 256 for the vector-
ized loop and qL2 = 2, 4 and 8 for the outermost one. We

47

N 256 512 1024 1536 2048

source 0.0114 0.2140 4.8512 22.4826 60.9249
PluTo (def.) 0.0078 0.0599 0.4844 1.5089 3.8053

qL1 = 4 0.0221 0.1844 2.0942 8.5166 21.8286
qL1 = 64 0.0065 0.0573 0.5204 1.8351 5.7119
qL1 = 256 0.0054 0.0404 0.3472 1.2619 3.7619

N 257 513 1025 1537 2049

source 0.0115 0.2152 4.9040 22.4878 61.0156
PluTo (def.) 0.0070 0.0533 0.4367 1.3892 3.3829

qL1 = 4 0.0209 0.1745 1.8981 7.5941 20.9514
qL1 = 64 0.0065 0.0557 0.5031 1.7586 5.5304
qL1 = 256 0.0054 0.0403 0.3430 1.2401 3.7118

Table 2: Running times for the one-level-tiled cor-
relation matrix algorithm (coarse grain) with gcc

configured PluTo to also generate a two-level tiling using its
default sizes (see Fig. 23). The running times are depicted
in Figures 4 and 5 and, for ease of comparison, the one-level
tiling running times are shown dotted in the right graphs.
As might have been expected, the additional blocking leads
to shorter running times in all cases.

995 1000 1005
0

2

4

6

8

10

N

ru
n
n
in
g
ti
m
e

(s
)

not vectorized by gcc

995 1000 1005

0.4

0.6

0.8

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)
qL1 = 4, qL2 = 2
qL1 = 64, qL2 = 4
qL1 = 256, qL2 = 8

not vectorized by gcc

close-up of chosen measurements

Figure 4: Running times for the two-level tiled ma-
trix multiplication (fine grain) with gcc

995 1000 10050

1

2

3

4

5

N

ru
n
n
in
g
ti
m
e

(s
)

not vectorized by gcc

995 1000 1005
0.25

0.3

0.35

0.4

0.45

0.5

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)
qL1 = 4, qL2 = 2
qL1 = 64, qL2 = 4
qL1 = 256, qL2 = 8

not vectorized by gcc

close-up of chosen measurements

Figure 5: Running times for the two-level tiled cor-
relation matrix algorithm (fine grain) with gcc

3.2 Ideas towards an automatic derivation of
tile sizes

The results presented so far appear to support the hy-
pothesis that a tiling of specific loops can be as effective
as a tiling of all loops. Furthermore, they tell us that loop
ranges should be SIMD-specific, i.e., fit to SIMD register
widths, in order to leverage the full potential of gcc’s au-
tomatic vectorizer. Until now, the running times seem to
improve with increasing tile sizes. Clearly, the amount of
increase that pays off must be limited. Our intuition was
that a natural limitation should stem from the cache sizes.
Ideally, the block size for the first level tiling should be fit-
ted to the ratio of the size of the L1 cache and the amount

of data read in one iteration of the loop to be vectorized.
Similarly, the block size for the second level tiling should
be fitted to the ratio between the L2 cache size and the L1
cache size. In the best case, this strategy could lead to the
situation that all required data for one tile of the vectorized
loop fits into the L1 cache and that such blocks of data can
be successively pipelined from the L2 cache. With the larger
innermost tile size, we should be able to move compulsory
cache misses to the prefetcher and, with the cache-specific
tiling, we should optimize for less capacity cache misses at
the same time. Hence, we call the just described combina-
tion of both concepts a SIMD- and cache-specific (SICA)
tiling. For the (optional) second-level tiling, we select the
outermost loop of the corresponding nest. This strategy
keeps changes to the inner loops as rare as possible which,
as a heuristic, should be good for the prefetcher.

We set up a straightforward model to compute all the in-
formation needed for experiments to analyze whether this
is indeed a promising approach. First of all, we need to
know how many new operands must be loaded by each of
a loops’ iterations. This requires an analysis of the loops’
statements, since, e.g., operands (or addresses) that are ac-
cessed multiple times should be loaded only once per itera-
tion. Furthermore, constant values as well as operands that
do not depend on the vectorized loop should be loaded even
only once at all for the entire loop. As already stated in
Sect. 2, the innermost loop may, in general, contain several
statements which are considered to compose a statement-
block. We calculate the total amount of data elements E to
load per iteration for each of these blocks.

Elements per Iteration : ElPeIt = E (1)

Further, we need the following hardware parameters:

• CL1: The size of the L1 cache (in KBytes)

• CL2: The size of the L2 cache (in KBytes)

• R: The SIMD register width (in Bits)

Using this information, the number of elements of the
given type (e.g. float or double) with size D (in Bytes)
that fit into the L1 cache can be calculated as follows:

cache size in elements : CaSiEl =
CL1 ∗ 1024

D (2)

The number of operands of the given data type with size
D (in Bytes) that can be packed into the SIMD registers is
denoted by:

elements per register : ElPeRe =
R

8 ∗ D (3)

Since there might be other variables that should be cached,
one might like to adjust the ratio of the L1 cache size to use
to, e.g., only 90% or 80%. We therefore introduce an ac-
cording parameter ρ with the meaning that ρ = 1.0 relates
to 100%.

ratio of cache to use : ρ (4)

For each block of statements we may now compute how
many iterations shall be blocked so that all operands re-
quired by this block ideally fit into the L1 cache at once:

iterations to block : ItToBl = ρ ∗ CaSiEl

ElPeIt
(5)

48

Finally, we want to make the first-level tile size qL1 a
multiple of the SIMD-register width. Hence, we compute
the greatest multiple of ElPeRe that fits into the L1 cache
as follows:

qL1 =

—
ItToBl

ElPeRe

�
∗ ElPeRe (6)

Summing up all calculations into a single formula yields:

qL1 =

$
ρ ∗ CL1∗1024

D ∗ 1
E

R
8∗D

%
∗ R

8 ∗ D (7)

=

—
ρ ∗ CL1 ∗ 8192

R ∗ E

�
∗ R

8 ∗ D (8)

Now for the second level tiling, we simply calculate the
ratio of the two cache sizes.

qL2 =
CL2

CL1
(9)

3.2.1 Example
Consider the standard matrix multiplication for single pre-

cision floating point data with only one statement C[i][j] =
C[i][j] + α ∗A[i][k] ∗B[k][j] and vectorized j-loop. Two new
data elements need to be loaded per j-iteration, namely
C[i][j] and B[k][j]. This leads to the following SICA L1
tile size for our test system with 32 KByte of L1 cache and
128 Bit SSE registers:

qL1 =

—
ρ ∗ 32 ∗ 8192

128 ∗ 2

�
∗ 128

8 ∗ 4

ρ=1.0
= 4096 (10)

Since our system has 256 KByte of L2 cache, the second
block size evaluates to qL2 = 256

32
= 8.

3.3 SICA extensions to PluTo
We implemented our SICA tiling as an extension of PluTo

together with several new parameters and functionalities
that cause only neglectable overhead. It comprises adaptive
components, like, e.g., procedures to determine hardware
parameters by using the CPUID [15] instructions (they can
be equally manually set via a configuration file) and new
routines to calculate the amount of data loaded in one loop
iteration. If an innermost loop contains multiple statements
(possibly as a consequence of the polyhedral transforma-
tions), it is viable to group them into blocks for which the
tiling is then performed independently. Unlike in PluTo’s
original tiling algorithm, every block of statements can be
associated with individual tile sizes. This is necessary since
different statement blocks (within the same loop nest) may
require a different number of operands to be loaded per iter-
ation. Nevertheless, one may still request a globally uniform
tiling by adopting the minimal or maximal determined tile
size for all statement blocks. As an example, a rectangular
SICA tiling of a perfectly nested loop with only one state-
ment S is depicted in Fig. 24.

4. ANALYSIS AND BENCHMARKS
The following experiments can be divided into two parts.

First, we deliver a verification of the proposed correlation be-
tween the amount of data read within the vectorized loops’
iterations, tile sizes, cache sizes and performance. After
that, we evaluate the performance of the corresponding adap-
tive approach concerning running times, cache miss rates,
TLB misses and the rate of issued SIMD instructions.

4.1 Verification of the approach
In order to evaluate the impact of the tile sizes only, we

fix some (asymmetric) matrix sizes. We keep the matrix
dimensions corresponding to non-vectorized loop dimensions
small in order to be able to benchmark a large interval of
sizes for the vectorized one and to obtain reasonable running
times at the same time.

4.1.1 SICA L1 tiling
We again start our experiments with a one-level tiling. For

the matrix multiplication, we set M = 189, N = 139233 and
K = 189, since the loop corresponding to the N -dimension
is the vectorized one. Then, we vary the tile sizes by suc-
cessively changing the cache-ratio parameter ρ from 0 to 10
in steps of 0.01 units. This results in 1000 different versions
of the code with tile sizes up to 36864. Fig. 6 shows their
corresponding running times which are all within the shad-
owed area while the line is a cubic interpolation of them with
some smoothing applied.

0.25 1 3 5 7 9

2.9

3

3.1

ρ = 1.0

ρ

ru
n
n
in
g
ti
m
e

(s
)

SICA

(1024)(4096) (12288) (20480) (28672) (36864)

(qL1)

Figure 6: Impact of the tile size on the running time
of the matrix multiplication code with gcc

There is a global optimum that corresponds to about 90%
of the L1 cache size. This appears to confirm a correlation
between performance, tile and cache sizes. Furthermore, we
claimed a relationship between the optimum tile sizes and
the amount of data that needs to be loaded within the vec-
torized loops’ iterations. To verify this, we additionally mea-
sured the running times of codes performing the addition of
two or even three matrix multiplications (the corresponding
statements in the nested loop are depicted in Fig. 20). For
each additional matrix multiplication, there is one additional
operand to be loaded per iteration. Regarding our test sys-
tem, this leads to tile sizes of qL1 = 4096 for a single matrix
multiplication [matmul1], qL1 = 2728 for the sum of two
of them [matmul2] and qL1 = 2048 for the sum of three of
them [matmul3]. Again, Fig. 7, in which we scaled the run-
ning times of the different versions to a common ordinate
(each individual range in seconds is denoted in brackets),
shows that the best tile size is at about 80 to 90% of the
theoretical optimum.

As before, the same experiments are repeated for the cor-
relation matrix algorithm. Here, we set M = 11923 and
N = 89 since loops corresponding to the M -dimension are
vectorized. Since there are several statements and multi-
ple loop nests (see Fig. 21 for the original code and Fig. 22

49

ρ = 1.0ρ = 1.0ρ = 1.0

1024 2048 3072 4096 5120 6144
qL1

ru
n
n
in
g
ti
m
e

(r
el
a
ti
v
e
in
s)

matmul1 (2.85− 2.95)

matmul2 (4.45− 4.65)

matmul3 (6.34− 6.54)

Figure 7: The effect of more data to be loaded in
each iteration of the vectorized loop with gcc

for the SICA version), there is no unique tile size but an
individual one for each statement block. This is why it is
reasonable to measure the running times only by varying ρ
and thereby scaling the tile sizes proportionally.

In Fig. 8, the best tile size turns out to be quite exactly
the theoretical optimum. Another interesting observation
are the local optima for ρ = 2.0 and ρ = 3.0, where the
necessary data could be loaded from the cache in exactly
two or three portions.

0.25 1 2 3 4 5 6 7 8

4.25

4.26

4.27
ρ = 1.0

ρ

ru
n
n
in
g
ti
m
e

(s
)

SICA

Figure 8: Impact of the tile size on the running time
of the correlation matrix algorithm with gcc

4.1.2 SICA L2 tiling
For a two-level tiling, we already theoretically justified to

choose the outermost loop from the nest of the vectorizable
one. Now, we deliver an experimental justification of this
decision using the matrix multiplication example. The re-
sulting running times for each selection of one of the three
nested loops for the second-level tiling (while tiling the first
level with the calculated qL1) are depicted in Fig. 9. Only
when the outermost loop (first) is selected, the running time
is improved. Furthermore, the calculated theoretical opti-
mum of qL2 = 8 (the L2 cache on the test-system is 8 times
larger than the L1 cache) leads to the best running times.

4.2 Performance counters
To further investigate the impact of the SICA tiling and to

explain the improved running times, we measured PAPI [19]
performance counters for the original source code and the

2 4 6 8 102.4

2.6

2.8

3

3.2

qL2

ru
n
n
in
g
ti
m
e

(s
)

matmul (first)
matmul (second)
matmul (third)

Figure 9: Second level tiling: The impact of the
choice of a distinct loop and its tile size (with gcc)

two-level tilings by PluTo (default) and our extension with
the asymmetric matrix sizes from Sect. 4.1. In particular,
we focused on the effects concerning the L2 cache miss rate
(as each L2 cache miss is preceded by an L1 cache miss
and the L2 cache, being the last on-core level, is crucial for
our intended pipeline), the rate of introduced SIMD instruc-
tions and the number of L1/L2-TLB misses. Concerning the
cache behavior, it is important to consider miss rates instead
of absolute numbers of cache misses. This is true since a
successful prefetching of the accessed data may lead to an
increase of the total number of cache misses and accesses at
the same time. However, misses obtained like this do not
significantly harm performance but impose cache hits when
the operands are really needed. We additionally measured
the cache hit rate but did not explicitly picture it. As could
be expected, it sums up to 100% with the cache miss rate
(besides minor deviation of the counters).

When using gcc, both the SICA and PluTo’s default tiling
largely improve the performance of the matrix multiplication
code (cf. Fig. 10). While the original source code cannot be
vectorized by gcc at all, the tiled versions enable the intro-
duction of SIMD instructions. In case of the SICA tiling,
in fact nearly all instructions are SIMD instructions. Tiling
only two instead of all loop dimensions results in fewer cases
where the control flows enters the innermost loop with ‘re-
mainders’ of iterations that cannot be vectorized by gcc.
This effect is in fact intensified by the choice of asymmetric
matrix sizes for these experiments. The larger tile size for
the vectorized loop (in comparison to PluTo) corresponds to
many predictable accesses to the innermost (linearly stored)
array dimension. Both tiled versions lead to a reduction of
the L2 cache miss rate. This is especially true with the fitted
tile sizes calculated by the SICA extension which also leads
to a stronger reduction of TLB misses.

Fig. 11 shows that the internal optimizations done within
icc applied to the original source code perform better than
when applied to PluTo’s default tiled version. This is espe-
cially true for the L2 cache miss rate. It is even marginally
better for the original source than with the fitted SICA tile
sizes. However, with the SICA tiling, icc is able to pro-
duce the fastest code since it can again turn nearly every
instruction into a SIMD instruction. The situation concern-
ing TLB misses is as before with the exception that the code
produced by icc on the original source code leads to far less
TLB misses than with gcc.

In case of the correlation matrix algorithm and gcc, the

50

3

6

9

12

15

18

21

24

27

running
time (s)

24.97 s

so
urce

3.69 s

PluTo

(de
fau

lt)

2.52 s

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L2 cache
miss rate (%)

35.76%

so
urce

26.41%

PluTo

(de
fau

lt)

4.78%

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vectorized
instructions (%)

0.00%

so
urce

71.53%

PluTo

(de
fau

lt)

99.69%

SIC
A

101

102

103

104

105

106

107

108

109

1010

TLB
Misses

1345541255

so
urce

3111456

PluTo

(de
fau

lt)

69055

SIC
A

Figure 10: PAPI performance counters for the matrix multiplication code with gcc

0.33

0.67

1

1.33

1.67

2

2.33

2.67

3

3.33

running
time (s)

1.99 s

so
urce

3.03 s

PluTo

(de
fau

lt)

1.73 s

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L2 cache
miss rate (%)

4.02%

so
urce

25.34%

PluTo

(de
fau

lt)

5.75%

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vectorized
instructions (%)

83.66%

so
urce

71.28%

PluTo

(de
fau

lt)

99.68%

SIC
A

101

102

103

104

105

106

107

TLB
Misses

2676671

so
urce

2316576

PluTo

(de
fau

lt)

65613

SIC
A

Figure 11: PAPI performance counters for the matrix multiplication code with icc

1

2

3

4

5

6

7

8

9

running
time (s)

8.22 s

so
urce

5.81 s

PluTo

(de
fau

lt)

3.41 s

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L2 cache
miss rate (%)

19.17%

so
urce

33.87%

PluTo

(de
fau

lt)

5.82%

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vectorized
instructions (%)

0.01%

so
urce

99.57%

PluTo

(de
fau

lt)

99.67%

SIC
A

101

102

103

104

105

106

107

TLB
Misses

1595361

so
urce

20991

PluTo

(de
fau

lt)

1730977

SIC
A

Figure 12: PAPI performance counters for the correlation matrix code with gcc

0.33

0.67

1

1.33

1.67

2

2.33

2.67

3

3.33

running
time (s)

2.81 s

so
urce

3.12 s

PluTo

(de
fau

lt)

2.25 s

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L2 cache
miss rate (%)

22.42%

so
urce

38.12%

PluTo

(de
fau

lt)

5.85%

SIC
A

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vectorized
instructions (%)

99.90%

so
urce

99.66%

PluTo

(de
fau

lt)

99.90%

SIC
A

101

102

103

104

105

106

107

TLB
Misses

2482883

so
urce

20473

PluTo

(de
fau

lt)

1859533

SIC
A

Figure 13: PAPI performance counters for the correlation matrix code with icc

51

source codes produced by PluTo and with the SICA tiling
both improve the running time as is shown in Fig. 12. Even
more, both tilings lead to a nearly perfect vectorization of
the code. However, whereas the PluTo code leads to an
increase of L2 cache misses compared to the original source
code, the SICA tiling leads to a decrease which explains
the better running time. As opposed to that and with less
impact on the running time, PluTo performs by far best
concerning TLB misses while the SICA version cannot even
improve on the number of TLB misses that are produced
with the original source code.

As with the matrix multiplication, PluTo’s default tiling
does not lead to a better running time compared to the
original source code when compiled with icc. For the L2
cache miss rate and the TLB misses, the results are similar
to the case of using gcc. However, icc is able to fully vectorize
the original code and there is nearly no difference in the rate
of vectorization using any of the three codes as input.

4.2.1 Interim summary
For the considered test cases and compared to the original

source code and PluTo’s default tiling, the SICA approach
always produced the best running times, no matter if used
as input for gcc or icc. A big advantage of the SICA tiling is
that it typically enables the compilers to vectorize a larger
number of instructions. Further, across all benchmarks, it
leads to a small L2 cache miss rate which is the best one
obtained except for the matrix multiplication with icc. Con-
cerning TLB misses, possible improvements depend on the
access pattern of the statements within the vectorized loop.

4.3 Performance benchmarks
Finally, we would like to verify the performance of the

SICA two-level tiling for the two application codes across a
larger range of symmetric matrix input sizes. We selected
the sizes i · 1024 for i ∈ [2, 8]. Since these are all multiples
of four, they diminish the disadvantages of PluTo’s default
tiling in the benchmarks before, i.e., there will be no non-
vectorizable ‘remainders’ of loop iterations anymore. Simi-
larly, gcc will always be able to apply its auto-vectorization
already to the original source code.

Fig. 14 and 16 show the corresponding running times for
gcc and Fig. 15 and 17 those for icc. The output produced
by the SICA tiling appears to support both compilers to
produce faster code compared to the original source and
PluTo’s default tiling. For completeness, Table 3 depicts
the average speedups obtained for the tested input sizes.

gcc matrix multiplication correlation matrix

PluTo (def.) 11.14 4.47
SICA 20.05 8.89

icc matrix multiplication correlation matrix

PluTo (def.) 1.01 3.73
SICA 1.31 7.54

Table 3: Average speedups (coarse grain)

5. CONCLUSION, ONGOING WORK AND
OUTLOOK

We presented an adaptive hardware-aware tiling approach
that has been implemented and evaluated as an extension to

2048 4096 6144 81920

2000

4000

6000

8000

N

ru
n
n
in
g
ti
m
e

(s
)

2048 4096 6144 81920

200

400

600

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)

SICA

close-up of chosen measurements

Figure 14: Running times for the two-level tiled ma-
trix multiplication (coarse grain) with gcc

2048 4096 6144 81920

100

200

300

N

ru
n
n
in
g
ti
m
e

(s
)

2048 4096 6144 81920

100

200

300

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)

SICA

close-up of chosen measurements

Figure 15: Running times for the two-level tiled ma-
trix multiplication (coarse grain) with icc

2048 4096 6144 81920

500

1000

N

ru
n
n
in
g
ti
m
e

(s
)

2048 4096 6144 81920

100

200

300

N
ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)

SICA

close-up of chosen measurements

Figure 16: Running times for the two-level tiled cor-
relation matrix (coarse grain) with gcc

2048 4096 6144 81920

200

400

600

N

ru
n
n
in
g
ti
m
e

(s
)

2048 4096 6144 81920

50

100

150

200

N

ru
n
n
in
g
ti
m
e

(s
)

source
PluTo (def.)

SICA

close-up of chosen measurements

Figure 17: Running times for the two-level tiled cor-
relation matrix (coarse grain) with icc

PluTo. In contrast to PluTo, it does not perform a tiling of
all loops in a nest, but specific tilings of distinct loops that
are beneficial for an effective vectorization. It is adaptive
in that it performs an automatic analysis of the amount of
data accessed by a loop’s statements and is able to derive
information about the underlying hardware such as cache
sizes and SIMD register widths. These parameters are used
to derive dynamic tile sizes that ideally lead to a software
pipeline of blocks to be processed by the SIMD units and to
be well prefetched through the cache hierarchy.

We verified and evaluated our approach experimentally
on two source codes from PluTo’s example suite, namely a
standard matrix multiplication and a correlation matrix al-
gorithm. As our results show, the proposed tiling strategy

52

leads to better running times in comparison to PluTo’s de-
fault tiling and the original source code when its output is
compiled with gcc 4.6 or icc 13.0. An analysis with per-
formance counters brought to light that these results can be
mainly explained by an increase of issued SIMD instructions
and a strong reduction of the L2 cache miss rate.

In further studies (see [10]), we examined the behavior of
our extension on further source codes. They include appli-
cations that contain very deep loop nests and where a static
all-dimension tiling therefore leads to blocks that are by far
too large for today’s usual cache sizes. This may consider-
ably harm performance, whereas our extension can handle
these cases by its dynamic analysis and the restriction to tile
at most two loops.

However, we do not consider a tiling of at most two loops
as a globally superior strategy. To the contrary, if the de-
pendence structure of a statement block refers to multiple
loop dimensions, a corresponding specific multi-dimensional
tiling could be superior in terms of spatial locality and TLB
performance. We plan to consider this in future work. Sim-
ilarly, we would like to manipulate the loop transformations
towards an automatic optimization for one-strided memory
accesses. This could be potentially achieved by (a) sepa-
rating the statements of a block according to their access
patterns, (b) transforming them one by one targeting one-
strided accesses and (c) vectorizing the resulting loop nests.
We also plan to experiment with a L3 cache tiling as well as
with the combination of our developments with automatic
shared-memory parallelization in order to exploit the full
concurrency potential of modern multicore processors.

Currently, our developments are ported to the PoCC [16]
framework (that includes PluTo) in order to integrate our
extensions into Polly and thereby into the LLVM infrastruc-
ture [14].

6. ACKNOWLEDGMENTS
Thanks to Uday Bondhugula for the development of the

PluTo framework.

7. REFERENCES
[1] J. Abella, A. Gonzalez, J. Llosa, and X. Vera.

Near-optimal loop tiling by means of cache miss
equations and genetic algorithms. In Proc. Int.
Parallel Processing Workshop, pages 568 – 577, 2002.

[2] U. K. Banerjee. Loop Parallelization. Loop
transformations for restructuring compilers. Kluwer
Academic Publishers, Norwell, MA, USA, 1994.

[3] D. Bernstein, D. Cohen, and A. Freund. Compiler
techniques for data prefetching on the PowerPC. In
Proc. IFIP WG10.3 working Conf. on Parallel
Architectures and Compilation Techniques, PACT ’95,
pages 19–26, Manchester, UK, UK, 1995. IFIP
Working Group on Algol.

[4] U. Bondhugula. PluTo: An automatic parallelizer and
locality optimizer for multicores.

[5] U. Bondhugula. Effective Automatic parallelization
and locality optimization using the polyhedral model.
PhD thesis, Columbus, OH, USA, 2008.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proc. 2008 ACM
SIGPLAN Conf. on Programming Language Design

and Implementation, PLDI ’08, pages 101–113, New
York, NY, USA, 2008. ACM.

[7] A. Cohen, M. Sigler, D. Parello, S. Girbal, O. Temam,
and N. Vasilache. Facilitating the search for
compositions of program transformations. In ACM
Int. Conf. on Supercomputing (ICS’05), pages
151–160, 2005.

[8] S. Coleman and K. S. McKinley. Tile size selection
using cache organization and data layout. In Proc.
ACM SIGPLAN Conf. on Programming Language
Design and Implementation, PLDI ’95, pages 279–290,
New York, NY, USA, 1995. ACM.

[9] P. Feautrier. Some efficient solutions to the affine
scheduling problem: I. one-dimensional time. Int. J.
Parallel Program. volume 21, pages 313–348, 1992.

[10] D. Feld. Effiziente Vektorisierung durch
semi-automatisierte Code-Optimierung im
Polyedermodell, available at http://publica.fraunhofer
.de/documents/N-194546.html, 2011.

[11] S. Ghosh, M. Martonosi, and S. Malik. Automated
cache optimizations using CME driven diagnosis. In
Proc. 14th Int. Conf. on Supercomputing, ICS ’00,
pages 316–326, New York, NY, USA, 2000. ACM.

[12] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations for deep
parallelism and memory hierarchies. Int. J. Parallel
Program. volume 34, pages 261–317, 2006.

[13] M. Griebl. Automatic parallelization of loop programs
for distributed memory architectures, 2004.

[14] T. Grosser, H. Zheng, R. A, A. Simbürger,
A. Grösslinger, and L.-N. Pouchet. Polly - polyhedral
optimization in LLVM. In First Int. Workshop on
Polyhedral Compilation Techniques (IMPACT’11),
Chamonix, France, April 2011.

[15] Intel. Intel processor identification and the CPUID
instruction. Technical report, Intel Corporation, 2011.

[16] L.-N. Pouchet. PoCC: the Polyhedral Compiler
Collection.

[17] V. Sarkar and N. Megiddo. An analytical model for
loop tiling and its solution. In Proc. IEEE Int. Symp.
on Performance Analysis of Systems and Software,
ISPASS ’00, pages 146–153, Washington, DC, USA,
2000. IEEE Computer Society.

[18] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet,
J. Ramanujam, P. Sadayappan, and V. Sarkar.
Analytical bounds for optimal tile size selection. In
Proc. 21st Int. Conf. on Compiler Construction,
CC’12, pages 101–121, Berlin, Heidelberg, 2012.
Springer.

[19] D. Terpstra, H. Jagode, H. You, and J. Dongarra.
Collecting performance data with PAPI-C. 2009.

[20] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and
I. Rosen. Polyhedral-model guided loop-nest
auto-vectorization. In Proc. 18th Int. Conf. on
Parallel Architectures and Compilation Techniques,
PACT ’09, pages 327–337, Washington, DC, USA,
2009. IEEE Computer Society.

[21] J. Xue. Loop tiling for parallelism. Kluwer Int. Series
in Engineering and Computer Science. Kluwer
Academic, 2000.

53

APPENDIX
A. STATIC CONTROL PARTS (SCoPs) OF

THE CONSIDERED EXAMPLE CODES

f o r (i =0; i<M; i++)
f o r (j =0; j<N; j++)
f o r (k=0; k<K; k++)
C[i] [j] = C[i] [j] + alpha∗A[i] [k]∗B[k] [j] ;

Figure 18: Original standard matrix multiplication

f o r (t1=0; t1<=f l o o r (M−1 ,8) ; t1++) {
f o r (t2=0; t2<=f l o o r (N−1 ,3684); t2++) {
f o r (t3=0; t3<=K−1; t3++) {
f o r (t4=8∗t1 ; t4<=min(M−1 ,8∗ t1 +7); t4++) {
{
lbv=3684∗ t2 ; ubv=min(N−1 ,3684∗ t2 +3683);
#pragma ivdep
#pragma vector always
f o r (t9=lbv ; t9<=ubv ; t9++) {
C[t4] [t9]=C[t4] [t9]+alpha∗A[t4] [t3]∗B[t3] [t9] ; ;
}
}

}}}}
Figure 19: Matrix multiplication (SICA applied with
ρ = 0.9)

C[i] [j]=C[i] [j]+A[i] [k]∗B[k] [j] ;
C[i] [j]=C[i] [j]+A[i] [k]∗B[k] [j]+D[i] [k]∗E[k] [j] ;
C[i] [j]=C[i] [j]+A[i] [k]∗B[k] [j]+D[i] [k]∗E[k] [j]

+F [i] [k]∗G[k] [j] ;

Figure 20: The different statements in matmul1,
matmul2 and matmul3

/∗ Center and reduce the column vec to r s . ∗/
f o r (i = 1 ; i <= N; i++)
f o r (j = 1 ; j <= M; j++) {
data2 [i] [j] −= mean [j] ;
data2 [i] [j] /= sq r t (N) ∗ stddev [j] ;
}

/∗ Calcu la te the M ∗ M co r r e l a t i o n matrix . ∗/
f o r (j 1 = 1 ; j 1 <= M−1; j 1++) {
symmat [j 1] [j 1] = 1 . 0 ;
f o r (j 2 = j1 +1; j2 <= M; j2++) {
symmat [j 1] [j 2] = 0 . 0 ;
f o r (i = 1 ; i <= N; i++)
symmat [j 1] [j 2]+=(data2 [i] [j 1]∗ data2 [i] [j 2]) ;

symmat [j 2] [j 1] = symmat [j 1] [j 2] ;
}
}

Figure 21: Original correlation matrix SCoP

f o r (t2=0; t2<=f l o o r (M−1 ,8) ; t2++) {
f o r (t3=c e i l (t2 −920 ,921); t3<=f l o o r (M, 7 3 6 8) ; t3++) {
f o r (t5=max(1 ,8∗ t2) ; t5<=min(min (M−1 ,8∗ t2+7) ,

7368∗ t3 +7366); t5++) {
{
lbv=max(7368∗ t3 , t5 +1); ubv=min(M,7368∗ t3 +7367);
#pragma ivdep
#pragma vector always
f o r (t10=lbv ; t10<=ubv ; t10++) {
symmat [t5] [t10]=0 . 0 ; ;
}
}

}}}
f o r (t2=1; t2<=M−1; t2++) {
symmat [t2] [t2]= 1 . 0 ; ;
}
f o r (t2=0; t2<=f l o o r (N, 8) ; t2++) {
f o r (t3=0; t3<=f l o o r (M, 2 4 5 6) ; t3++) {
f o r (t5=max(1 ,8∗ t2) ; t5<=min(N,8∗ t2 +7); t5++) {
{
lbv=max(1 ,2456∗ t3) ; ubv=min(M,2456∗ t3 +2455);
#pragma ivdep
#pragma vector always
f o r (t10=lbv ; t10<=ubv ; t10++) {
data [t5] [t10]−=mean [t10] ; ;
data [t5] [t10]/= sq r t (N)∗ stddev [t10] ; ;
}
}

}}}
f o r (t2=0; t2<=f l o o r (M−1 ,8) ; t2++) {
f o r (t3=c e i l (2∗ t2 −920 ,921); t3<=f l o o r (M, 3 6 8 4) ; t3++) {
f o r (t4=1; t4<=N; t4++) {
f o r (t5=max(1 ,8∗ t2) ; t5<=min(min (M−1 ,8∗ t2+7) ,

3684∗ t3 +3682); t5++) {
{
lbv=max(3684∗ t3 , t5 +1); ubv=min(M,3684∗ t3 +3683);
#pragma ivdep
#pragma vector always
f o r (t10=lbv ; t10<=ubv ; t10++) {
symmat [t5] [t10]+=(data [t4] [t5]∗ data [t4] [t10]) ; ;
}
}

}}}}
f o r (t2=0; t2<=f l o o r (M−1 ,8) ; t2++) {
f o r (t3=c e i l (2∗ t2 −920 ,921); t3<=f l o o r (M, 3 6 8 4) ; t3++) {
f o r (t5=max(1 ,8∗ t2) ; t5<=min(min (M−1 ,8∗ t2+7) ,

3684∗ t3 +3682); t5++) {
{
lbv=max(3684∗ t3 , t5 +1); ubv=min(M,3684∗ t3 +3683);
#pragma ivdep
#pragma vector always
f o r (t10=lbv ; t10<=ubv ; t10++) {
symmat [t10] [t5]=symmat [t5] [t10] ; ;
}
}

}}}
Figure 22: Correlation matrix SCoP (SICA applied
with ρ = 0.9)

f o r (i =0; i<M; i++)
f o r (j =0; j<N; j++)
S (i , j) ;

f o r (i i =0; i i≤ f l o o r (M−1 ,32); i i ++)
f o r (j j =0; j j≤ f l o o r (N−1 ,32); j j++)
f o r (i =32∗ i i ; i≤min(M−1 ,32∗ i i +31); i++)
f o r (j=32∗ j j ; j≤min(N−1 ,32∗ j j +31); j++)
S (i , j) ;

f o r (i i i =0; i i i ≤ f l o o r (M−1 ,256); i i i ++)
f o r (j j j =0; j j j≤ f l o o r (N−1 ,256); j j j ++)
f o r (i i =8∗ i i i ; i i≤min(f l o o r (M−1 ,32) ,8∗ i i i +7); i i ++)
f o r (j j =8∗ j j j ; j j≤min(f l o o r (N−1 ,32) ,8∗ j j j +7); j j++)
f o r (i =32∗ i i ; i≤min(M−1 ,32∗ i i +31); i++)
f o r (j=32∗ j j ; j≤min(K−1 ,32∗ j j +31); j++)
S (i , j) ;

Figure 23: Perfectly nested loop (left) with one level (middle) and two level (right) traditional tiling by PluTo

f o r (i =0; i<M; i++)

f o r (j j =0; j j≤ f l o o r (N−1,qL1) ; j j++)

f o r (j=qL1∗ j j ; j≤min(N−1,qL1∗ j j +(qL1 − 1)) ; j++)
S (i , j) ;

for (i i =0; i i≤ f l o o r (M−1,qL2) ; i i ++)

for (j j =0; j j≤ f l o o r (N−1,qL1) ; j j++)

for (i=qL2∗ i i ; i≤min(M−1,qL2∗ i i +(qL2 − 1)) ; i++)

for (j=qL1∗ j j ; j≤min(N−1,qL1∗ j j +(qL1 − 1)) ; j++)
S (i , j) ;

Figure 24: Loop from figure 23 with one level (left) and two level (right) SICA tiling for vectorizable j loop

54

SPolly: Speculative Optimizations in the Polyhedral Model

Johannes Doerfert
Saarbrücken Graduate School

of Computer Science
Saarland University

Saarbrücken, Germany
doerfert@st.cs.uni-

saarland.de

Clemens Hammacher
Saarbrücken Graduate School

of Computer Science
Saarland University

Saarbrücken, Germany
hammacher@cs.uni-

saarland.de

Kevin Streit
Saarbrücken Graduate School

of Computer Science
Saarland University

Saarbrücken, Germany
streit@cs.uni-
saarland.de

Sebastian Hack
Computer Science

Department
Saarland University

Saarbrücken, Germany
hack@cs.uni-saarland.de

ABSTRACT
The polyhedral model is only applicable to code regions
that form static control parts (SCoPs) or slight extensions
thereof. To apply polyhedral techniques to a piece of code,
the compiler usually checks, by static analysis, whether all
SCoP conditions are fulfilled. However, in many codes, the
compiler fails to verify that this is the case. In this pa-
per we investigate the rejection causes as reported by Polly,
the polyhedral optimizer of a state-of-the-art compiler. We
show that many rejections follow from the conservative over-
approximation of the employed static analyses. In SPolly, a
speculative extension of Polly, we employ the knowledge of
runtime features to supersede this overapproximation. All
speculatively generated variants form valid SCoPs and are
optimizable by the facilities of Polly. Our evaluation shows
that SPolly is able to effectively widen the applicability of
polyhedral optimization. On the SPEC 2000 suite, the num-
ber of optimizable code regions is increased by 131 percent.
In 10 out of the 31 benchmarks of the PolyBench suite,
SPolly achieves speedups of up to 11-fold as compared to
plain Polly.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers, Optimization, Retargetable compilers,
Run-time environments

General Terms
Performance

Keywords
Adaptive optimization, polyhedral loop optimization, just-
in-time compilation, speculative execution

1. INTRODUCTION
The polyhedral model uses polyhedra to abstract essen-

tial information of a static control program (SCoP, a re-
stricted form of nested DO loops). By abstracting loop
nests as polyhedra, many popular loop optimizations can

be elegantly formulated in terms of linear transformations.
However, a piece of code has to meet the SCoP criteria [5]
(or slight extensions thereof) to be tractable by polyhedral
techniques. Those conditions are usually met by many nu-
merical kernels from linear algebra, image processing, signal
processing, etc. However, in more general benchmarks such
as the SPEC 2000 benchmark suite, the SCoP conditions
are often violated. One simple reason is, for example, that
the compiler could not prove that all arrays used in the loop
nest do not overlap or alias. Further reasons we encountered
are: The implementation of functions called in the loop nest
was not available because they are extern to the transla-
tion unit in question. However, at runtime, the functions
turned out to be pure. Also, index expressions and/or loop
bounds could not be classified as affine. Often, some pa-
rameter, which does not change in the loop nest, makes an
expression non-affine. Hence, specializing the loop nest to
the concrete value at runtime makes polyhedral techniques
applicable.

In this paper, we want to advance the applicability of poly-
hedral optimizations by incorporating runtime information.
For example, parameters that lead to non-affine expressions
can be replaced by their concrete value. This way, using a
just-in-time compiler, the program can prepare specially op-
timized versions for different parameter sets. In summary,
this paper makes the following contributions:

• We investigate the applicability of Polly [8], a poly-
hedral framework for LLVM [10], on the SPEC 2000
benchmark suite and classify the causes that prevent
the application of Polly to a candidate code region1.
We conclude that up to 2.4 times more code regions
in SPEC 2000 could be considered by Polly if runtime
information is available.

• Based on those insights, we present SPolly, a prototyp-
ical extension of Polly to integrate runtime informa-
tion. At the moment, SPolly handles two cases: First,
it adds code to the program that checks whether all

1As code regions we consider all non-trivial regions accord-
ing to Grosser et al. [8], i.e. single entry, single exit regions
containing at least one loop.

55

referenced arrays of a loop nest do not overlap. Sec-
ond, it uses profiling to record the values of parameters
that lead to non-affine index expressions and/or loop
bounds and generates specialized variants that can be
selected during runtime. We demonstrate the benefit
of these techniques on the PolyBench benchmark suite.

The rest of this paper is organized as follows: In Section 2
we present related work. Section 3 provides an evaluation of
the most frequent rejection causes of polyhedral transforma-
tions; Section 4 explains how SPolly alleviates some of those
causes. Finally Section 5 evaluates SPolly and Section 6
concludes.

2. RELATED WORK
The polyhedral literature is certainly too extensive to be

discussed in full detail here. Furthermore, this paper is con-
cerned with increasing the applicability of the polyhedral
model by speculation and runtime analysis and not with
inventing new polyhedral techniques. Therefore, we concen-
trate on the recent work which is directly related to ours.

In his thesis [7], Grosser describes a speedup of up to
8x for a matrix multiplication benchmark, achieved by his
polyhedral optimizer Polly [8]. He also produced similar re-
sults for other benchmarks of the PolyBench [11] benchmark
suite. Other publications [4, 1, 12] show similar results on
PolyBench. PolyBench is certainly well suited to compare
polyhedral techniques. However, it does not allow for as-
sessing their width of applicability as we do in this paper.

Baghdadi et al. [1] reveal a huge potential for speculative
loop optimizations as an extension to the formerly described
techniques. They state that aggressive loop nest optimiza-
tions (including parallel execution) are profitable and possi-
ble, even though overestimated data and flow dependences
would statically prevent them. Their manually crafted tests
also show the impact of different kinds of conflict manage-
ment. Overhead, and therefore speedup, differs from loop to
loop, as the applicability of such conflict management sys-
tems does, but a trend was observable. The best conflict
management system has to be determined per loop and per
input, but all can provide speedup, even if they are not that
well suited for the situation.

Bastoul et al. [2, 3] and Girbal et al. [6] also perform an
evaluation of the applicability of the polyhedral model in
several benchmarks. In contrast to this work however, he
is more concerned with the structure and size of the SCoPs
and not with the reasons of why other code regions could
not be classified as SCoPs.

Jimborean et al. [9] employ the polyhedral model in the
context of speculative parallelization. A static paralleliza-
tion pattern is generated assuming linearity of loop bounds
and memory accesses. Additionally, polyhedral transforma-
tions are proposed based on static dependence analysis. At
runtime, the linearity of memory accesses and the applica-
bility of the proposed candidates is assessed by collecting
profiling information. In case of success, the statically gen-
erated pattern is instantiated with the gathered informa-
tion and corresponding code is generated. As the performed
transformations are speculative and not validated before ex-
ecution of the loop, a speculation mechanism guards the
execution. In case of detected conflicts, rollbacks are per-
formed and execution switches to the safe, sequential ver-
sion. The approach has some drawbacks: First of all, it

relies on programmer annotations to identify parallelization
candidates. Second, polyhedral optimization is limited to
transformations that do not change the loop structure or re-
order statements. The use of synthetic benchmarks in their
evaluation does not allow judging in how far the approach
can profitably extend the applicability of polyhedral opti-
mization on widely used benchmarks such as the PolyBench
suite.

3. MOTIVATION
In order to analyze which of the SCoP restrictions limit

the applicability of the polyhedral model most, we con-
ducted an evaluation on nine programs from the SPEC 2000
benchmark suite2. To this end we instrumented Polly to out-
put all rejection causes that prevent a candidate code region
from being considered a polyhedron3. In case of multiple re-
jection causes for one region, we record all of them.

Figure 1 shows the results of this evaluation. For each
rejection cause in Polly, we report three numbers:

• The number of regions where the violation of condi-
tion i is a cause for not considering (Column A).

• The number of regions where the violation of condi-
tion i is the only rejection cause (Column B).

• The number of regions gained when ignoring all con-
ditions 0 to i (Column C).

Over the nine tested programs, 1862 candidate regions are
tested, out of which 1587 are rejected by Polly. The remain-
ing 275 regions (14.8%) are considered legal SCoPs.

i Rejection cause A B C

0 Non-affine expressions 1230 84 84
1 Aliasing 1093 207 510
2 Non-affine loop bounds 840 6 660
3 Function call 532 72 928
4 Non-canonical indvars 384 0 1174
5 Complex CFG 253 31 1387
6 Unsigned comparison 199 0 1586
7 Others 1 0 1587

Figure 1: SCoP rejection causes on the SPEC 2000 bench-
mark suite

The rejection causes are ordered by the number of re-
gions that they affect (column A). In the following, we will
examine the conditions constituting the rejection causes in
further detail and discuss if and how SPolly can alleviate
their impact.

Non-affine expressions As explained in more detail in
Section 4.2, all expressions used for memory accesses
or predicates of conditional branches have to be affine
expressions with respect to parameters and induction
variables. If this is not the case, the code cannot
be represented as polyhedron, thus preventing corre-
sponding optimizations. This happens for example

2As SPolly’s runtime environment is based on the Sam-
bamba framework [13] we selected the programs that were
contained in the Sambamba test suite: ammp, art, bzip2,
crafty, equake, gzip, mcf, mesa, and twolf
3All programs were compiled with
-sink -indvars -mem2reg -polly-prepare

56

when a programmer chose to represent a 2-dimensional
array by a 1-dimensional, flattened, one, translating
the index (i, j) to i ∗ N + j. In case i and j are iter-
ation variables, and N is a parameter, this expression
is not affine but quadratic. If however N can be de-
tected as quasi-constant via profiling, it can specula-
tively be replaced by that constant to circumvent the
non-affinity.

Aliasing Possible aliasing causes a region to be rejected
whenever the base address of two memory accesses
cannot be proven to be disjoint. In particular, this
is the case when pointers originate in parameter val-
ues instead of global variables or stack-allocated mem-
ory, since the default alias analysis used by Polly only
works intra-procedural. In most cases however, two
arrays passed as parameters are disjoint; speculatively
assuming non-aliasing may thus be profitable.

Non-affine loop bounds This constraint requires all loop
bounds to be affine expressions with respect to the
parameters and surrounding iteration variables. In
our experiments we frequently observed that although
bounds have not been affine at compile-time, they of-
ten turn out to remain constant, and thus affine, dur-
ing all executions. This is for example the case if a
loop iterates N2 times, where N is a parameter. It is
obvious that in these cases a specialized variant can be
generated where the loop bounds are considered con-
stant. This not only makes the loop representable as
a polyhedron, but also enables better optimizations in
the isl.

Function call Another major reason for rejecting a code
region is contained function calls. In general, com-
puting memory dependences through calls is a hard
task; for external functions or indirect calls it is often
impossible. Additionally, external functions may not
terminate or have observable effects like text output
or aborting the application. Polly rejects each region
containing at least one call to a function that cannot
be proven to be pure. In practice though, paralleliza-
tion prohibiting side-effects—for example exceptions,
or error reporting—might manifest only infrequently.
In such case, speculatively ignoring the calls and spe-
cializing a region accordingly can make it amenable
to polyhedral optimizations. To preserve the original
semantics, the specialized code needs protection by a
runtime speculation mechanism, e.g. in the form of
transactional memory.

Non-canonical induction variables This constraint re-
quires the induction variables to be in a canonical form,
starting at zero and being incremented by one in each
iteration. If LLVM’s and Polly’s preparation passes
are unable to canonicalize all such variables, the code
region is discarded.

Complex CFG This error is reported if complex termina-
tors like switch instructions or are found, or the control
flow has a “complex form” not representable via while
and if constructs only.

Unsigned comparison During polyhedral optimizations,
Polly may have to modify comparison operators or

their operands, for example to alter the iteration space
of a loop. Special care has to be taken to handle pos-
sible overflows correctly. To this end, this is only im-
plemented for signed operations. Consequently, Polly
rejects all code regions containing unsigned compari-
son.

Others This is a collection of minor technical limitations,
for example rarely used LLVM instructions, which are
not handled properly yet. The only occurrence in our
tests is a cast from an integer to a pointer in the mcf
program.

SPolly concentrates on the first three rejection causes. In
our benchmarks, they make up for 42% of all SCoP rejec-
tions. Thus, assuming we could speculatively eliminate them
in all cases, we could expect 660 new SCoPs to be detected,
which is exactly 2.4 times the original number of SCoPs.
The fourth cause, function calls, could be solved using run-
time techniques as described, but in our experiments the
introduced overhead of transactional execution did not pay
off. Therefore we skipped that for now, and consider it fu-
ture work to improve the performance of the transactional
memory system. All other reported causes are either con-
ceptual obstacles (induction variables, complex CFGs) that
SPolly cannot remove or technicalities that will disappear
when LLVM and Polly will mature further.

4. SPOLLY
SPolly extends the applicability of the loop nest optimizer

and parallelizer Polly by deploying runtime information and
speculatively specializing functions. It targets restrictions
on loop nests arising as a consequence of overestimations in
static analyses. By inferring common values for parameters,
and providing additional conditions for memory accesses, it
makes polyhedral optimizations applicable to more code lo-
cations, and allows for better optimization and code genera-
tion. Those specialized versions will coexist with the original
sequential version and will be executed whenever the actual
runtime values permit this. This section describes in detail
how SPolly achieves this.

4.1 Possible Aliasing
Possible aliasing is the main rejection cause of Polly on the

considered benchmarks of the SPEC 2000 suite and particu-
larly well suited for speculation. An example for a loop with
possibly aliasing accesses is given in Figure 2a. It shows two
arrays accessed via pointers A and B. In case they point to
addresses less than N * sizeof(int) bytes apart, parallel
execution and other loop transformations possibly alter the
semantics. Most alias analyses are conservative and assume
aliasing if A and B could potentially point to the same allo-
cated memory block. Using the latter definition, Polly would
not optimize the presented loop without further information
on A and B.

Polly offers the possibility to override conservative as-
sumptions concerning possible aliasing. This can be done by
either ignoring all aliasing, or by annotating individual code
regions. Both these approaches require manual intervention
and profound knowledge of the application to optimize. In
contrast, SPolly is able to deal with possible aliases with-
out any programmer-provided information. It does so by
introducing alias checks preceding the subject loop nests to

57

void a(int *A, int *B) {

int i;

for (i=1; i<N; i++)

A[i] = 3 * B[i];

}

(a) Loop with possible aliasing pointers

void b(int *A, int N) {

int i, j;

for (i = 1; i<N; i++)

for (j = 0; j<N; j++)

A[j*N+i] += A[j*N+i-1];

}

(b) Loop nest using non-affine expressions
Figure 2: Example loops rejected by Polly for different speculatively resolvable reasons

ensure the absence of conflicts between accesses to loop in-
variant base pointers. For the shown loop, those introduced
checks are conclusive as the accessed range, relative to the
base address, is known before entering the loop, thus non-
aliasing of all accesses to the arrays can be checked a priori.
This approach allows to optimize loops even if the used base
pointers might point into the same allocated block, for ex-
ample different parts of the same array. If the checks fail,
the original, unmodified version is executed, otherwise the
optimized version is chosen. An example that would not
benefit from this approach because of possibly aliasing loop
variant pointers is dynamic multidimensional arrays (arrays
of pointers to arrays). Iterating over those will change the
base pointer of the inner dimension for each execution of
the outer loop, and checking that none of them alias is too
expensive to be performed prior to execution of the loop.

4.2 Non-affine Parameters
Consider Figure 2b. C does not provide support for n-

dimensional arrays of which the dimensions are not known
statically. Hence, a common pattern is to implement n-
dimensional arrays using a 1D array and performing the in-
dex arithmetic “manually”. This pattern creates non-affine
array subscripts on the 1D array. Using static analysis, one
could infer that the 1D access is actually a 2D access; at least
in this example. However, such an analysis is currently not
implemented in Polly. Additionally, it is imaginable that the
code is more complicated making the static analysis unsuc-
cessful.

Thus, SPolly utilizes runtime information gained with a
profiling version of the loop nest to identify reoccurring pa-
rameter values. For those values specialized loop versions
are created with constant values plugged in for the prob-
lematic parameters. Dispatching code is inserted before the
corresponding loop to decide at runtime whether a special-
ized version exists for the actual parameter values. If none
is found, the original, less optimized version is used. In our
example, by specialization the multiplications would become
affine and therefore representable in the polyhedral model,
and thus amenable for all polyhedral optimizations imple-
mented in Polly.

Finally, we observed (see the next section) that replacing
parameters with constants often leads to superior code be-
cause it enables more aggressive optimizations. Thus, even
if a static analysis would analyze pseudo-1D array accesses
and restate them into multidimensional accesses, executing
specialized versions often leads to better performance.

5. EVALUATION
In order to evaluate the success of incorporating runtime

information to speculatively optimize code regions, we will

Figure 3: Quantitative analysis of the applicability of SPolly
compared to Polly. Overall, SPolly provides 635 sSCoPs
while Polly find 275 SCoPs.

investigate two hypotheses:

1. SPolly is able to handle substantially more regions
than Polly. In other words, the number of specula-
tive SCoPs (sSCoPs) is substantially larger than the
number of SCoPs.

2. The extended applicability of the polyhedral model re-
sults in improved runtime performance.

Hypothesis 1 is motivated from Section 3, where we showed
that the constraints that SPolly tackles are the main reasons
for rejecting a SCoP. Hypothesis 2 follows from the primary
goal of polyhedral optimizations, which is reducing the pro-
gram runtime.

5.1 Extended Applicability
In order to evaluate the successful elimination of SCoP

rejection causes, we executed SPolly on the SPEC 2000 tests
that we already used in Section 3. We then compared the
number of sSCoPs detected by SPolly against the number
of SCoPs detected by Polly. A graphical representation of
this comparison is shown in Figure 3.

You can see that for all test cases except of “mcf”, our
speculative extensions provided an increased number of code
regions amenable to polyhedral optimizations. The over-
all number of sSCoPs is 635, as compared to the 275 de-
tected SCoPs by Polly. This is an increase of 131 percent
(360 additional SCoPs).

Compared to the expectations in Section 3, where we iden-
tified an upper bound of 660 additional SCoPs, we reached
a success rate of 55 percent. The remaining sSCoP can-
didates contain code where our heuristics decided that spec-
ulation is not profitable or impossible. This is the case if,

58

Figure 4: Speedups in execution time of SPolly-enabled programs on the PolyBench suite, normalized to the standard Clang-
compiled version with all optimizations enabled

for example, an external function call is executed uncondi-
tionally, or indirect pointer loads are detected where aliasing
cannot be checked a priori.

Overall, we conclude that SPolly in fact widens the appli-
cability of polyhedral optimizations substantially.

5.2 Performance
After confirming that the number of SCoPs detected in

SPEC 2000 is indeed increased, we investigated to which
extent this actually improves the runtime of the programs.
We observed that even though the additional SCoPs were
valid and some of them were executed, the most interesting
code regions were not optimized due to additional obstacles
we could not eliminate. These are mainly external function
calls and indirect memory accesses in the hot loops. So on
these tests, we are unable to achieve significant speedups.

Thus we resort to the PolyBench suite [11], which has
also been used by Grosser et al. [8, 7] before to evaluate the
performance of Polly. We are using the current version 3.2,
and the provided “large” data sets.

In order to compare the speedup in program execution
achievable by applying polyhedral optimizations on stati-
cally validated SCoPs alone against that of speculatively
created and optimized polyhedra, we run all tests

• on the standard toolchain of Clang and LLVM with all
optimizations enabled

• using Polly after applying the standard preparation
passes (see Section 3)

• using SPolly without any prior knowledge about the
program

• using SPolly a second time, such that profiling infor-
mation from the previous run is already available

All tests are conducted on an eight-core Intel Xeon machine
running at 2.93 GHz with 24 GB of main memory.

Surprisingly, we are unable to reproduce earlier results of
Polly on the PolyBench suite. Investigating the reasons why
Polly rejects the SCoPs for the compute-intensive kernels of
all of the benchmarks revealed, that in all cases this is due to
aliasing problems. Since PolyBench 3.0, released in October
2011, the tests are using heap-allocated arrays, passed to
the kernel via pointer arguments plus array sizes. Polly is
unable to prove non-aliasing of those pointers, thus rejecting
all possibly affected SCoP candidates. This is why we did
not find any program for which Polly was able to improve
the performance over a standard Clang-compiled program.

Figure 4 shows the speedups of the SPolly-enabled pro-
gram runs, normalized to the runtime of the corresponding
Clang-compiled program. Missing values in this bar chart in-
dicate failures during optimization, which were mainly orig-
inating from the CLooG code generator, but also from cre-
ating the polytope in Polly. Nevertheless, for most of the
programs we are able to report runtime results. It is not
surprising that there are many programs where SPolly is
not able to bring the kernel to a form amenable for polyhe-
dral optimizations. Thus for these programs no speedup is
achieved.

However, there are also different programs where SPolly
indeed provides enormous speedups. For the first run, SPolly
can make no use of any profiling data, so only those spec-
ulative transformations can be applied for which conclusive
runtime checks can be synthesized. For these runs, the high-
est achieved speedup is 5.1-fold on the mvt program. In

59

the second run however, specialized versions can be created
based on the profiles gathered in previous runs. This allows
to replace loop bounds and parametric values by constant
expressions, which not only makes those code regions rep-
resentable as polyhedra, but also helps other transforma-
tions and the CLooG backend to create better code, e.g. by
choosing the best tile size for loop tiling. Thus, the speedups
achieved in the second runs are significantly higher in almost
all cases, ranging to a maximum of 11-fold for the “gemm”
program. In two cases (mvt and gemver), the speedup in the
second run is slightly lower than in the first run. This is not
due to overhead we introduce for checking whether a special-
ized code version can be chosen (this overhead was negligible
for all our tests), but because the specialized variant actu-
ally executed slower than the original one. The problem of
anticipating whether a code transformation, especially par-
allelization, will pay of at runtime is a well-known problem
for which no general solution exists. Apart from that, it’s
not in the scope of this paper.

6. CONCLUSION
In this paper, we analyzed the most prominent causes

that prohibit polyhedral optimizations for individual code
regions. We observed that often promising regions are re-
jected by the polyhedral framework Polly because of over-
approximation in the static analyses, and because of miss-
ing parameter values. Driven by this observation, we came
up with runtime checks to dynamically switch to special-
ized variants of a code region, where the obstructive fea-
ture is removed. This approach is implemented in SPolly,
a speculative extension to Polly. It enables the application
of polyhedral optimizations to many more code locations,
providing better runtime performance in those cases where
the specialized variant could be used.

7. REFERENCES
[1] R. Baghdadi, A. Cohen, C. Bastoul, L.-N. Pouchet,

and L. Rauchwerger. The potential of synergistic
static, dynamic and speculative loop nest
optimizations for automatic parallelization. In
Workshop on Parallel Execution of Sequential
Programs on Multi-core Architectures (PESPMA’10),
June 2010.

[2] C. Bastoul. Improving Data Locality in Static Control
Programs. PhD thesis, University Paris 6, Pierre et
Marie Curie, France, 2004.

[3] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and
O. Temam. Putting polyhedral loop transformations
to work. In Workshop on Languages and Compilers
for Parallel Computing (LCPC’03), LNCS, pages
23–30. Springer-Verlag, Oct. 2003.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, pages
101–113, 2008.

[5] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[6] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic

composition of loop transformations for deep
parallelism and memory hierarchies. International
Journal of Parallel Programming, 34(3):261–317, 2006.

[7] T. Grosser. Enabling Polyhedral Optimizations in
LLVM. Diploma thesis, University of Passau, Apr.
2011.

[8] T. Grosser, H. Zheng, R. Aloor, A. Simbürger,
A. Grösslinger, and L.-N. Pouchet. Polly - Polyhedral
Optimization in LLVM. In First International
Workshop on Polyhedral Compilation Techniques
(IMPACT’11), Apr. 2011.

[9] A. Jimborean, L. Mastrangelo, V. Loechner, and
P. Clauss. VMAD: an Advanced Dynamic Program
Analysis & Instrumentation Framework. In CC - 21st
International Conference on Compiler Construction,
pages 220–237, Mar. 2012.

[10] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Mar 2004.

[11] L.-N. Pouchet. Polybench, the Polyhedral Benchmark
suite. http://www.cse.ohio-state.edu/~pouchet/
software/polybench/, 2010.

[12] B. Pradelle, A. Ketterlin, and P. Clauss. Polyhedral
parallelization of binary code. ACM Transactions on
Architexture and Code Optimization, 8(4):39:1–39:21,
Jan. 2012.

[13] K. Streit, C. Hammacher, A. Zeller, and S. Hack.
Sambamba: A runtime system for online adaptive
parallelization. In Proc. 21st International Conference
on Compiler Construction (CC), pages 240–243, Mar.
2012.

60

APPENDIX

clang
clang
-O2

clang
-O3

SPolly
1st run

SPolly
2nd run

Speedup
1st run

Speedup
2nd run

bicg 0.66 0.22 0.22 0.32 0.23 0.72 0.99
syrk 49.03 12.16 12.16 5.48 5.50 2.21 2.21

jacobi-1d-imper 0.95 0.23 0.23 0.25 0.25 0.93 0.93
trmm 24.87 6.44 6.44 8.08 8.09 0.80 0.80
symm 129.49 119.75 119.75
syr2k 86.57 25.76 25.76 10.03 7.56 2.57 3.40

cholesky 6.71 1.68 1.68
fdtd-apml 12.42 10.69 10.69 10.84 10.86 0.98 0.98

3mm 294.77 233.01 233.01 72.96 29.30 3.19 7.95
lu 19.18 4.53 4.53 4.58 4.59 0.99 0.99

doitgen 45.07 10.95 10.95 14.95 2.00 0.73 5.46
seidel-2d 1.30 1.12 1.12 1.12 1.12 1.00 1.00

gemm 107.93 77.48 77.48 24.49 7.05 3.16 10.98
adi 12.56 9.31 9.31 16.10 7.88 0.57 1.18

gesummv 0.64 0.24 0.24
floyd-warshall 72.31 13.70 13.70 14.05 14.05 0.98 0.98

ludcmp 31.62 20.94 20.94 22.31 22.26 0.94 0.94
covariance 71.80 64.70 64.70 64.78 64.88 1.00 1.00

jacobi-2d-imper 1.23 0.48 0.48 0.49 0.49 0.97 0.97
atax 0.81 0.19 0.19 0.12 1.57

fdtd-2d 5.26 2.07 2.07 3.63 2.43 0.57 0.85
trisolv 0.20 0.05 0.05

2mm 206.63 155.09 155.09 48.75 39.92 3.18 3.88
mvt 1.69 1.18 1.18 0.23 0.29 5.13 4.06

gemver 2.33 1.30 1.30 0.55 0.57 2.36 2.28
reg detect 0.43 0.06 0.06 0.80 0.72 0.08 0.09
correlation 71.81 64.73 64.73 64.80 64.75 1.00 1.00

gramschmidt 159.34 164.49 164.49
dynprog 167.63 65.87 65.87 69.83 65.07 0.94 1.01

durbin 2.23 2.07 2.07 1.96 1.06

Figure 5: Runtime results on the PolyBench suite, comparing clang with different optimization levels
and SPolly. Empty cells represent runs which could not be completed due to technical issues with
the used frameworks.

61

