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Abstract
We make a case for sub-polyhedral scheduling using (Unit-)Two-
Variable-Per-Inequality or (U)TVPI Polyhedra. We empirically
show that using general convex polyhedra leads to a scalability
problem in a widely used polyhedral scheduler. We propose meth-
ods in which polyhedral schedulers can beat the scalability chal-
lenge by using sub-polyhedral under-aproximations of the polyhe-
dra resulting from the application of the affine form of the Farkas
lemma. We propose simple algorithms that under-approximate a
general polyhedra into (U)TVPI polyhedra. These algorithms take
worstcase polynomial time. We implement the above approxima-
tion algorithms in a modified PLuTo, and show that for a major-
ity of the Polybench 2.0 kernels, the above under-approximation
yield polyhedra that are non-empty. We also provide preliminary
evidence that code generated by our sub-polyhedral paralleliza-
tion prototype matches the performance of PLuTo-optimized code
when the under-approximation preserves feasibility.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization

General Terms Approximations, Complexity, Algorithms, Opti-
mization, Performance

Keywords Approximation Algorithms, Complexity Theory, Com-
pilers, Optimization, Geometric Algorithms

1. Motivation
In the previous paper [19], we proposed different directions for
sub-polyhedral compilation, where approximations of general con-
vex polyhedra could be used so that the problems that are be-
ing solved by polyhedral compilers can be made scalable with
worstcase polynomial time guarantee. In this paper, we make solid
progress towards polyhedral schedulers that are intrinsicly scal-
able in the program size, relying on strongly polynomial algo-
rithms only, i.e., whose time complexity is polynomial in the num-
ber integers in the input and not only on the bit-size of the input.
Our method applies to latency and depth minimization appraoches
like Feautrier’s algorithm [7], as well as on tiling-centric meth-
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Figure 1. Unscalability for Large Versions of SCoPs

ods driven by the forward-communication-only property like Bond-
hugula et al.’s PLuTo [4, 9].

1.1 Introduction

Affine scheduling [6] now is a part and parcel of every com-
piler which aspires to compile for parallel architectures. Today and
in the foreseeable future, it remains a difficult challenge to con-
struct a “good” multidimensional affine transformation. The sem-
inal work of Feautrier [7] opened the avenue of constraint-based
affine transformation methods, building on the affine form of the
Farkas lemma. This approach has been refined, extended and ap-
plied in many directions. To cite only two recent achievements
at the two extremes of the complexity spectrum: the tiling-centric
PLuTo algorithm of Bondhugula et al. [4] extending the Forward
Communication Only (FCO) principle of Griebl [9] for coarse-
grain parallelization, and the complete, convex characterization
and decoupled exploration heuristic of Pouchet et al. [14]. Much
progress has been made in the understanding of the theoretical and
practical complexity of polyhedral compilation problems. Never-
theless, when considering multidimensional affine transformations,
none of these appear to be strongly polynomial in the size of the
program. The lowest complexity heuristics such as PLuTo appear
to be reducible to linear programming, which is only weakly poly-
nomial in theory, and only at the cost of significant (yet practically
effective) restrictions of the optimization space

1.2 Unscalability of a current scheduler

In this section, we show an example of unscalability of current
methods in PLuTo. We have artificially unrolled two typical ker-



nels,matmul and seidel, by a variable number of times so as
to increase the number of dependences in the Static Control Parts
(SCoPs), and we observe the compilation time. We have also en-
closed the above unrolled loops in two or three “time loops”, as it is
done in compute intensive numerical processing kernels. The above
methods increase the range of dependences in the input SCoPs to
upto thousands of dependences. The plotted graphs are shown in
Figure 1 withmatmul in blue (crosses) andseidel in red (circles).

We checked that the compilation time (auto trans time of
PLuTo) increase in a roughlyn5 complexity in the number of
unknowns in the system. The time taken by the rest of the modules
of PLuTo – in particular dependence analysis and code generation
(CLooG) – were significantly smaller than the above times.

In the current benchmarks, like the ones currently in PLuTo or
in testsuites like in PolyBench1 , the range of dependences of the
SCoPs is in tens, and it can arguably be said that there presently
exists no scalability problem like in the above artificial examples.
Even if it does not exist now, there will be a scalability problem
when there is potential to increase the sizes and ranges of programs
in compilers like GRAPHITE [18] by powerful dependence anal-
ysis. Or, there could be a restriction in the time limit in just-in-
time compilers that would exacerbate the scalability problem fur-
ther, such as online compilation applications of Polly [10].

The reader may wonder if part of the complexity is because
PLuTo uses PIP to solve Integer Linear Programming (ILP) prob-
lems, rather than Linear Programming. But, even when the calls to
PIP are changed to operate over rationals rather than integers, we
found no significant decrease in time.

In the following, we aim for lower complexity feasibility
and optimization algorithms, with worst-case strongly polynomial
bounds, and closer ton2 time complexity for practical, just-in-time
compilation applications.

1.3 Polyhedral scheduling and Under-Approximation

In Feautrier’s algorithm [7], the dependence constraints of a par-
ticular dependence edge are pseudo-linear (or quasi-affine) con-
straints involving(µ, I,N), whereµ are the schedule Farkas mul-
tipliers, and theI andN vectors are iterator vectors and parame-
ter vectors respectively. These are converted into a per-dependence
edge polyhedronPe(µ, λ) by application of the affine form of the
Farkas lemma, where the newly createdλ-variables (along withµ-
variables) are called the Farkas multipliers. By putting together all
the per-edge Farkas polyhedra, one obtains a overall Farkas poly-
hedronP = ∩e∈EPe, which is amenable to Linear Programming
or Fourier-Motzkin elimination. Any rational point that satisfiesP
is considered a valid schedule.

The above application of the Farkas lemma results in almost all
the constraints in the Feautrier’s scheduler. In PLuTo, a different
but conceptually similar method also results in the majority of con-
straints. The very few remaining ones are dependence satisfaction
variables, non-negativity, orthogonality constraints.

In this paper, we propose thatP be Under-Approximated (UA)
for scalability purposes. This means that instead of searching for an
optimal feasible point inP , we search inPa = UA(P ). The above
approximation is legal and only leads to a conservative approxi-
mation of losing schedules. The overall process has to ensure that
the approximation algorithm, as well as the solution finding time
be scalable algorithms. We restrict these requirements further and
say that both of these algorithms should haveworstcase strongly
polynomial timerunning times.

It can be noticed that the above approximation can also be done
on a per-dependence basis. In this method, the per-dependence
edge Farkas polyhedra are under-approximated, and the solution

1 http://www.cse.ohio-state.edu/ pouchet/software/polybench

is found from the overall polyhedron obtained by putting together
all the per-dependence UAs. Namely, by doingPa = UA(P ) =
∩e∈EUA(Pe).

1.4 Contributions

In this paper, we make the following contributions:

• We show that state-of-the-art parallelization and affine schedul-
ing heuristics such as PLuTo can be adapted to use sub-
polyhedra, thereby reducing their complexity of finding sched-
ules to worstcase strongly polynomial time.

• We propose two alternative methods – either with a direct
Under-Approximation of all the feasible schedules, or as an
intersection of Under-Approximations of Farkas polyhedra per
each dependence edge – which can be used to solve feasibility
problems of large polyhedra arising in affine scheduling.

• Of the many sub-polyhedra used in static analysis ([19]), we
show that TVPI and UTVPI sub-polyhedra could be good
alternatives to be used in polyhedral scheduling, limiting its
worstcase complexity.

• Using elementary polyhedral concepts of homogenization and
polarity, we present a simple and powerful framework (an ap-
proximation scheme) which can be used for designing UA al-
gorithms of general convex polyhedra. This framework gives a
sound background to linearize the UA finding problem.

• Using the above framework, we present simple algorithms that
under-approximate a general polyhedra in constraint represen-
tation (H-form) into (U)TVPI sub-polyhedra. For a single non-
TVPI constraint, these algorithms are linear in the sparsity of
the particular constraint; for the multiple constraint case, we
propose many variations in which we can under-approximate
the overall polyhedron as one-shot or iterative methods.

• We evaluate these methods by integrating them into PLuTo. We
show that for a significant percentage of Farkas-polyhedra aris-
ing from a wide range of test cases from affine scheduling,
the (U)TVPI-UAs proposed above are precise enough to pre-
serve feasibility. We also show that preliminary integration of
the above UA polyhedra into PLuTo yields code in most cases
that does not suffer significant increase in execution time.

The paper is structured as follows. In Section 2, we briefly
introduce TVPI and UTVPI sub-polyhedra. In Section 3 we give the
mathematical framework for the linearization of the UA problem
and for establishing its correctness. In Section 4 we propose simple
algorithms that under-approximate a general convex polyhedron
into a (U)TVPI polyhedron. In Section 5 we discuss the theoretical
and practical implications of the above UA algorithms. In Section 6
we discuss the results of implementing these algorithms in PLuTo.
In Section 7 we discuss related work, and in Section 8 we conclude
and present some future work.

2. Sub-Polyhedra: TVPI and UTVPI
In this section, we briefly cover some basics of TVPI and UTVPI
approximations of polyhedra (or sub-polyhedra) that are needed for
our purposes. A more extensive discussion on these, as well as other
flavors of sub-polyhedra as used by the static analysis community
can be found in detail in our earlier work [19]. For a polyhedron
described in constraint form, letm be the number of inequalities,n
be the number of variables andB the upper bound on the absolute
value of the coefficients describing the system.

2.1 TVPI Sub-Polyhedra

In TVPI polyhedra, each constraint is of the form:axi + bxj ≤ c.
TVPI are obviously closed under projection, and hence many algo-



rithms on geometric operations that are developed for planar poly-
hedra (polygons) are directly applicable to general TVPI giving
rise to simple algorithms with small complexity. Further, the dual
of TVPI programs is a generalized min-cost flow problem, which
could be solved using graph theoretic techniques. So, the linear
programming community has been interested in TVPI polyhedra
because of the strongly polynomial time algorithms for the linear
programming feasibility problem on TVPI polyhedra.

The early work on using graph theory techniques for linear pro-
gramming on TVPI systems was by Shostak [16]. Aspvall and
Shiloach [1] showed the polynomiality of the feasibility problem
of TVPI-LP formulations by introducing a unique strongly polyno-
mial time procedure that can be used to decide the range of a partic-
ular variable with respect to a given constant. This latter procedure
is a Bellman-Ford style propagation of values assigned to variables
through inequalities in the system, it is the heart of all subsequent
algorithms in the TVPI literature. The following result by Wayne
in [21] is the best to date for the TVPI optimization problem:

Lemma 2.1 [LP optimization on TVPI] Linear programming
optimization on TVPI systems can be solved inO(m3n2 logB)
worst case time.

It well known that for general polyhedra, the optimization and
the feasibility problems have the same weakly-polynomial time
hardness. But it is interesting to note that till date, they have dif-
ferent complexities on TVPI systems. The feasibility problem on
TVPI systems has lower complexity that the above weakly polyno-
mial time result by Wayne on the optimization problem. Network
flow based (“combinatorial”) strongly polynomial time algorithms
for the feasibility problem were given by Cohen and Megiddo [5].
Hochbaum and Naor in [11] showed that feasibility of TVPI poly-
hedra can be determined in strongly polynomial time:

Lemma 2.2 [Feasibility on TVPI] Feasibility of TVPI systems
can be solved inO(mn2 logm) worst case time.

The above nearly cubic time algorithm by Hochbaum-Naor is
surprisingly simple and uses the previously mentioned decision
procedure of Aspvall-Shiloach embedded in a binary search along
with a selected application of Chernikova on a planar polyhedra to
detect the feasibility of the given TVPI system. It can be seen that
the above result can as well be used to derive strongly polynomial
time cubic bounds for Fourier Motzkin elimination, and for projec-
tion of variables from TVPI systems.

TVPI systems have been used for various problems in the ab-
stract interpretation and verification like in [17].

2.2 UTVPI Sub-Polyhedra (Octagons)

Octagons have constraints of the form±xi ± xj ≤ c. They are
mainly from [2, 13], and are called so because in2-dimensions,
their geometric shape is octagonal. They are also referred to as
Unit Two Variables Per Inequality (UTVPI) because of the nature
of their constraints. It is obvious to see that UTVPI⊂ TVPI
and hence the complexity bounds of TVPI polyhedra apply to
UTVPI polyhedra as well. But, as the dual of Bellman-Ford LP
formulation is a UTVPI problem, general UTVPI systems can be
solved with same quadratic complexity. The following result by
[12] also confirms the same.

Lemma 2.3 [Feasibility on UTVPI] Feasibility of UTVPI stys-
tems can be solved inO(mn) worst case time and inO(m + n)
space.

UTVPI polyhedra also have successfully been used for various
problems in abstract interpretation and verification like in [13].
Also, they have well supported tools like in Apron of the Astree
project, and with support from PPL as well.

3. Convexity, Approximation and (U)TVPI
In this section, we defe a simple framework which gives us a
sound mathematical background to build (U)TVPI approximations
of polyhedra, to linearize the problem of finding approximations,
and to prove that the algorithms we construct in later sections return
valid approximations.

Informally, the overall goal of this section is to begin with a
polyhedron given in constraint form asP = {x|Ax+ b ≥ 0}
and show that simple approximations ofP can be obtained by
reasoning about over-approximations of the dual/polar “transpose”
matrix [A |b]T .

To accomplish the above, in Section 3.1, we introduce some
basic lemmas about convexity like homogenization and polarity.
Next, in Section 3.2, we construct a simple framework for reason-
ing about under-approximations and over-approximations in a uni-
fied manner. Finally, in Section 3.3, we show how the above con-
struction could be used to define a per-constraint approximation
scheme which helps to obtain TVPI approximations of the non-
TVPI constraints in the input polyhedron.

3.1 Some background in convexity

The overall goal of this section is to introduce some convexity
concepts and relate them to TVPI under-approximations. Much of
the math here can be verified from standard books like [15, 22].

3.1.1 Homogenization and Polarity

Homogenization can be done on Polyhedra inH-form (constraint
form) or inV-form (vertex form or generator form). The following
definition is whenP is inH-form.

Definition 3.1 [Homogenization] Let P = P (A,b) (P =
{x|Ax+ b ≥ 0}) be aH-polyhedron, then its homogenization
is also aH-polyhedron:

homog(P ) =

((

A b

0T 1

)

,

(

0

0

))

= C(P ) (1)

It can be noted that ifA is am × n-system (m constraints and
n variables), andb is am × 1-vector, then the homogenized con-
straint systemC (orhomog(P )) is of size(m+1)×(n+1). Note
that the constants dimension has become an additional dimension
in the (n + 1)-dimensional space. We would be referring to this
dimension ashomogenizingdimension and the other dimensions
asnon-homogenizingdimensions. Also note that homogenizing is
a process that can be reversed by special marking of the dimen-
sions. It should also be noted that homogenization is a rather triv-
ial process, which can be constructed in linear time, and routinely
done so in libraries like PIP/PolyLib. It however needs to be men-
tioned because this paper deals with (U)TVPI constraints, which
are defined to be having at most two non-zero coefficients in the
non-homogenizing dimensions.

The following is the definition of polar of a polyhedron.

Definition 3.2a [Polarity] ForP ∈ R
d, the polar set is defined by

P ∗ =
{

c ∈ (Rd)∗ : cx ≤ 1 for all x ∈ P
}

⊆ (Rd)∗

In standard books like [15], some of the theorems of polarity
assume that origin is an internal point of a polyhedron, namely that
0 ∈ int(P ). For ease of notation, we use subscripto to denote that
kind of pre-supposition on the polyhedra:Po is a polyhedron such
that0 ∈ int(P ). The polyhedron which satisfies this restriction can
be expressed inH-form asPo = {x|Ax+ b ≥ 0;b ≥ 0}. (Note
the additional non-negativity restriction onb.)

For a polyhedral coneC however, there is no necessity of ori-
gin being an internal point, as a polyhedral cone is always homo-
geneous (0 ∈ C).



The following are some properties of the polar.

Definition 3.2b [Polarity Properties: Polyhedra] ForP ∗
o ∈ R

d,
whose vertices are columns of the matrixV and whose rays are the
columns of the matrixY , the following are equivalent:

P ∗
o = conv(0, V ) + cone(Y ) ⇐⇒

Po =
{

x ∈ R
n|V T

x ≤ 1;Y T
x ≤ 0

}

The above correspondences give rise to some well known polarity
properties namely that: the vertices (respectively, edges, and facets)
of the primal correspond to the facets (respectively, ridges, and
vertices) of the polar. (A facet is a(n − 1)-dimensional face.)
Further, the constraints of a polyhedron correspond to vertices/rays
of the polar. We would be using these in the proofs of this paper.

3.1.2 Polarity, (U)TVPI and (U)TCPV

A polyhedron can be represented in either ofH-form or V-form.
But, there is certain naturality in describing the primal inH-form as
polyhedra that occur in polyhedral compilation are almost always
described that way. This means that the polar can be described, us-
ing a straightforward linear time construction, inV-form. Convert-
ing the primal toV-form or the polar toH-form is however costly as
it involves a call to Chernikova algorithm. In the following lemma,
we will implicitly be using the abovedual interpretation,without
making an actual call to Chernikova. This dual interpretation is dif-
ferent from the dual representation in libraries like PolyLib, where
a polyhedron (in either primal or dual space) is described using
bothH-form andV-form. We have the following lemma:

Lemma 3.1.2 [(U)TVPI and (U)TCPV] For a TVPI-polyhedron,
the polar has vertices and rays which have not more than two
non-zero components in the non-homogenizing dimensions. For a
UTVPI-polyhedron, the polar has vertices and rays which have not
more than two non-zero components each in the non-homogenizing
dimensions, with them being from{−1,+1}. We define the polar
of a (U)TVPI constraint as(Unit-)Two-Components-Per-Vectoror
(U)TCPV vector. Further, we define the polar of a (U)TVPI poly-
hedron as a(U)TCPV polyhedron.

Note that in the above lemma, as we are usingH-form (U)TVPI
in primal, it implies that by a straightforward construction, the polar
is in V-form.

3.1.3 Polar of Polar

The proofs of the following can be found from Schrijver [15] and
hence are omitted.

Lemma 3.1.3a [Polar of Polar and Equality] (i) (P ∗
o )

∗ = Po,
(ii) (P ∗)∗ = P ∪ {0}, and (iii) (C∗)∗ = C.

Lemma 3.1.3b [Polarity and Inclusivity] For any two Polytopes
Po andQo, Po ⊆ Qo ⇔ P ∗

o ⊇ Q∗
o.

The above lemmas can obviously be extended for any general
polyhedra and for cones as well.

3.1.4 Under-Approximation and Over-Approximation

The following corollary can be derived from the above lemmas.

Corollary 3.1.4 [Toggling between OA and UA] (i) (OA(P ∗
o ))

∗ ⊆
Po, and (ii)(OA(C∗))∗ ⊆ C

The above corollary means that by taking the polar of a poly-
hedron and taking the resultant’s Over-Approximation (OA) one
obtains a polyhedron whose polar is an UA of the original polyhe-
dron. Hence, the first half above corollary can be used to find the
UA of a polyhedron by converting into polar space and taking the
OA of its polar polyhedron.

3.2 A construction for Under-Approximation

Using the theorems of the previous section, one can reason about
UA by talking about OA in the dual/polar space. But, using OA
to find valid UA using duality-properties, means that one has to
deal with the many cases of the polyhedron being bounded or
not, whether it is homogenized or not (like in Lemma 3.1.3), and
whether origin is an internal point or not (like in Corollary 3.1.4.i).
Further, the Farkas constraint polyhedra (even the per-dependence
ones) that are obtained in polyhedral analysis do not necessarily
have origin as an internal point. Also, they are never bounded. So,
what is needed is a single framework that deals with all these cases.

In this section, we create a simple construction, using which the
problem of finding a UA of a polyhedron inH-form is reduced
to the problem of finding a OA of its polar cone inV-form. The
construction uses homogenization and conical polarity and leads to
all the above cases being handled in a unified and simple manner.
The construction is the mathematical framework that gives us the
basis to prove that the UAs we later construct in Section 4 are valid
approximations.

The super-scriptsH andV show whether the particular polyhe-
dron is in constraint or generator form respectively.

PH homog
−−−−−→

CH polar
−−−→

KV OA
−−→

KV
a depolar

−−−−−→
CH

a dehomog
−−−−−−→

PH
a

The following is some notes on the above construction:

• [Step 0]PH: InputP , the Polyhedron to be under-approximated
in H-form.

• [Step 1]PH homog
−−−−−→

CH: Compute ConeC by homogenizing

P . Namely,C = Homog(P ). C is a cone inH-form.

• [Step 2]CH polar
−−−→

KV : ComputeK = C∗, the Polar cone of

the coneC. K is a cone inV-form.

• [Step 3]KV OA
−−→

KV
a : ComputeKa, the Over-Approximation

of K such thatK ⊆ Ka. Ka is a cone inV-form.

• [Step 4] KV
a depolar

−−−−−→
CH

a : Take the polar cone (DePolar) of

Ka to result inCa, which will be a cone inH-form.

• [Step 5] CH
a dehomog

−−−−−−→
PH
a : DehomogenizeCa to result in

Pa, which will be a Polyhedron inH-form.

In Step 0,P could be a general polyhedron inH-form, possibly in
non-minimal form (having redundant constraints). Step 1 follows
from Definition 3.1. Here, the dimensions have to be marked as
homogenizingandnon-homogenizingdimensions so that it can help
in approximation (Step 3), as well as in the de-homogenization
(Step 5) later. No new homogenization is needed for performing
this step other than what is performed in standard libraries. As
mentioned earlier, this is needed in particular because the subject of
this paper is (U)TVPI systems, which by definition cannot directly
operate on cones without this special marking. Step 2 follows from
Definition 3.2.

In the approximation process in Step 3, the Over-Approximation
Ka has to satisfy (U)TCPV properties, so as to respectively obtain
the (U)TVPI approximation ofP . More particularly, forKa to be a
TCPV over-approximation ofK, it should have not more than two
non-zero components in the non-homogenizing dimensions. Fur-
ther, forKa to be a UTCPV over-approximation ofK, Ka should
be a TCPV vector and the non-zero components should be from
{−1,+1} (Lemma 3.1.2). In the approximation, one can neither
throw away the offending dimensions, not can throw away the of-
fending vectors themselves (ones that are not (U)TCPV), as the
remaining vectors may result in an under-approximation ofP . If
K is being approximated on a per-constraint basis, the OA process



could be such thatKa has multiple vectors for each vector ofK.
The result of Step 3 isKa = OA(K). Steps 4 and 5 are reverse of
Steps 2 and 1 respectively.

In the above,Pa (respectivelyCa andKa) are approximations
of P (respectivelyC andK). More particularly, we have the fol-
lowing theorem:

Theorem 3.2 [Approximations and the UA-OA Construction]
(i) Ka ⊇ K, (ii) Ca ⊆ C and (iii)Pa ⊆ P .

Proof: In (i) Ka = OA(K) by construction. In (ii),Ca =
UA(C), because of Corollary 3.1.4.ii. Finally, in (iii)Pa =
UA(P ) because of Corollary 3.1.4.i.

The above construction can be done in linear time and can
be considered to be a reinterpretation of the input polyhedron in
H−form so that the validity of the UA can be proved, and simple
scalable algorithms could be obtained for (U)TVPI approximation.
In the above construction, using homogenization leads to taking
care of origin being an internal point. And, using polarity reduces
the UA problem to the OA problem. But, one cannot swap the two
steps of homogenization and polarity (swapping Steps 1 and 2 and
following it by swapping Steps 4 and 5), for example, by taking the
polar ofP and then taking the resultant’s homogenization. Doing
so means that one has to “chop away” the origin from the polar of
the resultant’s OA as in Lemma 3.1.3a.ii. Such a process involves
the generator representation and is costly.

Observe thatK in the above construction is inV-form, whose
generator vectors are columns of the following matrix:

K = cone

(

AT 0

bT 1

)

In matricial form,K is of size(n+1)× (m+1). K could thus
be seen to be a transpose of Equation 1.K can also be written as
the following:

K = cone

{(

aT
1

b1

)

, . . . ,

(

aT
j

bj

)

, . . . ,

(

aT
m

bm

)

,

(

0

1

)}

The objective of Step 3 remains to find the TCPV-OA of Poly-
hedronK given inV-form. This problem can be seen as trying to
find a coneKa such that:

K ∈ cone (Ka) (2)
By this equation, if each column ofK can be written as a conical

sum of the vectors inKa, then the approximation remains a valid
approximation. If each vector inKa is a TCPV vector, then the
correspondingPa would be a TVPI approximation ofP .

3.3 Approximation Scheme for TVPI-UA using TCPV-OA

In this section, we will formulate the sufficient conditions for a
TVPI approximation such that it is a valid UA of an arbitrary poly-
hedron. In fact, with the construction in the previous section, we do
have all the necessary ammunition to construct an approximation
scheme which allows us to built TVPI-UAs of general polyhedra
using TCPV-OA as a mathematical intermediary.

In the rest of this section, for ease of exposition, we assume that
the polyhedronP is in 3-dimensions (n = 3). The latter polyhedra
(also called as 3VPI polyhedra) are general enough to represent
any arbitrary polyhedron. For polyhedra that are not 3VPI, a well
known reduction2 exists that transforms any arbitrary polyhedron
into its equivalent 3VPI polyhedron.

2 According to [16], the transformation from general polyhedra to 3VPI
polyhedra is said to have been suggested by R.Tarjan and is much similar
to the reduction of an arbitraryn-variable boolean satisfiability (“SAT”)
problem to a 3SAT problem. This transformation is not an approximation,
which is the subject of this paper.

Let the j-th column ofK, with 1 ≤ j ≤ m, be Kj =
(

aj,1 aj,2 aj,3 bj
)T

. Then we have

Kj =







aj,1

aj,2

aj,3

bj






∈ cone









tj,11 tj,12 0
tj,21 0 tj,23

0 tj,32 tj,33

pj1 pj2 pj3









= cone(T j)

(3)
It can be noticed that each column of the matrixT j is a TCPV

vector and hence when it is subjected to the reverse transformation
of Steps 4 and 5 as discussed in the earlier section would yield a set
of TVPI constraints. The above is what we call as anapproximation
scheme. In this scheme, a non-TVPI constraintaj,1x1 + aj,2x2 +
aj,3x3 + bj ≥ 0 in the original system is replaced by the set of
constraintsUA(x1, x2, x3) = {tj,11 x1+ tj,21 x2+pj1 ≥ 0; tj,12 x1+
tj,32 x3 + pj2 ≥ 0; tj,23 x2 + tj,33 x3 + pj3 ≥ 0}.

In the above approximation scheme, every column vector ofK
which has more than two non-zero components is replaced by a
set of TCPV vectors, such that the original vector remains in the
conical sum of the replacements. The conical combination of the
replacement vectors would hence be an OA of the original vector
Kj . The above scheme remains valid as long as the(t, p) variables
and the(a, b) constants satisfy the convexity requirement. One way
for ensuring the same is by making the(t, p)-variables satisfy the
following additional constraints, which we would be referring to as
context constraintsfor reasons that will be exposed later:

{tj,11 + tj,12 = aj,1; t
j,2
1 + tj,23 = aj,2; t

j,3
2 + tj,33 = aj,3;

pj1 + pj2 + pj3 = bj} (4)

If such a set ofT matrices can be found for each non-TCPV vec-
tor ofK, then we haveKa =

{

T 1, T 2, . . . , Tm
}

and the resultant
TCPV approximation would beK ∈ cone

{

T 1, T 2, . . . , Tm
}

.
With the above, we give the following theorem, whose proof builds
on Theorem 3.2 and the arguments given in this section.

Theorem 3.3 [TVPI/TCPV and UA/OA] (i) If P is empty, then
Pa is also empty. (ii) IfP is non-empty, andPa is non-empty, then
it is always a valid TVPI UA of the original Polyhedron

The problem remains to find such a set of(t, p) variables. If
they can be found satisfing the above context constraints, then the
above scheme remains a valid approximation. It can be seen that
searching for the(t, p) variables directly could lead to a non-linear
(quadratic) formulation. Even searching fort-variables that satisfy
the above context constraints turns out to be non-linear.

In the next section however, we will propose some lineariza-
tions of the above mentioned approximation scheme, so that the
approximation algorithms remain scalable. This is done first as a
heuristic where both(t, p)-variables are arbitrarily fixed, and then
as a more formal method where only thet-variables are fixed, while
thep-variables are found by an LP formulation.

4. TVPI and UTVPI UA Algorithms
In this section, we will use the framework developed in earlier sec-
tion and develop worstcase polynomial time algorithms for obtain-
ing (U)TVPI under-approximations of Polyhedra. Firstly, in Sec-
tion 4.1, we will give a strongly polynomial time per-constraint al-
gorithm for TVPI-UA. Then, in Section 4.2, we will give an LP
based per-constraint weakly polynomial time algorithm for TVPI-
UA. In Section 4.3 we will propose various ways in which the
above LP based algorithm can be applied in the case when mul-
tiple non-TVPI constraints are present. In Section 4.4, we will
give a strongly polynomial algorithm that gives a UTVPI-UA of



a TVPI polyhedron. Finally, in Section 4.5, we briefly sketch a
parametrized UTVPI-UA approximation method.

4.1 The median method for TVPI-UA

In this section, we introduce a simple per-constraint heuristic using
the framework developed in Section 3.2 and 3.3. The main idea
of this approximation is (2), saying that the original vector can be
approximated by any set of the replacement TCPV vectors, as long
as the former remains in the cone of the latter.

3-d case For 3d case, the approximation is the following







a
b
c
1






∈ cone









1
2
a 1

2
a 0

1
2
b 0 1

2
b

0 1
2
c 1

2
c

1
3

1
3

1
3









The above means that for 3d case, the inequalityax+by+cz+
1 ≥ 0 is approximated by the set of inequalities{ax + by + 2

3
≥

0; ax+ cz + 2
3
≥ 0; by + cz + 2

3
≥ 0; }.

The intuition for the above approximation comes from Equation
3. In that equation, both the values oft-variables andp-variables
are to be found out such that they satisfy Equation 4. As explained
earlier, thet-variables have to be fixed by a choice so that linear-
ity is satisfied. The method in this section fixes thep variables also
in a heuristic manner by dividing the available “budget” in the ho-
mogenizing dimensions equally between the values in the homog-
enizing dimensions of the replacement TCPV vectors. We call this
as median method because the original vector is the median of the
replacement vectors in the polar space.

Generaln-d case The above can be easily be generalized to the
n-d case. Letn be the dimension of the original constraints and
let s be the sparsity – number of non-zero variables (or number of
non-homogenizing dimensions) – for a particular constraint, with
1 ≤ s ≤ n. Let q =

(

s

2

)

= s(s − 1)/2 and letr = s − 1.
The resultant set of TCPV vectors corresponding to the particular
constraint, are obviouslyn + 1 dimensional, and areq in number.
The coefficients of the non-homogenizing dimensions are divided
by r, while the homogenizing dimension is uniformly divided byq.

In each of the cases, it can be seen that the approximation
being proposed is a TCPV approximation, making its polar a TVPI
approximation. It can also be verified using the construction given
in the earlier sections and Equations 2 and 3 that the UA proposed
in each case is a valid approximation.

Example 1 Let the input system be the triangular pyramid
{x, y, z ≥ 0;x+y+ z ≤ 1}. Only the inequalityx+y+ z ≤ 1 is
not TVPI and is approximated by the set of inequalities{x + y ≤
2
3
;x + z ≤ 2

3
; y + z ≤ 2

3
}. It can be seen that the approx-

imation is a non-empty TVPI system (it is a UTVPI system),
with vertices {(0, 0, 0), ( 2

3
, 0, 0), (0, 2

3
, 0), (0, 0, 2

3
), ( 1

3
, 1
3
, 1
3
)},

each of which are inside the vertices of the original system
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Example 2 Let the input system be the skewed triangular pyra-
mid {x, y, z ≥ 0; 1000x + 100y + 10z ≤ 1}. Only the in-
equality1000x + 100y + 10z ≤ 1 is not TVPI and is approxi-
mated by the set of inequalities{1000x + 100y ≤ 2

3
; 1000x +

10z ≤ 2
3
; 100y + 10z ≤ 2

3
}. It can be seen that the resul-

tant approximation is a non-empty TVPI system with vertices:
{(0, 0, 0), ( 1

1500
, 0, 0), (0, 1

150
, 0), (0, 0, 1

15
), ( 1

3000
, 10
3000

, 100
3000

)},
each of which are inside the vertices of the original system, which
are{(0, 0, 0), ( 1

1000
, 0, 0), (0, 0, 1

10
), (0, 1

100
, 0)}.

It can be seen that the median method is simple and easy to
implement, but does not have any guarantee of ensuring that the
resultant approximation is non-empty. In the next section, we will

generalize this method to formulate a parametrized approximation
and formulate an LP problem to find the approximation.

4.2 LP based parametrized TVPI approximation

In this section, for ease of exposition, we will primarily deal with
3d case. The higher dimensional extensions are straightforward.

In Section 4.1, we saw a per-constraint approximation scheme
in which the systemS(x) = {x|a1x ≥ b1; . . . ;ajx ≥ bj ; . . . ;amx ≥
bm; }, with ajx ≥ bj being a non-TVPI constraint is being approx-
imated by the systemS1(x) = {x|a1x ≥ b1; . . . ; UA1(ajx ≥
bj); . . . ;amx ≥ bm; }, with UA1(ajx ≥ bj) defined as the fol-
lowing: UA1(ajx ≥ bj) = {x|aj,1x1 + aj,2x2 ≥ 2

3
; aj,1x1 +

aj,3x3 ≥ 2
3
; aj,2x2+aj,3x3 ≥ 2

3
; }. As seen earlier, the above me-

dian method is simple, but does not have any guarantee of ensuring
thatS1 is non-empty.

The median method can easily be extended by defining the
approximation as aparametrizationon the values in the homoge-
nizing dimension entries: asUA2(ajx ≥ bj) = {(x,pj)|aj,1x1+
aj,2x2 ≥ 2pj1; aj,1x1 + aj,3x3 ≥ 2pj2; aj,2x2 + aj,3x3 ≥
2pj3;

∑

pj = bj ; } where the values of the3-dimensionalpj-
vector are unknown and have to be found out.

In the above approximation, it can be observed that the coef-
ficients in the non-homogenizing dimensions (t-variable values)
have been fixed, much similar to their choice in the median method.
But, the coefficients in the homogenized dimension (p-variable val-
ues) are unknown and have to be found out. The context constraint
∑

pj = pj1 + pj2 + pj3 = bj is not arbitrary. It is determined by the
choice of the multipliers for thet-variables so that theKj vector is
in the convex-sum ofT j , as given in Equation 3.

The resultant system isSHD(x,pj) = {(x,pj)|a1x ≥
b1; . . . ;aj−1x ≥ bj−1; UA2(ajx ≥ bj); aj+1x ≥ bj+1; . . . ; amx ≥
bm; }. In the following discussion, we show that the Higher Di-
mensional systemSHD(x,pj) can be interpreted in two ways, a
geometric and an algorithmic ways, each having its own merits.

4.2.1 A parametrized approximation

SHD can geometrically be considered as a parametrized approxi-
mation, withpj being the parametric vector and the context con-
straint

∑

pj = bj considered as the parametric context. When the
values of the vectorpj are known, then the system:

S2(x) = SHD(x,pj)|pj (5)

is a non-parametrized LP problem, which can be tested for feasibil-
ity in the usualx-variables. Since the context constraint

∑

pj = bj
is respected, it follows from the proofs of earlier sections thatS2(x)
is a proper approximation ofS(x). If the value of the vectorpj

is not known,S2(x) can be considered as a parametrized approx-
imation of S(x). Note that the context constraint is only on the
p-variables, while thet-variables have been assigned a fixed value.

4.2.2 An LP formulation

Algorithmically we can considerSHD(x,pj) to be a non-parametric
LP system with unknown variables(x,pj). Such an interpretation
is possible because there exist no non-linear terms in the defini-
tion ofS2(x,p

j) and it is only the feasibility of the approximation
that is interesting. Supposing the systemSHD(x,pj) is solved for
feasibility, with the unknown variables vector as(x,pj), and a
valid assignment for the values of bothx-variables as well as the
pj-variables is found, then the systemS2(x) as given by (5) can
be considered an approximation of the systemS(x), as long as
thepj-variables satisfy the constraint

∑

pj = bj . On the other
hand,SHD(x,pj) is a higher dimensional system thanS(x) and
hence cannot be considered as an approximation of the latter. It is
an intermediate form useful for algorithmic purposes.



Example 3 Here is an reduced example from Banerjee book
(“Loop Transformations for Restructuring Compilers”), which
has been used as a test case in FMLib3. Let the original sys-
tem be S(x, y, z) = {(x, y, z) | − z + 3 ≥ 0;x − z ≥
0;−y + z − 1 ≥ 0;−x + y + z + 1 ≥ 0}. It is clearly not
a TVPI system as the fourth constraint is non-TVPI. The median
method of approximating the fourth constraint gives the system
S1(x, y, z) = {(x, y, z)| − z + 3 ≥ 0;x− z ≥ 0;−y + z − 1 ≥
0;−x + y + 2

3
≥ 0;−x + z + 2

3
≥ 0; y + z + 2

3
≥ 0},

which turns out to be an empty system. On the other hand, the
method in this section would lead to the following higher dimen-
sional system:SHD(x, y, z, p1, p2, p3) = {(x, y, z, p1, p2, p3)| −
z + 3 ≥ 0;x − z ≥ 0;−y + z − 1 ≥ 0;−x + y + 2p1 ≥
0;−x + z + 2p2 ≥ 0; y + z + 2p3 ≥ 0; p1 + p2 + p3 = 1},
where the variablesp1, p2, p3 are additional context variables and
the last constraintp1 + p2 + p3 = 1 is a context constraint.
When systemSHD is solved for a feasible point, and the set of
p-variables that are obtained as solution are substituted, we obtain
S2(x, y, z) = {(x, y, z)| − z + 3 ≥ 0;x− z ≥ 0;−y + z − 1 ≥
0;−x+ y+ 1

2
≥ 0;−x+ z ≥ 0; y+ z+ 1

2
≥ 0}. The reader can

verify the satisfiability of the two approximationsS1 andS2.
The above method involces only one call to a standard LP

solver. The disadvantage is that the systemSHD(x,p) hasn +
(

‖aj‖
2

)

= n + ‖aj‖(‖aj‖ − 1)/2 ≈ O(n + ‖aj‖
2) dimensions,

where‖aj‖ is the number of non-zero elements in the vectoraj .
As the method involves a call to an LP solver, its theoretical cost is
not strongly polynomial time.

4.3 Multiple constraint LP formulations

When there exist multiple non-TVPI constraints inS(x), each one
of them has to approximated to find a TVPI approximation of
the polyhedron. Letmk be the number of non-TVPI constraints
in S(x), with mk ≤ m. Without loss of generality, we can as-
sume that the constraints have been ordered such that the non-
TVPI constraints come first, followed by the TVPI constraints. This
means that the constraints ofS(x) are{1, . . . ,mk, . . . ,m}, with
the constraints{1, . . . ,mk} being non-TVPI constraints and the
constraints{mk + 1, . . . ,m} being TVPI constraints.

4.3.1 One-shot method

A straightforward way in which one can find a TVPI approxima-
tion of the above non-TVPI systemS(x) is to construct a sys-
temSHD(x,p1, . . . ,pmk ) in which all the non-TVPI constraints
in S(x) are approximated using the scheme described in Sec-
tion 4.2.2. This system can be solved using an LP formulation in
variables as{x,p1, . . . , ,pmk}. An approximation ofS(x) could
be found asSHD(x,p1, . . . ,pmk )|p1, . . . ,pmk . It can easily be
shown that the latter system is a proper approximation as long as the
context constraints

∑

p1 = b1, . . . ,
∑

pmk = bmk
are respected.

But, finding the approximations of all the non-TVPI con-
straints simultaneously in the above fashion would lead to an
LP system, with too high increase in the number of dimensions.
SHD(x,p1, . . . ,pmk ) could have upton +

∑mk

l=1

(

‖al‖
2

)

=
n +

∑mk

l=1 ‖al‖(‖al‖ − 1)/2-dimensions which could be as large

asO(n+ ̂‖Smk
‖3), with ‖̂Smk

‖ being the average number of non-
zero coefficients/elements in the non-TVPI constraints inS(x).

4.3.2 Iterative methods

We could however iterate the above process described in Sec-
tion 4.2.2 for each of themk non-TVPI constraints inS(x) on
an iterative basis. Clearly, there could be choice in the methods in
whether the original system is being updated with the approxima-

3 http://www.cse.ohio-state.edu/ pouchet/software/fm

(a,b,p)

x_i

x_j

(b,b,p/2)

(a−b,0,p/2)

a>b

Figure 2. TCPV to UTCPV approximation

tion constraints of each non-TVPI constraint or not. The case when
the original system is immediately updated, we call the method as
incrementalmethod. The case when the approximations of all non-
TVPI constraints are found by constructing LP formulations on the
same LP system each time, we call as theindependentmethod.

It could be noticed that each of the above methods involves mul-
tiple LP calls – one for each non-TVPI constraintS(x). This means
making uptoO(m) LP calls in total for building the approxima-

tion system. But, each of the LP systems is ofO(n + ̂‖Smk
‖2)

-dimension and is not that high-dimensional when compared to the
above one-shot formulation.

4.4 Per constraint UTVPI-UA of TVPI

Let us sketch a simple per-constraint algorithm that takes a TVPI
constraint and returns its UTVPI under-approximation.

From Lemma 3.1.2, a vector in the polarity construction needs
to be TCPV and to have equal magnitude components in the non-
homogenizing dimensions for the original to be UTVPI. So, the
intuition for this algorithm is similar to the TCPV-OA, namely that
reasoning about the TCPV original vectors in the polar space and
computing a set of UTCPV vectors which OA the original TCPV
vector would result in an OA.

Suppose the TCPV vector has components as(a, b, p) in the
(xi, xj , x0) dimension (withx0 being the homogenizing dimen-
sion), then we can replace it with two UTCPV vectors. The re-
placement has to just take care of the fact that the new UTCPV
vectors are such that the original vector is in the conical sum of
the replacements. As the case whena = b means that the vec-
tor is already a UTCPV vector, the other cases can be handled in

the following way:

{

a > b : cone{(b, b, p

2
)T , (a− b, 0, p

2
)T }

a < b : cone{(a, a, p

2
)T , (0, b− a, p

2
)T }

.

In either of the above cases, it can be noticed that the first vector is
a UTCPV vector and the second is an interval vector. The first case
is illustrated in Figure 2.

Lemma 4.4 [Validity of the above UTVPI approximation]Given
a TVPI constraint, the above method returns a valid UTVPI-UA of
the constraint.

Proof: The proof derives from the observation that the sum of the
corresponding UTCPV replacement vectors is the original vector.
Hence every vector in the polar space that is reachable by the
original vector is reachable by these replacement vectors, meaning
that they give an OA in the polar space. In the primal space, the
replacements necessarily give an UA.

Example 4 Let P = cone{(1, 1), (4, 1), (1, 2)}, with the H-
form of P beingP = {1 ≤ x ≤ 4; 1 ≤ y ≤ 2;x + 3y ≤ 7}. It
can be seen thatP is a TVPI system, but not a UTVPI system,
as the third constraint is a non-UTVPI constraint. The UTVPI
approximation by the above method is{1 ≤ x ≤ 4; 1 ≤ y ≤
2;x+ y ≤ 7

2
; 2y ≤ 7

2
} which can be seen to be non-empty.

The cost of finding the UA is linear and the method is simple to
implement, just like the median method mentioned in Section 4.1.



Just like that method, this method does not have any guarantee that
the approximated system is non-empty.

4.5 LP based parametrized UTVPI approximation

This approximation is mostly similar to the parametrized TVPI
approximation covered in Section 4.2, in the sense of searching for
p variables instead oft’s. We are not covering it in detail because
of lack of space.

5. Metrics and Discussion
Let us now study the size of the new system, the complexity of the
conversion, the overall complexity of finding a solution, and discuss
some fundamental and methodological limitations of our approach.

5.1 Sizes

Let the original matrix be of sizem × n: m constraints andn
variables withmk andmt being the number of non-TVPI and TVPI
constraints respectively. Also let the overall sparsity factor of the
system bês, which means that for a constraint in the input system,
on averagês variable elements are non-zero. It will be seen in later
sections that for practical purposes,ŝ is a small constant (little more
than4) and relatively independent ofn.

TVPI-UA For a system described as above, each of the TVPI-
UA methods (given in Sections 4.1 and 4.2) replace a non-TVPI
constraintaj with the same number of

(

‖aj‖
2

)

= ‖aj‖(‖aj‖−1)/2
TVPI constraints. Doing the above process for each of themk

non-TVPI constraints creates an approximated TVPI system of size
ma × n, wherema = mt + ‖̂Smk

‖(‖̂Smk
‖ − 1)mk/2. It can be

assumed that the new system is approximately of the sizeŝ2m×n.
In the rare case that̂s = n (which means that the constraint matrix
does not have any zero entries) then the size of the resultant TVPI
constraint system isn(n−1)m

2
×n which is of the order ofn2m×n.

UTVPI-UA For UTVPI approximation given in Section 4.4, we
have the same order of complexity of additional constraints as in
the TVPI-UA case, though double in number.

5.2 Complexity of Conversion

Both the median method of TVPI approximation covered in Sec-
tion 4.1 and the UTVPI approximation covered in Section 4.4 are
strongly polynomial time algorithms as they do not use any LP call
when constructing the approximation. The parametric approxima-
tion covered in Section 4.2.2 is a weakly polynomial time algorithm
for it needs to solve an LP problem for finding the homogenizing
dimension values.

For multiple constraints case, complexity of conversion is one
LP call for the one-shot algorithm of Section 4.3.1, and one LP
call per non-TVPI constraint for both incremental and independent
algorithms. Each of the above numbers are weakly polynomial
time, but are worstcase times nonetheless.

5.3 Complexity of Finding a Solution

For the TVPI approximation, as the worstcase complexity of
Hochbaum-Naor isO(mn2 logm) [11], applying it to the resul-
tant approximated system would lead toO(ŝ2mn2 log ŝm) time
with constraint sparsitŷs, andO(n4m log nm) in the unlikely case
whenŝ = O(n).

For the UTVPI approximation, the theoretical worstcase com-
plexity of solving UTVPI systems isO(mn) (if we use the Lahiri-
Musuvathi algorithm [12]). the corresponding complexities would
beO(ŝ2mn), andO(n3m) respectively. We will see later empiri-
cal evidence suggesting that a TVPI constraint isalwaysa UTVPI
constraint, making this method very attractive.

5.4 Preprocessing and Limitations

It can be noticed that our algorithms do not ask for any kind
of preprocessing. In particular, we are not asking for removal of
redundant inequalities, which is as hard as determining if the input
system is feasible. Polyhedra in compilation are usually highly
redundant. Also, there are lot of duplicate constraints. Compilers
like PLuTo remove the duplicates by methods like textual matching
which lead to a huge decrease in the number of constraints. We have
not employed any of these techniques to remove redundancy.

The following example shows an inherent limitation of the
process of TVPI-UA itself.

Example 5 The polyhedron described using the constraints{x+
y+ z ≥ −1;x+ y+ z ≤ 1} is not TVPI. Though the above poly-
hedron is unbounded in both directions, the only TVPI approxima-
tions that are possible of the above polyhedron are bounded TVPI
polyhedra, which can be considered a failure of the UA approach.

The above kinds of polyhedra can be considered as degener-
ate cases and identified by a pre-processing step that removes the
lineality space from the input polyhedron. Further, the Farkas poly-
hedra that arise in polyhedral scheduling are always pointed poly-
hedra and can never have non-trivial lineality space.

6. Experimental Results
In all our work, we used the widely used source-to-source poly-
hedral optimizer PLuTo (PLuTo-0.6). Our experimental framework
used the well used PiPLib and PolyLib libraries, with an option to
use FMLib as well.

The PIP calls from PLuTo originate from the functions:
dep satisfaction test (DS), get dep direction (DIR) and
find permutable hyperplanes (FPH).

Though there are lot more calls of the DS and DIR variety
when compared to the FPH calls, optimization of the former pair
of LP calls is entirely a different problem from the FPH variety
in many ways. Primarily, the former need to beover-approximated
as otherwise, it results in incorrect transformations. The latter of
course are the main topic of this paper and need to beunder-
approximatedleading to a conservative approximation and perhaps
loss of useful schedules.

6.1 Polyhedral characteristics

Here we are referring to Table 1. The initial three columns refer
to the SCoP size: L number of loops, S number of statements and
D number of dependences. The next sets of columns indicate the
polyhedral characteristics of the different varieties of calls from
PLuTo. As the DS and DIR variety are similar types of calls, they
have been summarized together. The remaining 4 columns will be
discussed in the next section.

The number of polyhedra of different types are indicated in the
P columns (PDS, PDIR andPFPH). As written earlier, there are lot
more polyhedral calls of DS/DIR than when compared to FPH. But
the former are smaller calls and are linearly dependent on the SCoP
size. For a particular benchmark and variety of polyhedra (DS/DIR
or FPH),n andm̂ columns indicate the number of variables (un-
knowns), and average number of constraints in the particular LP
formulation respectively.̂mt column indicates the average number
of TVPI constraints for that benchmark and variety of polyhedra.

DS/DIR As it can be expected, most of the constraints in the
DS/DIR polyhedra are TVPI constraints. In these polyhedra, there
is nevermore than1 constraint per polyhedron which is non-TVPI.
In all the cases, whenever a constraint is TVPI, it isalways a
UTVPI constraint, having the same absolute magnitude for the two
coefficients, when it has two entries. An interval constraint, with
only one non-zero coefficient, is of course UTVPI as well.



SCoP DS/DIR FPH

Bench #L #S #D PDS PDIR n m̂ m̂t PFPH n m̂ m̂t ‖̂Smk
‖ m̂a m̂u

adi 12 4 54 90 564 9 20 19 3 20 200 65 5 1844 614
corcol 12 6 14 38 194 9 17 16 3 22 22 13 5 130 77
covcol 13 7 26 41 228 15 25 24 3 24 18 14 4 29 55
dsyr2k 3 1 3 9 18 8 18 17 3 7 8 6 3 11 18
dsyrk 3 1 3 9 18 8 18 17 3 7 8 7 3 11 18

fdtd-2d 11 4 48 39 168 10 22 21 3 20 96 35 6 1010 367
gemver 7 4 13 29 161 6 13 12 2 14 21 15 4 48 47

jacobi-1d 4 2 10 16 88 7 14 13 2 10 32 14 5 232 104
jacobi-2d 6 2 14 21 84 9 19 18 3 12 65 15 7 1135 212

lu 5 2 10 12 60 11 23 22 3 10 35 17 5 232 106
matmul 3 1 3 9 18 10 21 21 3 9 9 7 4 20 24

mvt 4 2 11 31 68 6 13 12 2 9 20 12 3 46 52
seidel 3 1 27 37 162 12 24 23 3 8 33 15 5 168 179
ssymm 8 3 15 33 126 8 19 19 3 14 15 10 3 22 36
strmm 3 1 4 8 24 8 17 16 3 7 12 8 3 20 30
tmm 3 1 3 9 18 10 21 21 3 9 11 8 4 23 30

Median LP (indep)

YY YN YY YN

0 3 0 3
1 2 0 3
3 0 3 0
3 0 3 0
3 0 3 0
0 3 1 2
0 2 2 0
0 2 0 2
0 3 0 3
0 3 0 3
3 0 3 0
0 2 2 0
0 3 3 0
3 0 3 0
0 3 3 0
3 0 3 0

19 26 29 16

Table 1. Problem size, Polyhedral and TVPI-ness characteristics, UA effectiveness

FPH In the FPH variety, it can be noticed that the sizes of some of
the FPH polyhedra are small and comparable to the DS/DIR poly-
hedra. This is either the result of a small problem size or because
PLuTo uses Gaussian and Fourier-Motzkin elimination, along with
a syntactic heuristic to reduce the duplicate constraints. As it can be
expected,̂mt, number of TVPI constraints in the original system, is
highly benchmark dependent. But, just like in DS/DIR polyhedra,
a TVPI constraint is always a UTVPI constraint.

‖̂Smk
‖ is the average number of non-zero coefficients in the

non-TVPI constraints for that benchmark. It can be seen that this
number, though again being benchmark dependent, is a small con-
stant when compared to the dimension sizen. m̂a is the number of
constraints in the new (approximated TVPI) system. As seen ear-
lier, m̂a = ‖̂Smk

‖(‖̂Smk
‖ − 1)(m−mt)/2 +mt.

The relative growth of the approximated system with respect to
the original one is defined as the ratio between the sum of entries
in the m̂a andm̂ columns. We found the average value of this to
be8, meaning that the overall sparsity factorŝ is a little more than
4. Sometimes the growth of the approximated system is significant,
but it has to be remembered thatm̂a is the number of constraints
without any simplification, whilem is the obtained after systematic
simplification and elimination of duplicates in PLuTo.

For comparison purposes witĥma, we have added thêmu

column, which is the average unsimplified system size when the
simplification techniques used in PLuTo are turned off. It can be
observed that̂mu andm̂a are of comparable sizes, which means
that when the approximated system undergoes simplification and
duplication removal techniques, it could lead to a much smaller
system comparable to the one inm columns. Though we have not
implemented this, we expect a good improvement by use of this
technique: namely that the resultant approximated system would
be not more than twice-thrice bigger than the original system.

6.2 TVPI-UA performance

Here we are referring to the rightmost columns of Table 1. These
columns refer to the median method discussed in Section 4.1 and
to the LP based independent method discussed in Section 4.3.2
respectively. The latter, we have implemented only the overall
Farkas system, one that is obtained after putting together all the
per-dependence systems and after simplification of PLuTo, and not
on a per-dependence basis.

The PLuTo calls of the FPH variety are for LexMin. In the cur-
rent table, we discuss the results of feasibility only. The columns
YY (Yes-Yes), YN (Yes-No), denote the feasibility (Y) or infea-

Perf. Comparison (Seconds)
Benchmark Orig Par cur Par new Til cur Til new

gemver 0.31 0.15 0.15 0.15 0.15
mvt 1.40 0.27 0.28 0.42 0.43

seidel 11.8 3.6 3.6 11.5 11.5

Table 2. UA Code Performance

sibility (N) of the original and approximated systems respectively.
They have been highlighted accordingly. Since the FPH system is
used to find an optimization point in the overall system, a YN entry
would mean loss of parallelization.

It can be seen that the LP based independent method performs
much better than the median method. The latter performs poorly
(19 YY and 26 YN cases or 6 out of 16 PolyBench problems), but
surprisingly well considering the simplicity of the approach. We
expect the incremental method to have much better performance
than the current independent method (29 YY and 16 YN cases or
10 out of 16 PolyBench problems).

6.3 UA code performance

We are referring here to Table 2, limitting ourselves to a subset of
the YY cases in the previous table that our current implementation
could hanle; we will later consider all YY and YN cases with a
more robust implementation. In each case, we replaced the origi-
nal system(s) by the approximated TVPI ones obtained by the in-
dependent LP method. The cost function was unchanged and the
solution was found using PIP. It can be seen that performance gains
closely match the default polyhedral method in PLuTo, despite the
approximation taking place. The impact of YN approximations on
PLuTo’s effectiveness remain unknown, but we express some hope
on PLuTo’s loop distribution heuristic to break infeasible systems.

7. Related Work
Feautrier’s scalable modular scheduling Feautrier’s approach
[8] starts with Gaussian elimination, and combines a Minkowski
decomposition ofPe with parametric linear programming. We con-
sider this approach as complementary to ours.

TVPI and UTVPI Sub-polyhedra have been widely employed [3]
in abstract interpretation problems by the static analysis community
as a means of trading precision for scalability. A comparison of the
use of sub-polyhedra, along with their applicability to polyhedral
compilation can be found in [19]. Of the many classes of sub-



polyhedra TVPI and UTVPI have extensively been used [2, 13, 17],
such as in the Astree project [3].

Approximations We are not aware of any previous algorithm for
finding approximations of general polyhedra into sub-polyhedra
other than finding the interval (“box”) polyhedral OAs. The liter-
ature is scarce about polyhedral approximations and more so for
UAs. Vivien and Wicker (in [20]) propose an algorithm to find
the parallelepiped-OA of a 3d-polyhedron in vertex representation.
Mine [13] (in Section 4.3) adapts the vertex method for finding the
UTVPI-OA of a general polyhedron. Simon, King and Howe [17]
(in Section 3.2.6) propose an iterative algorithm for the TVPI-OA
of a general polyhedron using LP. Our algorithm for TVPI-UA in
Section 4.3 can be seen as complementary to the latter, though our
algorithm formulates the LP problem by searching only for the re-
placements in the homogenizing dimension.

Feasibility and optimization algorithms The state of the art in
feasibility testing for TVPI systems is by Hochbaum-Naor [11], for
optimization of TVPI systems by Wayne [21], and for feasibility of
UTVPI systems by Lahiri and Musuvathi [12]. We are not aware
of any existing implementations of the above algorithms, though
UTVPI feasibility can be solved using existing implementations of
the well understood Bellman-Ford algorithm.

8. Conclusions and Future Work
We have presented a case for sub-polyhedral scheduling using
(U)TVPI polyhedra. We have proposed worst-case polynomial time
algorithms to compute (U)TVPI under-approximations from a gen-
eral convex polyhedron. We have shown initial results of the above
approximations as well as their integration in PLuTo.

To stay within polynomial time, care was taken to linearize the
under-approximation model, avoiding the exponential vertex and
ray construction associated with the Chernikova algorithm. The
median method takes a strongly polynomial time, while the linear-
programming methods take a weakly polynomial time but allows
for better control of the feasibility of the under-appoximation. In-
deed, the most difficult unsolved problem is the lack of a scalable
way to reliably preserve the non-emptiness of the underapproxima-
tion when the original polyhedron is non-empty. The one-shot lin-
ear programming method offers this guarantee, but not in strongly
polynomial time. It is unlikely that a strongly polynomial method
exists to offer this guarantee, as it would then lead to a strongly
polynomial feasibility test for general polyhedra. But we are look-
ing for heuristics with quadratic time complexity.

Our experimental results show that the TVPI constraints are ex-
tremely likely to be UTVPI as well, and we suggested a direct
under-approximation method into UTVPI rather than a two-step
approximation through TVPI. This enables the Bellman-Ford al-
gorithm for feasibility testing as well as for objective function op-
timization, reducing the complexity to quadratic time.
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