Adopt a Polyhedral Compiler!

IMPACT 2013 Workshop

Albert Cohen

INRIA and Ecole Normale Supérieure, Paris
http://www.di.ens.fr/ParkasTeam.html

http://www.di.ens.fr/ParkasTeam.html

People Have Great Expectations

Accelerating legacy code for ever

Simplifying compiler construction and library generation
Peak performance at the touch of a button

Proving program transformations

Code generation for heterogeneous architectures
High-level circuit synthesis

Publishing great papers

[Name your own dream project here |

2/21

There Were, and Will Be Times in the Wilderness...

3/27

But the World Will Eventually Turn Polyhedral!

Courtesy www.progonos.com/furuti pyre

www.progonos.com/furuti

Lost Memories in the Not-Yet-Polyhedral World

DDR3-2133 SDRAM
Latency: 10.3 ns
Memory bandwidth: 17.6 GB/s

4-core 2GHz ARM Cortex A15
Compute bandwidth: 2 X 4 threads X 1 NEON unit X 16 bytes X 2 GHz = 1024 GB/s

8-core 3GHz AMD Opteron
Compute bandwidth: 2 X 8 threads X 2 SSE units X 16 bytes X 3 GHz
Memory bandwidth: 17.6 GB/s

1536 GB/s

256-core 400MHz Kalray MPPA
Compute bandwidth: 2 X 256 threads X 2 words X 4 bytes X 400 MHz

1638.4 GB/s

1536-core 1.006GHz NVIDIA Kepler
Compute bandwidth: 2 X 1536 threads X 1 float X 4 bytes X 1.006 GHz = 12361.6 GB/s
Memory bandwidth: 190 GB/s

5/21

Many Candidates for Adoption

> What are the essential semantic requirements for source programs?

> Should programmers care
About parallelism?
About the memory and power walls?
Which programmers?

> What role for the software stack?
Compilers
Runtime systems
Libraries, library generators
Auto-tuning, dynamic optimization
Operating system, virtual machine monitor

> What role for the polyhedral tools?

6/27

Modularity,
%enerlmty,

unctional
abstraction

Domain-
specific
languages

Data-
dependent
control flow,

dynamic
analysis

Challenges for a
polyhedral world

Accelerators,
vectorization,
distributed

memory

Scalability,

just-in-time
compilation

Task-level
optimiza-
tions,
stream-
computing

7/21

State-of-the-Art Tool: PPCG — Polyhedral Parallel Code Generator

PPCG (http://freecode.com/projects/ppcg)
@ Input: C
@ Output:

» OpenMP
» CUDA
> OpenCL (soon)

8/21

http://freecode.com/projects/ppcg

State-of-the-Art Tool: PPCG — Polyhedral Parallel Code Generator

PPCG (http://freecode.com/projects/ppcg)
@ Input: C
@ Output:

» OpenMP
» CUDA
> OpenCL (soon)

Steps:
@ Extract polyhedral model from source code (pet,isl)

@ Dependence analysis (isl)
Scheduling (is1)
» Expose parallelism and tiling opportunities
> Separate schedule into parts mapped on host and GPU
> perform tiling, mapping outer parallel dimensions to blocks and inner parallel
dimensions to threads

@ Memory management (isl)

> Add transfers of data to/from GPU (isl)
> Detect array reference groups
> Allocate groups to registers and shared memory

Generate AST (isl)

8/21

http://freecode.com/projects/ppcg

PPCG Example — Input

Source code:

void matmul (int M, int N, int K,
float Al[static const restrict M][K],
float B[static const restrict K][N],
float C[static const restrict M][N])
{
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++) {
Ss1: C[il[j] = o;
for (int k = 0; k < K; k++)
S2: C[i1[3] = clil[j] + Alil[x] * B[k][j];

}

Options:

--ctx="[M,N,K] -> { : M =N =K = 256 }"
--sizes="{ kernel[i] -> tile[16,16,16];
kernel[i] -> block[8,16] }"

9/21

PPCG Example — Output

Kernel code: (host code not shown)

int b0 = blockIdx.y, bl = blockIdx.x;
int t0 = threadIdx.y, t1 = threadIdx.x;
__shared__ float s_A[16][16];
__shared__ float s_B[16][16];

float p_C[2]1[1];

p_CL01[0] = C[(16 * bO + t0) * (256) + 16 * bl + t1];
p_C[11[0] = C[(16 * bO + tO + 8) * (256) + 16 * bl + ti];
for (int g9 = 0; g9 <= 240; g9 += 16) {
for (int c0 = t0; cO <= 15; cO += 8)
s_B[cOl[t1] = B[(g9 + cO) * (256) + 16 * bl + ti];
for (int cO = t0; cO <= 15; cO += 8)
s_A[cOl[t1] = A[(16 * bO + c0) * (256) + t1 + g9];

__syncthreads();
if (g9 == 0) {
p_C[0I[0] = (0);
p_C[11[0] = (0);
}
for (int c2 = 0; c2 <= 15; c2 += 1) {
p_C[01[0] = (p_C[0I[0] + (s_A[t0][c2] * s_B[c2][t11));
p_C[11[0] = (p_C[1]1[0] + (s_A[tO + 8]1[c2] * s_B[c2][t1]));
}
__syncthreads();

}
C[(16 * bO + t0) * (256) + 16 * bl + t1] = p_C[0][0];
CL[(16 * b0 + t0 + 8) * (256) + 16 * bl + t1] = p_C[1]1[0];

10/27

PPCG Results

1000

100

M Pluto OpenMP

@ Par4All
OPPCG

10

; bkl

Speedup

correlation
covariance
2mm

3mm

bicg
doitgen
gemm
gemver
gesummv
gramschmidt
symm
syr2k

syrk
transpose
adi

@ Benchmarks: PolyBench 3.1
o Platform: Tesla M2070

@ Baseline: sequential CPU execution gcc -0Ofast

Attend Carlos Juega's talk on Wednesday morning!

fdtd-2d

jacobi-1d-imper

jacobi-2d-imper

geometric mean

11/27

CARP EU Project

w/ ARM, RealEyes, Rightware, Monoidics,
Imperial College, RWTH Aachen, U. Twente

@ Compiler construction for DSLs:
support for parallelization,
vectorization, loop transformation...

@ Reconcile advanced loop nest
optimizations and software
engineering practices

- Domain Specific Languages

DSL — PIL
Compilers

Other PIL

Portable Intermediate Language (PIL)

Kernel fusion, memory reuse,
iteration-space optimisations

v PIL Cross-Component Optimiser

[Single blob of optimised PIL

Polyhedral analysis

[Polyhedral representalion] [Pezg;“::‘;rﬁi:g‘av

Compiler employs code-based | Optimising, Al Power-
cost analysis techniques aware Polyhedral Compiler

Optimised,
power-efficient,

parallel
Hand-Written OpenCL. OpenCL

Vendor-specific
OpenCL drivers

ARMMali| [nviDIA | [AMD B
Platform GPUs GPUs enabled

accelerators,

Profile-based lterative C
and Auto-tuning

12727

DSLs to the Rescue

@ Problem: general purpose languages are not optimization-friendly

» much static semantics is lost
» much domain information is lost
> high expressiveness — ambiguitis disable optimizations (e.g., pointer aliasing)

@ Some DSLs are designed primarily for abstraction and productivity
— we are interested in the performance-focused DSLs

@ But compiling DSLs directly into OpenCL or CUDA is not advisable

@ Approach: target an appropriate intermediate language (IL) and leverage a generic
optimization framework

13/27

Zooming in on Pencil

[Domain Specific Languages J

DSL -> PENCILcompilers

4
PENCIL — Platform Neutral Compute
Intermediate Language

Polyhedral compilation

N
Direct OpenCL
programming OpenCL

L\

NVIDIA AMD ARM Other
GPUs GPUs GPUs """| accelerators

14 /27

Pencil: a Platform-Neutral Compute Intermediate Language

An intermediate language for DSL compilers

C-based intermediate language

Code regions specifically marked as PENCIL-compliant
Sequential, platform neutral

A set of coding rules, language extensions and directives

Planning for an LLVM IR version of PENCIL

Complementary objectives to DSL intermediate languages such as Delite IR

Design goals

@ Unlock the power of optimization frameworks by

> keeping a maximum of information expressed by the DSL
> eliminating ambiguity for optimizers

@ Users: Code generators + expert developers

15/ 27

Platform-Neutral Compute Intermediate Languages

@ Coding rules for PENCIL functions

@ Language extensions (Cl1l-compatible)

@ Directives

16 /27

Platform-Neutral Compute Intermediate Languages

@ Coding rules for PENCIL functions

>
>
>
>

>

cannot be recursive

no gotos

no pointers

array arguments should be declared with static const

restrict inferred through automatic versioning

dedicated types and builtins for dynamic analysis (work in progress)

@ Language extensions (Cl1l-compatible)

@ Directives

16 /27

Platform-Neutral Compute Intermediate Languages

@ Coding rules for PENCIL functions
> cannot be recursive
> no gotos
> no pointers
> array arguments should be declared with static const
restrict inferred through automatic versioning
> dedicated types and builtins for dynamic analysis (work in progress)

@ Language extensions (Cl1l-compatible)
> access summary functions

describe access pattern of a function if static analysis cannot be performed (no source or not
PENCIL compliant) or if the results are too inaccurate
modular interprocedural information used in the caller through “polyhedral inlining”

@ Directives

16 /27

Platform-Neutral Compute Intermediate Languages

@ Coding rules for PENCIL functions
> cannot be recursive
> no gotos
> no pointers
> array arguments should be declared with static const
restrict inferred through automatic versioning
> dedicated types and builtins for dynamic analysis (work in progress)

@ Language extensions (Cl1l-compatible)
> access summary functions

describe access pattern of a function if static analysis cannot be performed (no source or not
PENCIL compliant) or if the results are too inaccurate
modular interprocedural information used in the caller through “polyhedral inlining”

@ Directives
> #pragma pencil independent [(l1y...,In)]

listed statements (all if unspecified) do not carry any dependences across the loop
following the directive

16 /27

Example of Pencil code

int function(int A[static const restrict 100] [100],
int C[static const restrict 100][100]) {
#pragma pencil independent
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
Alx][t[j]1] = foo(C);

17/27

Example of Pencil code

void foo_summary(int C[static const restrict n][n]) {
for (int i=0; i<n; i++)
USE(C[il); // marks row i of C as being read
}

void foo(int C[const restrict n][n])
ACCESS (foo_summary (C)) ;

int function(int A[static const restrict 100] [100],
int C[static const restrict 100][100]) {
#pragma pencil independent
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
Alx][t[j]1] = foo(C);

18/27

Modularity, Genericity, Functional Abstraction, and DSLs

@ Short-term

>

>
>
| 3

Functional abstraction — inlining
Genericity — specialization, partial evaluation
Modularity — staged programs: write program generators
. a roadmap for a DSL compiler builder
cf. NumPy, pythran, C++ template metaprogramming (TaskGraph library,

RapidMind/ArBB), Delite (Scala), Halide, OP2, MetaOCaml experiments...

@ Long-term
> Support function-level fusion, vectorization, tiling

cf. Kennedy's Telescoping Languages

» On-demand function cloning rather than inlining

19/27

What Else Do You Want From a Polyhedral Compiler?

20/27

What Else Do You Want From a Polyhedral Compiler?

Complex transformations

Scalability

Just-in-time and split compilation

Auto-tuning

20/27

What Else Do You Want From a Polyhedral Compiler?

Complex transformations

Scalability

Just-in-time and split compilation

Auto-tuning

Dynamic analysis, optimistic transformations

Adaptation and optimization of parallel code

20/27

Complex Transformations

E.g., split tiling, diamond tiling, overlapped tiling...

Split Tiling

A

Split Tiling implified), t=2 Split Tiling (non-simplified), t=3

}.:::
i

6 ERET
i

More complex?
@ Instancewise code generation options
@ Scripting affine transformations

@ [Your crazy idea here |

21/27

Scalability: Sub-Polyhedral Approximations

2
NI

Interval

Octagon
a<z;<b t+a; +

N
%

(UTVPI)
xr; < C

TVPI Convex Polyhedra
ax; +bx; <c Eaiwi <ec

Precision

Intervals C Octagons (UTVPI) C TVPI C Polyhedra

Cost

22/27

Scalability: Sub-Polyhedral Approximations

(Unrolled) Gauss-Seidel benchmark

. . Automatic parallelization with PLuTo
@ Replace linear programming

(Simplex) with Bellman Ford
O(mn®) ~ O(mn)

Time taken to Solve System (Seconds) vs. Number of Dependences

S o
Solve (SCoP)
e | [o PIP(SE)
@ Applicable to dependence analysis, © BF (SE)
code generation: BN

over-approximation

0.4

0.3

@ Applicable to affine scheduling:
under-approximation

Time taken (Seconds)

N\

0.1
I
1
°
\
\
.
o

@ Preserving feasibility of polyhedra
is a tough challenge for some affine 5 eee-e="%""°
scheduling problems 0 1000 2000 3000 4000 5000 6000

Dependences

23/27

Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information J

. . Algorithmic
Rich Static Choice
Semantics

Specialization
hoice

Automatic Choice

Accurate

Dynamic Scheduling
Information Choice

24 /27

Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information J

. . Algorithmic
Rich Static Choice
Semantics

Specialization

Automatic Choice :
hoice

Accurate

Dynamic Scheduling
Information Choice

Importance of static, non-functional semantics)

24 /27

Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information J

Algorithmic
Rich Static Choice
Semantics

Specialization

Automatic Choice :
hoice

Accurate

Dynamic Scheduling
Information Choice

Importance of delaying choice until information is available)

24 /27

Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information)

. . Algorithmic
Rich Static Choice
Semantics

Specialization

iction! Automatic Choi .
contradiction! utomatic Choice Choice

Accurate

Dynamic Scheduling
Information Choice

Contradiction: accurate information is only available after the most important choices
have already been made J

24 /27

Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information

J

. . Algorithmic
Rich Static Choice

Semantics

Deferred
contradiction! Automatic Choice

Specialization
hoice

Accurate

Dynamic Scheduling
Information Choice

Deferred compilation enables Just-in-Time (JIT) optimization when accurate information

is available, but loses much of the static semantics carrying choice opportunities

)

24 /27

Just-in-Time and Split Compilation

Tools could do a lot better, if provided with enough choice and precise information)

. . Algorithmic
Rich Static Choice

Semantics

Deferred
contradiction solved! Automatic Choice

Specialization
Choice

Accurate

Dynamic Scheduling
Information Choice

Contradiction solved with split compilation: optimizations split over coordinated, offline
and online compilation steps, communicating through rich intermediate languages J

24 /27

Auto-Tuning, Iterative Optimization, Machine Learning Compilation

Even with rich static semantics and accurate information, the compiler is left with a huge
space of optimization and specialization opportunities

25/27

Auto-Tuning, Iterative Optimization, Machine Learning Compilation

Even with rich static semantics and accurate information, the compiler is left with a huge
space of optimization and specialization opportunities

L5 dowides Shadok
“By continuously trying, we finally succeed.
Therefore: the more it fails, the more it has chances to work.”

Fooxel

EN ESSAYANT CoNTINUVELLEMENT

ON FINIT PAR.REUSSIR. DONC!
PLUS G-A RATE,PLUS ON A

DECHANCES QUE G & MARCHE. .

25/27

Auto-Tuning, Iterative Optimization, Machine Learning Compilation

Even with rich static semantics and accurate information, the compiler is left with a huge
space of optimization and specialization opportunities

Lo dovides Shadob

“By continuously trying, we finally succeed.
Therefore: the more it fails, the more it has chances to work.”

Principle of iterative, feedback-directed optimization

@ Can be embedded transparently in a virtual execution
environment

Machine learning techniques for split compilation

@ Offline training, feeding online predictive models with
target- and application-specific weights

EN ESCAYANT ConTINUELLEMENT @ Leveraging static features in deferred compilation steps
ON FINIT PAR. REUSSIR. DONC!

PLUS G.A RATE, PLUS ON A&
DECHANCES QUE G & MARCHE. .

25/27

Adopt a Polyhedral Compiler!

It is happening now

@ Many blockers have been lifted: better tools, more effective heuristics, better
performance, more incentive to reengineer the compilers, more performance to gain,
more market impact...

@ The expectations are high, much work is awaiting us

@ Convince industry to (really) invest into robust platforms, and address open issues,
or let’s build the software company that will do it

Software
“Production-quality” integer Set Library: http://freshmeat.net/projects/isl

— barvinok, iscc, pet, ppcg, PLuTo, PoCC, Polly (LLVM), Graphite (GCC)

27 /21

http://freshmeat.net/projects/isl

