
Adopt a Polyhedral Compiler!

IMPACT 2013 Workshop

Albert Cohen

INRIA and École Normale Supérieure, Paris
http://www.di.ens.fr/ParkasTeam.html

http://www.di.ens.fr/ParkasTeam.html


People Have Great Expectations

Accelerating legacy code for ever

Simplifying compiler construction and library generation

Peak performance at the touch of a button

Proving program transformations

Code generation for heterogeneous architectures

High-level circuit synthesis

Publishing great papers

[ Name your own dream project here ]

2 / 27



There Were, and Will Be Times in the Wilderness...

3 / 27



But the World Will Eventually Turn Polyhedral!

Courtesy www.progonos.com/furuti
4 / 27

www.progonos.com/furuti


Lost Memories in the Not-Yet-Polyhedral World

DDR3-2133 SDRAM

Latency: 10.3 ns

Memory bandwidth: 17.6 GB/s

4-core 2GHz ARM Cortex A15

Compute bandwidth: 2 × 4 threads × 1 NEON unit × 16 bytes × 2 GHz = 1024 GB/s

8-core 3GHz AMD Opteron

Compute bandwidth: 2 × 8 threads × 2 SSE units × 16 bytes × 3 GHz = 1536 GB/s

Memory bandwidth: 17.6 GB/s

256-core 400MHz Kalray MPPA

Compute bandwidth: 2 × 256 threads × 2 words × 4 bytes × 400 MHz = 1638.4 GB/s

1536-core 1.006GHz NVIDIA Kepler

Compute bandwidth: 2 × 1536 threads × 1 float × 4 bytes × 1.006 GHz = 12361.6 GB/s

Memory bandwidth: 190 GB/s

5 / 27



Many Candidates for Adoption

B What are the essential semantic requirements for source programs?

B Should programmers care
About parallelism?
About the memory and power walls?

B Which programmers?

B What role for the software stack?
Compilers
Runtime systems
Libraries, library generators
Auto-tuning, dynamic optimization
Operating system, virtual machine monitor

B What role for the polyhedral tools?

6 / 27



Challenges for a
polyhedral world

Modularity,
genericity,
functional

abstraction

Domain-
specific

languages

Accelerators,
vectorization,

distributed
memory

Data-
dependent

control flow,
dynamic
analysis

Scalability,
just-in-time
compilation

Task-level
optimiza-

tions,
stream-

computing

7 / 27



State-of-the-Art Tool: PPCG – Polyhedral Parallel Code Generator

PPCG (http://freecode.com/projects/ppcg)

Input: C

Output:
I OpenMP
I CUDA
I OpenCL (soon)

Steps:

Extract polyhedral model from source code (pet,isl)

Dependence analysis (isl)

Scheduling (isl)
I Expose parallelism and tiling opportunities
I Separate schedule into parts mapped on host and GPU
I perform tiling, mapping outer parallel dimensions to blocks and inner parallel

dimensions to threads

Memory management (isl)
I Add transfers of data to/from GPU (isl)
I Detect array reference groups
I Allocate groups to registers and shared memory

Generate AST (isl)

8 / 27

http://freecode.com/projects/ppcg


State-of-the-Art Tool: PPCG – Polyhedral Parallel Code Generator

PPCG (http://freecode.com/projects/ppcg)

Input: C

Output:
I OpenMP
I CUDA
I OpenCL (soon)

Steps:

Extract polyhedral model from source code (pet,isl)

Dependence analysis (isl)

Scheduling (isl)
I Expose parallelism and tiling opportunities
I Separate schedule into parts mapped on host and GPU
I perform tiling, mapping outer parallel dimensions to blocks and inner parallel

dimensions to threads

Memory management (isl)
I Add transfers of data to/from GPU (isl)
I Detect array reference groups
I Allocate groups to registers and shared memory

Generate AST (isl)

8 / 27

http://freecode.com/projects/ppcg


PPCG Example – Input

Source code:

void matmul(int M, int N, int K,
float A[static const restrict M][K],
float B[static const restrict K][N],
float C[static const restrict M][N])

{
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++) {

S1: C[i][j] = 0;
for (int k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];
}

}

Options:

--ctx="[M,N,K] -> { : M = N = K = 256 }"
--sizes="{ kernel[i] -> tile[16,16,16];

kernel[i] -> block[8,16] }"

9 / 27



PPCG Example – Output

Kernel code: (host code not shown)

int b0 = blockIdx.y, b1 = blockIdx.x;
int t0 = threadIdx.y, t1 = threadIdx.x;
__shared__ float s_A[16][16];
__shared__ float s_B[16][16];
float p_C[2][1];

p_C[0][0] = C[(16 * b0 + t0) * (256) + 16 * b1 + t1];
p_C[1][0] = C[(16 * b0 + t0 + 8) * (256) + 16 * b1 + t1];
for (int g9 = 0; g9 <= 240; g9 += 16) {
for (int c0 = t0; c0 <= 15; c0 += 8)
s_B[c0][t1] = B[(g9 + c0) * (256) + 16 * b1 + t1];

for (int c0 = t0; c0 <= 15; c0 += 8)
s_A[c0][t1] = A[(16 * b0 + c0) * (256) + t1 + g9];

__syncthreads();
if (g9 == 0) {
p_C[0][0] = (0);
p_C[1][0] = (0);

}
for (int c2 = 0; c2 <= 15; c2 += 1) {
p_C[0][0] = (p_C[0][0] + (s_A[t0][c2] * s_B[c2][t1]));
p_C[1][0] = (p_C[1][0] + (s_A[t0 + 8][c2] * s_B[c2][t1]));

}
__syncthreads();

}
C[(16 * b0 + t0) * (256) + 16 * b1 + t1] = p_C[0][0];
C[(16 * b0 + t0 + 8) * (256) + 16 * b1 + t1] = p_C[1][0];

10 / 27



PPCG Results

co
rr

e
la

tio
n

co
va

ria
n

c e

2
m

m

3
m

m

b
ic

g

d
o

itg
e

n

g
e

m
m

g
e

m
ve

r

g
e

su
m

m
v

g
ra

m
sc

h
m

id
t lu

m
vt

sy
m

m

sy
r2

k

sy
rk

tr
a

n
sp

o
se a
d

i

fd
td

-2
d

ja
co

b
i-1

d
-im

p
e

r

ja
co

b
i-2

d
-im

p
e

r

g
e

o
m

e
tr

ic
 m

e
a

n

0.1

1

10

100

1000
Pluto OpenMP
Par4All
PPCG

S
p

e
e

d
u

p

Benchmarks: PolyBench 3.1

Platform: Tesla M2070

Baseline: sequential CPU execution gcc -Ofast

Attend Carlos Juega’s talk on Wednesday morning!

11 / 27



CARP EU Project

w/ ARM, RealEyes, Rightware, Monoidics,

Imperial College, RWTH Aachen, U. Twente

Compiler construction for DSLs:
support for parallelization,
vectorization, loop transformation...

Reconcile advanced loop nest
optimizations and software
engineering practices

Image 
processing 

DSL

Linear 
algebra 

DSL

Other 
DSLs

.PIL .PIL .PIL

Compiled PIL

.PIL .PIL .PIL

Hand-written PIL

OpenCV.PIL

MathLib.PIL

Other PIL libs

P
IL

 lib
ra

rie
s

...

...

Portable Intermediate Language (PIL)

Single blob of optimised PIL

PIL Cross-Component Optimiser 

Kernel fusion, memory reuse, 
iteration-space optimisations

DSL → PIL 
Compilers 

Polyhedral representation

Polyhedral analysis 

Performance data, 
from profiling

Optimised, 
power-efficient, 

parallel 
OpenCL

.CL .CL .CL

Hand-Written OpenCL

.CL

.CL

.CL

...

O
p

e
n

C
L

 lib
s

OpenCV.PIL

MathLib.PIL

Other PIL libs

P
IL

 lib
ra

rie
s

...

ARM Mali 
Platform

NVIDIA 
GPUs

AMD 
GPUs

Other 
OpenCL-
enabled 

accelerators

Vendor-specific 
OpenCL drivers

Optimising, Auto-parallelizing, Power-
aware Polyhedral Compiler 

Compiler employs code-based 
cost analysis techniques

Profile-based Iterative Compilation 
and Auto-tuning

Accelerator Hardware

Domain Specific Languages

12 / 27



DSLs to the Rescue

Problem: general purpose languages are not optimization-friendly
I much static semantics is lost
I much domain information is lost
I high expressiveness → ambiguitis disable optimizations (e.g., pointer aliasing)

Some DSLs are designed primarily for abstraction and productivity
→ we are interested in the performance-focused DSLs

But compiling DSLs directly into OpenCL or CUDA is not advisable

Approach: target an appropriate intermediate language (IL) and leverage a generic
optimization framework

13 / 27



Zooming in on Pencil

14 / 27



Pencil: a Platform-Neutral Compute Intermediate Language

An intermediate language for DSL compilers

C-based intermediate language

Code regions specifically marked as Pencil-compliant

Sequential, platform neutral

A set of coding rules, language extensions and directives

Planning for an LLVM IR version of Pencil

Complementary objectives to DSL intermediate languages such as Delite IR

Design goals

Unlock the power of optimization frameworks by
I keeping a maximum of information expressed by the DSL
I eliminating ambiguity for optimizers

Users: Code generators + expert developers

15 / 27



Platform-Neutral Compute Intermediate Languages

Coding rules for Pencil functions

I cannot be recursive
I no gotos
I no pointers
I array arguments should be declared with static const

restrict inferred through automatic versioning
I dedicated types and builtins for dynamic analysis (work in progress)

Language extensions (C11-compatible)

I access summary functions
I describe access pattern of a function if static analysis cannot be performed (no source or not

Pencil compliant) or if the results are too inaccurate
I modular interprocedural information used in the caller through “polyhedral inlining”

Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any dependences across the loop
following the directive

16 / 27



Platform-Neutral Compute Intermediate Languages

Coding rules for Pencil functions
I cannot be recursive
I no gotos
I no pointers
I array arguments should be declared with static const

restrict inferred through automatic versioning
I dedicated types and builtins for dynamic analysis (work in progress)

Language extensions (C11-compatible)

I access summary functions
I describe access pattern of a function if static analysis cannot be performed (no source or not

Pencil compliant) or if the results are too inaccurate
I modular interprocedural information used in the caller through “polyhedral inlining”

Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any dependences across the loop
following the directive

16 / 27



Platform-Neutral Compute Intermediate Languages

Coding rules for Pencil functions
I cannot be recursive
I no gotos
I no pointers
I array arguments should be declared with static const

restrict inferred through automatic versioning
I dedicated types and builtins for dynamic analysis (work in progress)

Language extensions (C11-compatible)
I access summary functions

I describe access pattern of a function if static analysis cannot be performed (no source or not
Pencil compliant) or if the results are too inaccurate

I modular interprocedural information used in the caller through “polyhedral inlining”

Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any dependences across the loop
following the directive

16 / 27



Platform-Neutral Compute Intermediate Languages

Coding rules for Pencil functions
I cannot be recursive
I no gotos
I no pointers
I array arguments should be declared with static const

restrict inferred through automatic versioning
I dedicated types and builtins for dynamic analysis (work in progress)

Language extensions (C11-compatible)
I access summary functions

I describe access pattern of a function if static analysis cannot be performed (no source or not
Pencil compliant) or if the results are too inaccurate

I modular interprocedural information used in the caller through “polyhedral inlining”

Directives
I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any dependences across the loop
following the directive

16 / 27



Example of Pencil code

int function(int A[static const restrict 100][100],
int C[static const restrict 100][100]) {

#pragma pencil independent
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
A[k][t[j]] = foo(C);

}

17 / 27



Example of Pencil code

void foo_summary(int C[static const restrict n][n]) {
for (int i=0; i<n; i++)
USE(C[i]); // marks row i of C as being read

}

void foo(int C[const restrict n][n])
ACCESS(foo_summary(C));

int function(int A[static const restrict 100][100],
int C[static const restrict 100][100]) {

#pragma pencil independent
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
A[k][t[j]] = foo(C);

}

18 / 27



Modularity, Genericity, Functional Abstraction, and DSLs

Short-term
I Functional abstraction → inlining
I Genericity → specialization, partial evaluation
I Modularity → staged programs: write program generators
I ... a roadmap for a DSL compiler builder

cf. NumPy, pythran, C++ template metaprogramming (TaskGraph library,
RapidMind/ArBB), Delite (Scala), Halide, OP2, MetaOCaml experiments...

Long-term
I Support function-level fusion, vectorization, tiling

cf. Kennedy’s Telescoping Languages
I On-demand function cloning rather than inlining

19 / 27



What Else Do You Want From a Polyhedral Compiler?

Complex transformations

Scalability

Just-in-time and split compilation

Auto-tuning

Dynamic analysis, optimistic transformations

Adaptation and optimization of parallel code

20 / 27



What Else Do You Want From a Polyhedral Compiler?

Complex transformations

Scalability

Just-in-time and split compilation

Auto-tuning

Dynamic analysis, optimistic transformations

Adaptation and optimization of parallel code

20 / 27



What Else Do You Want From a Polyhedral Compiler?

Complex transformations

Scalability

Just-in-time and split compilation

Auto-tuning

Dynamic analysis, optimistic transformations

Adaptation and optimization of parallel code

20 / 27



Complex Transformations

E.g., split tiling, diamond tiling, overlapped tiling...

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=1

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=2

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=3

More complex?

Instancewise code generation options

Scripting affine transformations

[ Your crazy idea here ]

21 / 27



Scalability: Sub-Polyhedral Approximations

Interval

Octagon (UTVPI) TVPI Convex Polyhedra

a 6 xi 6 b ±xi ± xj 6 c axi + bxj 6 c
∑

aixi 6 c

Precision
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Intervals ⊂ Octagons (UTVPI) ⊂ TVPI ⊂ Polyhedra
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cost

22 / 27



Scalability: Sub-Polyhedral Approximations

Replace linear programming
(Simplex) with Bellman Ford

O(mn3)  O(mn)

Applicable to dependence analysis,
code generation:
over-approximation

Applicable to affine scheduling:
under-approximation

Preserving feasibility of polyhedra
is a tough challenge for some affine
scheduling problems

(Unrolled) Gauss-Seidel benchmark
Automatic parallelization with PLuTo

0 1000 2000 3000 4000 5000 6000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Time taken to Solve System (Seconds) vs. Number of Dependences

Dependences

T
im

e
 t

a
k
e

n
 (

S
e

c
o

n
d

s
)

Solve (SCoP)

PIP (SEI)
BF (SEI)

23 / 27



Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

Automatic Choice

Algorithmic
Choice

Specialization
Choice

Scheduling
Choice

Rich Static
Semantics

Accurate
Dynamic

Information

24 / 27



Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

Automatic Choice

Algorithmic
Choice

Specialization
Choice

Scheduling
Choice

Rich Static
Semantics

Accurate
Dynamic

Information

Importance of static, non-functional semantics

24 / 27



Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

Automatic Choice

Algorithmic
Choice

Specialization
Choice

Scheduling
Choice

Rich Static
Semantics

Accurate
Dynamic

Information

Importance of delaying choice until information is available

24 / 27



Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

Automatic Choice

Algorithmic
Choice

Specialization
Choice

Scheduling
Choice

Rich Static
Semantics

Accurate
Dynamic

Information

contradiction!

Contradiction: accurate information is only available after the most important choices
have already been made

24 / 27



Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

Deferred
Automatic Choice

Algorithmic
Choice

Specialization
Choice

Scheduling
Choice

Rich Static
Semantics

Accurate
Dynamic

Information

contradiction!

Deferred compilation enables Just-in-Time (JIT) optimization when accurate information
is available, but loses much of the static semantics carrying choice opportunities

24 / 27



Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

Deferred
Automatic Choice

w/ Split Compilation

Algorithmic
Choice

Specialization
Choice

Scheduling
Choice

Rich Static
Semantics

Accurate
Dynamic

Information

contradiction solved!

Contradiction solved with split compilation: optimizations split over coordinated, offline
and online compilation steps, communicating through rich intermediate languages

24 / 27



Auto-Tuning, Iterative Optimization, Machine Learning Compilation

Even with rich static semantics and accurate information, the compiler is left with a huge
space of optimization and specialization opportunities

“By continuously trying, we finally succeed.
Therefore: the more it fails, the more it has chances to work.”

Principle of iterative, feedback-directed optimization

Can be embedded transparently in a virtual execution
environment

Machine learning techniques for split compilation

Offline training, feeding online predictive models with
target- and application-specific weights

Leveraging static features in deferred compilation steps

25 / 27



Auto-Tuning, Iterative Optimization, Machine Learning Compilation

Even with rich static semantics and accurate information, the compiler is left with a huge
space of optimization and specialization opportunities

“By continuously trying, we finally succeed.
Therefore: the more it fails, the more it has chances to work.”

Principle of iterative, feedback-directed optimization

Can be embedded transparently in a virtual execution
environment

Machine learning techniques for split compilation

Offline training, feeding online predictive models with
target- and application-specific weights

Leveraging static features in deferred compilation steps

25 / 27



Auto-Tuning, Iterative Optimization, Machine Learning Compilation

Even with rich static semantics and accurate information, the compiler is left with a huge
space of optimization and specialization opportunities

“By continuously trying, we finally succeed.
Therefore: the more it fails, the more it has chances to work.”

Principle of iterative, feedback-directed optimization

Can be embedded transparently in a virtual execution
environment

Machine learning techniques for split compilation

Offline training, feeding online predictive models with
target- and application-specific weights

Leveraging static features in deferred compilation steps

25 / 27





Adopt a Polyhedral Compiler!

It is happening now

Many blockers have been lifted: better tools, more effective heuristics, better
performance, more incentive to reengineer the compilers, more performance to gain,
more market impact...

The expectations are high, much work is awaiting us

Convince industry to (really) invest into robust platforms, and address open issues,
or let’s build the software company that will do it

Software

“Production-quality” integer Set Library: http://freshmeat.net/projects/isl

→ barvinok, iscc, pet, ppcg, PLuTo, PoCC, Polly (LLVM), Graphite (GCC)

27 / 27

http://freshmeat.net/projects/isl

