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ABSTRACT

We present a new library for extracting a polyhedral model
from C source. The library is based on clang, the LLVM C
frontend, and isl, a library for manipulating quasi-affine sets
and relations. The use of clang for parsing the C code brings
advanced diagnostics and full support for C99. The use of isl
allows for an easy construction and a powerful and compact
representation of the polyhedral model. Besides allowing
arbitrary piecewise quasi-affine index expressions and con-
ditions, the library also supports some data dependent con-
structs and has special treatment for unsigned integers. The
library has been successfully used to obtain polyhedral mod-
els for use in an equivalence checker, a tool for constructing
polyhedral process networks, a parallelizer targeting GPUs
and an interactive polyhedral environment.

1. INTRODUCTION AND MOTIVATION

The polyhedral model has been successfully used for sev-
eral decades and is gradually finding its way into industrial
compilers such as the IBM-XL [10] compiler, GCC (through
graphite [24]) and LLVM/clang (through Polly [17]). All
these compilers extract the polyhedral model from a low to
medium level intermediate representation (IR). This makes
the extraction independent of the input programming lan-
guage and allows them to leverage compiler internal canon-
icalization and analysis passes to increase the amount of
code they can analyze. However, when analyzing a com-
piler internal IR, relating the analysis to the input program
becomes difficult. Hence, direct user feedback about unsup-
ported constructs is normally not available. Also, the gen-
erated code is in most cases again a compiler internal IR.
Synthesizing a higher level language is hard and even if suc-
cessful, relating the resulting high level code to the original
program would remain difficult. We conclude that analyz-
ing a compiler internal IR may not be the best approach if
user feedback is required or a high level language should be
generated.

For some applications, including polyhedral source-to-source
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compilers such as Pluto [11] and POCCEL it is therefore more
convenient to extract a polyhedral model from the source
language, typically C or Fortran, or, more commonly, a sub-
set and /or mixture of these languages. The parsers for these
tools usually only analyze those program fragments, called
static control parts (scops), that need to be converted to
the polyhedral model. This means that information from
outside of these scops, such as the types of variables or the
sizes of arrays, are not available in the output or has to be
redeclared using special annotations. By far the most popu-
lar such parser is clan [7], which is used by both Pluto and
PoCC.

With our pet (http://freecode.com/projects/libpet), we
have chosen a third option. We use a real C compiler to parse
the source code and extract the polyhedral model directly
from the high-level abstract syntax tree (AST). Although
similar parsers have been developed in the past or are still
in development, we believe that pet is the first to be pub-
licly available. Furthermore, due to the use of a modern
integer set library, it can, compared to other extractors, sig-
nificantly relax the definition of a scop. The use of a real C
parser, in our case clang, has many advantages. In partic-
ular, clang has full support for C99 [18], including variable
length arrays (VLAs). This support is crucial for properly
parsing the dynamically sized arrays versions of the Poly-
Bench 3.1 benchmarks)®| Additionally, clang generates very
nice diagnostics, allowing us to clearly communicate to the
user which constructs (if any) in the input code are (cur-
rently) not supported by pet.

Besides the above generic motivation, we were also faced
with some specific needs for a better parser. The aim of
the project that partially funded this work is to extend the
pn tool [32] for constructing polyhedral process network to
handle some dynamic constructs [23}27]. The original poly-
hedral parser used by pn, called pers, was built on top of
SUIF [2], which is no longer being actively maintained and
has no support for C99. Furthermore, the construction of
the polyhedral model was performed using a combination of
some SUIF passes, the Omega library [20] and an ad-hoc
constraints based internal representation. Extending pers
was therefore not considered to be a viable option.

Similarly, our work on PPCG, a tool for generating GPU code

"http://pocc.sourceforge.net
“http://www.cse.ohio-state.edu/ pouchet/software/
polybench/
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from a sequential program using the polyhedral model, re-
quires the sizes of the accessed arrays to generate the needed
memory transfers. This information was not available in
the output of clan, which was the extractor originally used
by PPCG. Since clan does not even look at the array dec-
larations, extending it to provide this information seemed
non-trivial at best.

The desire to replace these two parsers by a single polyhedral
parser lead to the requirement that pet should support the
features of both tools. In particular, pers was also being
used by an equivalence checker [31], which has been used
to compare the outputs of different versions of CLooG [6]
and which has also been extended to handle some data-
dependent constructs [33]. pet was therefore designed to
be able to parse both the output of CLooG and these data-
dependence constructs.

There are several libraries available that can be used to
manipulate a polyhedral model, including the Omega li-
brary [20], PolyLib [21], PPL [4] and isl [29]. Some poly-
hedral parsers prefer to use an internal and/or output rep-
resentation that is independent of any polyhedral library.
We believe however that the internal use of a powerful li-
brary such as isl significantly facilitates the development
of a polyhedral parser. In fact, by leveraging the power of
both clang and isl, the initial usable version of pet satis-
fying all the initial requirements and including most of the
features described in this paper was written within a single
man-month. Since both initial users of pet also use isl,
the isl representation is also used in the output. Any other
representation would only risk losing information. Finally,
the use of the isl representation also allowed us to easily
integrate pet into the interactive environment iscc [30].

2. OVERVIEW

The input to pet is valid C source code. A polyhedral model
will be constructed for a fragment of this C code. In its de-
fault mode of operation, the fragment to be analyzed needs
to be delimited by pragmas, in particular #pragma scop and
#pragma endscop. If any construct inside this fragment can-
not be analyzed by pet, then a warning is produced point-
ing out the unsupported construct. If the user specifies the
--autodetect option then pet will try to detect a fragment
that fits inside the polyhedral model. In this case, no warn-
ings will be produced by pet as any code containing un-
supported constructs will be considered to lie outside of the
extracted code fragment. Supported constructs include ex-

pression statements, if conditions (see[Section 3.2)) and for

loops (see [Section 3.3). All index expressions are required
to be piecewise quasi-affine (see[Section 3.1)), but some data

dependent constructs are allowed as well (see [Section 4.1}

The output is called a “scop” and consists of a context, a list
of arrays and a list of statements. The context is a parameter
set containing those parameters values for which the scop
can be executed. Currently, the context is mainly used to
ensure that all arrays have non-negative sizes. Following C99
6.7.5.2 pet can assume that a scop will only be executed with
parameters that yield array sizes larger than zero. However,
as both clang and gcc allow zero sized arrays in non pedantic
mode, we also permit parameter values yielding arrays of
size zero. For each array, we keep track of its “extent”, its

void foo(int N)
{
int alN + 11;
#pragma scop
for (int i = 0; i <= N; ++1i)
U: ali] += 1i;
#pragma endscop

}

Figure 1: A trivial program

element type and (optionally) the set of possible values. The
extent is a set defined in a space named after the array and
containing all allowed array indices. In other words, the
extent describes the size of the array. The set of possible
values of an array may be specified by the user through a
#pragma value_bounds.

Each statement consists of a line number, an iteration do-
main, (part of) a schedule and a parse tree of the correspond-
ing statement in the input program. In this parse tree, each
access is represent by a map mapping elements from the it-
eration domain to their corresponding index. Additionally,
we keep track of whether the access is a read or a write (or
both). The name of the iteration domain may be specified
by a label on the statement. Otherwise, the name is gen-
erated to be of the form S_i. Each statement keeps track
of its part of a global schedule. The entire global schedule
corresponds to the original execution order.

As a trivial example, a dump of the representation of the
program in extracted by pet is as follows.

context: ’[N] -> { : N >= -1 }’

arrays:

- context: ’[N] -> { : N>= -1}’
extent: ’[N] -> { a[iO] : i0 >= 0 and i0 <= N }’
element_type: int

statements:

- line: 6
domain: ’[N] -> { U[i] : i >= 0 and i <= N }’
schedule: ’[N] -> { U[i] -> [0, i] }’
body:

type: binary

operation: +=

arguments:

- type: access
relation: ’[N] -> { U[i] -> a[i] }’
read: 1
write: 1

- type: access
relation: ’[N] -> { U[i] -> [i]
read: 1
write: O

The model is constructed using a bottom-up approach. A
separate scop is created for each individual expression state-
ment. The iteration domains of these statements are initially
zero-dimensional, but may refer to parameters. Sequences
of scops are grouped into larger scops. If such a sequence
appears inside the body of the then or else branch of an if



statement, the iteration domains are intersected with the
condition or its negation. If it appears inside the body of a
loop, the parameter corresponding to the induction variable
is turned into an extra dimension of the iteration domains.
Additionally, we keep track of assignments to scalar vari-
ables in a simple top-down fashion. If a scalar has been as-
signed a known and affine expression, then this expression is
substituted for the scalar inside index expressions. A scalar
that has been assigned some (known or unknown) value may
not be used as a parameter, but is instead considered as a
data-dependent construct.

3. BASIC CONSTRUCTS

In this section we describe the basic constructs that make
up a polyhedral model, i.e., the access relations that appear
in expression statements, the iteration domains (constructed
from if statements and for loops) and the schedules.

3.1 Access Relations

An access relation maps an iteration vector to one or more
array elements and is represented by an isl_map. This
means that the array elements are described by affine con-
straints, possibly involving existentially quantified variables
and parameters. Since the model is constructed bottom-
up, the initially constructed access relations have a zero-
dimensional domain and therefore do not involve any iter-
ators. Instead, some of the initial parameters may be con-
verted to iterators at a later stage.

The access relation is constructed by considering each in-
dex expression individually, one for each dimension of the
accessed array. Each of these index expressions is first re-
cursively constructed as an isl_pw_aff, i.e., a piecewise
quasi-affine expression. These objects are then converted
into maps and combined into a single map. Each index ex-
pression may involve integer constants, parameters and the
following operators: +, - (both unary and binary), *, /, %
and the ternary ?7: operator. The second argument of the /
and the % operators is required to be a (positive) integer lit-
eral, while at least one of the arguments of the * operator is
required to be piecewise constant expression. For example,
an index expression of the formi * (i < 5 7 2 : 1) is al-
lowed, while (i > 10 7 i : 1) * (i < 5 ? i : 1) is not,
even though it is equivalent to (i > 10 || 1 < 5) 7 i : 1.
The first argument of the 7: operator needs to satisfy the

requirements of

Each of the above operators has a corresponding operation
in isl on isl_pw_affs and therefore requires no extra com-
putations in pet. The only exceptions are the / and % oper-
ators. isl does not provide any operation that directly cor-
responds to the C integer division (which rounds to zero),
but instead provides a “floor” (which rounds to negative
infinity) and a “ceil” operation (which rounds to infinity).
An expression of the form a / b is therefore constructed
asa > 0 ? floord(a,b) : ceild(a,b), with floord and
ceild functions that correspond to the floor and ceil op-
erations applied to the quotient of the arguments. The %
is treated in a similar way. For compatibility with CLooG
(see , the functions floord and ceild are also
accepted inside the scop, even if they are not explicitly de-
fined in the input. Similarly, the functions min and max are
also allowed.

Depending on how a statement accesses memory pet marks
the array accesses as read-only, write-only or a combined
read and write. In function calls it is also possible to pass
(the address of) an entire array or array slice as a parameter,
e.g., £(A) or £(A[i]) in case of a two-dimensional array A.
In such cases, the access relation is constructed to read/write
the entire array (slice).

The input program may also contain affine expressions that
are not used as index expressions, but that are instead used
directly as arguments to functions calls or operators. Since
a program transformation may change the iterators in these
expressions, we also represent them as access relation. Since
there is no array involved, the range of these relations is a
nameless one-dimensional space. This space can be thought
of as the set of integers, with element i having value 1.

3.2 Conditions

A condition is represented by an isl_set containing those
elements that satisfy the condition. The input expression
may be any boolean expression involving the &&, || and !
operators and comparisons. A comparison is an expression
that applies one of <, <=, >, >=, == or != to two affine expres-
sions. Such an affine expression needs to satisfy the same
requirements as the index expressions in An
affine expression e itself may also be used where a compari-
son is expected, in which case it is treated as the comparison
e != 0. As before, each of the above operations has a direct
counterpart in isl.

3.3 Loops

Currently, pet only supports for loops. The only exception
is the infinite loop, which may be written as either for (;;)
or while (1). The contribution of an infinite loop to the
iteration domain is of the form {¢ | ¢ > 0}. Recall that
the iteration domains are constructed bottom-up and that
each enclosing loop prepends a dimension to the iteration
domain.

Since pet does not yet perform any induction variable recog-
nition, the induction variable needs to be explicitly available
in the for loop. That is, the loop needs to be of the form
for (i = init(n); condition(n,i); i += v), where n is
any number of parameters. In particular, the initialization
part needs to assign an expression to a single variable (or
initialize a single newly declared variable) and this same
variable needs to be incremented by a (signed) constant in
the increment part. The increment may also be written
i-=-v,i=1+ v,++ior--i(incasevislor —1).

The condition may be any condition that satisfies the re-
quirements of Note in particular that this means
that the condition may not involve any variables that are
being written inside the loop body as they are not consid-
ered to be parameters. In principle, the condition does not
need to involve the induction variable, but such a condition
will result in either an empty or an infinite loop. Let us now
assume that v is positive. A minor variation of the construc-
tion below is used when v is negative. The constraints on the
loop iterator imposed by the initialization and the stride can
be expressed as D = {i | Ja: o > 0A¢ = init(n)+av }. If
v is equal to 1, this is simplified to D = {¢ | ¢ > init(n) }.
This simplification is performed by pet and does not have



any effect on the constructed iteration domain, but it may
result in a simpler representation of this iteration domain.

As to the condition of the for loop, a value of the iterator
belongs to the iteration domain if the condition is satisfied
by that value and all previous values. Define the set C' =
{i | condition(n,?)}. The contribution of the loop to the
iteration domain is the set {i € D | Vi’ € D : i <i =
i € C'}, or, in other words, {t € D | -3’ € D:i' <iAi ¢&
C'}. In isl, we can compute this set as

D\ ({i' —=ili <i}(D\CO)).

That is, we take the elements in D that do not satisfy the
condition (C), map them to later iterations and subtract
those later iterations from D. If condition(n,i) does not
involve any lower bounds on i then any condition satisfied
by i is also satisfied by earlier iterations and the above com-
putation can be simplified to DNC'. This simplification may
again result in a simpler representation of the result.

3.4 Schedule

As explained before, each statement maintains its part of the
global schedule. These parts of the schedule are constructed
together with the iteration domains. The initial iteration
domains are zero-dimensional and the schedule simply maps
this domain to a nameless zero-dimensional space. If a state-
ment appears in a sequence of statements, the schedule for
these statements is extended with an initial constant range
(i.e., schedule) dimension. The values of these dimensions
correspond to the order of the statements in the sequence. If
a statement appears as the body of a loop, then the schedule
is extended with both an initial domain dimension and an
initial range dimension. If the increment on the loop is posi-
tive then these new dimensions are equated. Otherwise they
are made to be opposite. That is, the schedule is extended
with either {¢ =i} or {i —» —i}.

4. ADDITIONAL FEATURES

Besides the basic constructs described above, pet also sup-
ports some additional features. Some of these involve data
dependent constructs and are used by the equivalence checker
[33] or to construct dynamic polyhedral process networks.
Others are needed to be able to parse CLooG output or to
properly handle unsigned integers.

4.1 Data Dependent Accesses

According to the requirements of an access of
the form A[i + 1 + in2[i]] is not allowed because the in-
dex expression contains an array access. It is however still
possible to perform dataflow analysis on programs contain-
ing such constructs, either by applying fuzzy dataflow anal-
ysis [5,8] or, in the worst case, assuming that A may be
accessed for any value of in2. It is even possible in some
cases to prove the equivalence of two programs containing
such constructs [33]. We therefore need a way of represent-
ing such data dependent accesses.

A “standard” access relation maps an element of the iteration
domain to one or more array elements. In a data dependent
access, the accessed array element does not only depend on
the value of the parameters and the iterators, but also on the
values of the nested accesses. We therefore extend the do-
mains of the access relations to refer not only to the iterators,

for (i = 0; i < N; ++i)
if (i + in2[i] >= 0 && i + in2[i] < N)
C[i] = f(A[i + in2[ill);
else
c[i] = 0;

Figure 2: Data dependent assignment

but also to these values. We do so by exploiting the concept
of a “wrapped” relation in isl, which essentially allows a
relation to be treated as a set while retaining information
about the domain and range of the relation. In practice,
we set the domain of the access relation to be a wrapped
relation mapping iteration domain elements to the values of
the nested accesses. For example, assume that the access
above appears in statement S_4, then the access relation is
represented as { [S_4[i] -> [i1]] -> A[1 + i + i1] }.
il represents here the unknown result of the nested access.
In addition, we keep track of the nested accesses in a list,
one for each dimension in the range of the wrapped relation.
In the example, this list would contain the access relation
{ s_4[i] -> in2[i] }.

4.2 Data Dependent Assignments

Consider the program fragment in Not only does
this program contain a data dependent access, this access is
also governed by a data dependent condition. The purpose
of this condition is to avoid an out-of-bounds array access
and represents a fairly common idiom. In principle, this
condition could be represented using the techniques of
but in this case there is no need to resort to these
techniques. Since the conditions are only used to restrict
the access relation, it seems more natural to include these
conditions directly in the relation.

What is special about the idiom in is that the
same array element is assigned in both branches of the test.
We can therefore convert it to a single assignment state-
ment using the conditional operator. That is, we convert
“if (c) a=-¢e; elsea=*f;"to“a=c?e: £’ Fur
thermore, we include the condition ¢ in each access relation
of e and its negation in each access relation of £. In the end,
the access to A is represented as

{ [s_4[il -> [i1]] -> A[i + i1]
il >= -i and i1 <= -1 + N - i }

4.3 Data Dependent Conditions

Data dependent conditions are handled in a way that is
very similar to the way data dependent accesses are han-
dled. Again, we add extra dimensions representing the val-
ues of the nested accesses to the range of a wrapped relation.
In particular, they are added to the iteration domain itself.
Note though that the access relations and schedules, which
have the iteration domain as their domain, are not affected
by this change. If the iteration domain is a wrapped relation
then the domains of the schedule and the access relations re-
fer to the domain of the wrapped relation.

The nested accesses may appear both in the condition of an
if statement and in the condition of a for loop. However,



for (cl=ceild(n,3);cl<=floord(2*n,3);cl++) {
for (c2=0;c2<=n-1;c2++) {
for (j=max(1,3*cl-n);j<=min(n,3*cl-n+4);j++) {
p = max(ceild(3*c1-j,3),ceild(n-2,3));

if (p <= min(floord(n,3),floord(3*c1-j+2,3))) {

S2(c2+1,j,0,p,c1-p);
}
}
}
}

Figure 3: Part of CLooG output for thomasset test case

the condition of a for loop is currently not allowed to access
any variables that may be written inside the loop body. The
reason for this restriction is that we would have to encode
that the condition is not only satisfied for the given iteration,
but also for all previous iterations.

The condition of an if statement may also involve func-
tion calls or non-affine constructs. In this case, a separate
statement is created that evaluates the condition and subse-
quently writes the result to a virtual array, which is marked
as only attaining the values 0 and 1. The original condition
is replaced by a data dependent access to this virtual array,
the value of which is required to be 1 in the iteration do-
mains of the statements in the then branch and 0 in those
of the else branch. This construction is similar to the way
if statements are handled in [14] and also to the control
predication of [9].

4.4 CLooG Specific Features

The output of CLooG may contain special functions and con-
structs that require special care. Most of these have been
mentioned before, but here we provide further details. First
of all, as explained in[Section 3.1] the output may contain the
“operators” floord, ceild, min and max. Although macro
definitions can be provided for these operators, it is more
efficient to recognize them directly inside pet. For exam-
ple, a macro definition for floord would have to encode this
operation in terms of integer divisions and would therefore
have to introduce several cases, while there is no need for
different cases if it is recognized directly. Similarly, if the
condition of a for loop is of the form i <= min(a,b), it can
be directly encoded as {i | ¢ < aAi < b} instead of in-
troducing cases depending on the difference between a and
b. This is especially important if there are many nested
mins or maxs as in the classen2 test case. Finally, the sim-
ple forward substitution of scalars discussed in is
also essential for parsing some CLooG outputs. Consider for
example part of the output for the thomasset test case, re-
produced in At first sight, the if statement looks
like it involves a data-dependent condition, but by plugging
in the expression assigned to p in the previous statement, it
can be analyzed as a static affine condition.

4.5 Support for Unsigned Integers

In C99 signed and unsigned integer types do not only de-
fine different sets of values, but they also behave differently.
Signed values yield undefined behavior if the result of an ex-
pression is not within the range of representable values (C99

for (unsigned i = 0; i < n; i++)

A0l += ij;
for (unsigned j = 0; j < n + 1; j++)
B[0] += j;

Figure 4: Unsigned operation in loop bound

for (unsigned i = 0; i < mn; i++) {
A[0] += ij
B[0] += ij;

}

B[0] += n+1;

Figure 5: Invalid fusion of program in

6.5). Like other compilers pet can and does assume that
undefined behavior is never triggered by a valid program.
Consequently it assumes that for signed types the results of
all expressions fit in the corresponding type. This means
pet can directly translate such expressions to isl_pw_aff
expressions.

For unsigned types C99 6.2.5 includes the following excep-
tion: “..] a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is
one greater than the largest value that can be represented by
the resulting type”. The program in Figure@consis‘cs of two
loops with n and n + 1 iterations. If the loop bounds are
represented as ¢ <n and j < n + 1, fusing the two loops to
the code in Figure [f] is possible. Yet, this is invalid in the
presence of integer wrapping. If n is the maximal unsigned
value, the expression n + 1 will evaluate to 0 such that in
the original code BJ[0] is not accessed at all. However, the
transformed code accesses B[0] many times.

To ensure correctness it is necessary to perform all unsigned
operations modulo the number of elements in the integer
type. This means for the example above that the loop
bounds should not be n and n+1, but n mod (UINT_MAX+
1)) and (n + 1) mod (UINT_-MAX + 1). pet knows about
the types of variables and automatically introduces the nec-
essary modulo operations.

Let us now consider in a bit more detail how an unsigned
loop iterator affects the way the iteration domain and the
schedule are constructed. The iteration domain is first con-
structed as explained in[Section 3.3} but in terms of a virtual
loop iterator, with the condition of the loop changed to ap-
ply to the modulo of this virtual loop iterator instead of the
virtual iterator itself. Afterwards, a mapping is applied to
the iteration domain and the domain of the schedule that

for (unsigned char k=252; (k%9) <= 5; ++k)
S:;

Figure 6: Loop with unsigned iterator



wraps the virtual iterator to the real iterator, but only after
intersecting the domain of the schedule with the iteration
domain. This intersection is needed to ensure that we do
not lose any information as some iterations in the wrapped
domain may be scheduled several times, typically an infinite
number of times. As an example of a loop with an unsigned

iterator, consider the loop in The corresponding
domain and schedule are as follows.

domain: ’{ S[k] exists
(e0 = [(B07 - k)/2566]: k >= 0 and
k <= 255 and 256e0 >= 252 - k and
256e0 <= 261 - k) }’
schedule: °’{ S[k] -> [0, o1] exists
(e0 = [(-k + 01)/256]: 256e0 = -k + ol and
ol >= 252 and k <= 255 and k >= 0 and
ol <= 261)

It may be difficult to see, but this loop has 10 iterations,
first from 252 to 255 and then from 0 to 5. Applying the
scan operator to the schedule in iscc makes this clear:

{ s[5] -> [0, 261]; sS[4] -> [0, 260];
s[3] -> [0, 259]; s[2] -> [0, 258];
s[1] -> [0, 257]; s[0] -> [0, 256];
S[255] -> [0, 255]; S[254] -> [0, 254];
s[253] -> [0, 253]; Ss[252] -> [0, 252] }

5. RELATED WORK

We are aware of several proprietary compilers, including
ATOMIUM [12], R-Stream [26], Cosy [22] and IBM-XL [10],
that use polyhedral techniques. As these systems are not
available to us and there is little documentation on their
polyhedral model extractors, we cannot perform any de-
tailed comparison with these compilers. At least two polyhe-
dral optimizers, Bee |1] and PolyOpt [25], have been devel-
oped for the ROSE compiler. Unfortunately, these systems
do not appear to be publicly available. It is known however
that unlike clang, ROSE does not fully support C99. In par-
ticular, ROSE does not support VLAs. Moreover, judging
from the documentation [25], PolyOpt imposes somewhat
severe restrictions on the allowed iteration domains, in par-
ticular requiring them to be convex. This means for example
that else and != are not supported. On the other hand, the
system does include an optimization engine and code synthe-
sis. The insieme compileIEI is reported to use an extraction
tool that is somewhat similar to pet in that it also uses
clang for parsing C code. It does however not use isl to
construct and represent the polyhedral model, but instead
a custom constraints based representation. The supported
features appear to be similar to those supported by clan.

The Omega Project contains a dependence analysis tool
called petit [19]. Although it does not appear to be possible
to have petit dump a polyhedral model, the tool necessarily
does include a parser. The input language is similar to For-
tran and the parser includes some advanced features such
as induction variable recognition and forward substitution
of scalars. Like the pet predecessor pers, CHIiLL [13] uses
SUIF for parsing, whence no support for C99, and appears
to handle even fewer constructs than pers. The LooPo [16]

3http://www.dps.uibk.ac.at/insieme/index.html

project includes a polyhedral parser, which accepts subsets
of both C and Fortran (or a combination) as input. In-
dex expressions are required to be affine (rather than piece-
wise quasi-affine), but there is support for generic while
loops [14]. The parser that comes with FADAIlib [8] also
supports while loops, but does not support many of the
constructs supported by pet. PIPS (3] also performs poly-
hedral analysis, but mostly in the sense of abstract interpre-
tation. Although earlier versions allowed for the extraction
of a polyhedral model in our sense, i.e., with access relations
and iteration domains, this functionality appears no longer
to be supported.

Several open source compilers have support for extracting a
polyhedral model from an internal representation, including
WRaP-IT [15] in ORC, graphite [24] in GCC and Polly [17]
in LLVM/clang. As explained in the introduction, such low-
level parsers have their advantages and disadvantages when
compared to source level parsers such as pet. In
we perform a more detailed comparison with Polly, which
is based on the same compiler infrastructure as pet. The
table also compares against clan |7], which to the best of
our knowledge is currently the most popular source level
parser. There are however many different versions of clan,
including some such as irClan [9] that include some support
for data dependent constructs. This irClan system does not
appear to be publicly available though. Here, we compare
against the latest official release (version 0.6.0).

6. LIMITATIONS AND FUTURE WORK

Although pet is already very powerful, it is still fairly new
and therefore suffers from some limitations. Perhaps the
most prominent limitation is that it currently only extracts
a polyhedral model and does not perform any code synthe-
sis. As suggested by its name, this was also originally the
intent. Clearly, the equivalence checker does not need to
perform any code synthesis. Also, when constructing pro-
cess networks, each statement is assumed to call a single
function and this same function is then also called from the
corresponding process, which is generated on hardware. For
PPCG, code synthesis would be useful, but the use of pet is
already an improvement over clan as pet provides a parse
tree of each statement, whereas clan only provides a string,
which has to be parsed again if some of the accesses need to
be changed. Since clang has good support for “pretty print-
ing” we expect that performing code synthesis again after
transformation would be relatively easy.

The set of acceptable input could be expanded by perform-
ing more extensive analysis to obtain more relations between
variables. At the moment, we only perform a very simple
form of forward substitution. We would like to add induction
variable recognition, some limited form of abstract interpre-
tation to detect affine relation and perhaps some (fuzzy)
array dataflow analysis.

There is currently no support for switch statements, al-
though it should be fairly easy to add. Support for break
and continue statements may also be useful and ties in
with allowing more generic loop conditions, including those
that involve variables written inside the body of the loop.
A proper treatment may require support for uninterpreted
functions in isl. We are currently experimenting with them
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Feature Polly | «clan | pet
General

Scop Detection (auto) yes no yes
Scop Detection (pragma) no yes yes
Highlight unsupported code yed’] no yes
Parse entire source files yes yesEI yes
Parse isolated scops no yes no
Input language varioudq| C-like C99
Code synthesis yes no no
Classical Scop

Affine Expressions

- add, multiply yes yes yes
- max yes yes yes
- min no yes yes
- modulo no no yes
- division yes no yes
- floord /ceild no yes yes
- conditional (a ? b : ¢) no no yes
Comparisons

- <7§>:,27> yes yes yes
- # yes no yes
- Implicit Comparison to Zero yes no yes
Boolean Combinations

- and (&&) no yes yes
-or (|]) no no yes
- not (1) no no yes
Loops

- for-loop yes yes yes
- Stride > 1 yes no yes
- Negative Stride yes no yes
- Loop bound restriction SCEWY syntactic | isl
Conditions

- if yes yes yes
- else yes no yes
Memory Access

- Array (Static Size) yes yes yes
- Array (Variable Size) no yes yes
- Pointer Arithmetic yes no no
Parse any CLooG Output no nd’ yes
Semantic Analysis

Propagate Expressions yes no yes
Recognize Induction Variables yes no no
Semantic Loops yes no no
Alias Analysis yes no no
Extensions

Derive Array Sizes no no yes
Data Dependent Access no no yes
Data Dependent Assignment no no yes
Data Dependent Condition no no yes
Infinite Loops no no yes
Wrapping (Unsigned Ops) no no yes
Wrapping (Casts) no no no
Inlining yes no no

“On intermediate language

bclan ignores everything outside the scop
¢Any language that can be lowered to LLVM IR.

?Scalar Evolution Analysis built around the ideas in [28]
“For example, the fragment in

Table 1: Features of different polyhedral extractors

outside of isl to simplify the results of fuzzy dataflow anal-
ysis.

Other issues include the following. Like most high-level
polyhedral model extractors, pet does not perform any alias
analysis, but instead assumes that none of the arrays ac-
cessed in the scop overlap. pet is based on clang, such that
conceptually C, C++ or Objective-C code can be analyzed.
At the moment only C is supported. Other languages such
as Fortran are not supported and are unlikely to ever be
supported. While pet has fairly good support for unsigned
integers, support for signed integers could be improved. In
particular, we should detect undefined behavior and update
the context accordingly. Another area where pet can be
improved is that of (implicit) casts. Support for them is
not yet available, even though adding this support should
not impose any difficulties. The AST generated by clang
contains the relevant information and the use of isl makes
adding the relevant modulo operations trivial.

7. CONCLUSIONS

By exploiting the strengths of both clang and isl, we have
constructed a new polyhedral extraction tool with several
advanced features. To the best of our knowledge, pet has the
most extensive support for static piecewise quasi-affine index
expressions and conditions. The resulting access relations,
iteration domains and schedules can be used directly by any
sufficiently generic dataflow analysis implementation, e.g.,
that in is1. Although pet is still missing some features such
as alias analysis, which may in some cases lead to incorrect
results, our support for unsigned integers shows that we are
committed to correctness. At the same time, our support
for CLooG specific features shows a sense of pragmatism.
Finally, we support some data dependent constructs that
are being used in practice by an equivalence checker and/or
a tool for deriving dynamic polyhedral process networks.
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