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ABSTRACT
Many affine loop nest analysis and optimization techniques
are based on the well-known polyhedral model framework.
Namely, iterations and array references are represented by
integer points in bounded polyhedra, or Z-polyhedra. In
this tool demonstration paper, we present our library ZPoly-
Trans dealing with: (i) computing integer affine transforma-
tions of Z-polyhedra, (ii) counting integer solutions to such
transformations.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization; G.2.1 [Discrete Mathematics]: Com-
binatorics—Counting problems

General Terms
Algorithms, Performance

Keywords
Polyhedral model, parametric Z-polytopes transformation,
integer points counting, Counting solutions to Presburger
formulas.

1. INTRODUCTION
In the polyhedral model, numerous code optimization and
parallelization techniques raise the problem of counting inte-
ger points in parametric bounded Z-polyhedra and in their
transformations by affine integer functions. Through this
work, we present a C library dedicated to manipulate in-
teger transformations of parametric Z-polytopes1 based on
Polylib [13] and barvinok [20] libraries. The main algorithms
implemented in ZPolyTrans2 are those we proposed in [17,
18]: (i) an algorithm for computing the integer affine trans-
formation of a parametric polytope as a union of parametric
Z-polytopes, (ii) and an algorithm for counting the number

1Sub-lattices of bounded polyhedra.
2Available on http://zpolytrans.gforge.inria.fr
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of integer points in such a union. The result of this later
algorithm is given by one or many multivariate polynomials
in which the coefficients may be periodic numbers. These
pseudo-polynomials, known as Ehrhart polynomials [2, 3],
are defined on sub-sets (chambers) of the parameter values.
Both algorithms have many applications in affine loop nest
analysis and transformation, such as array linearization for
hardware design [19], cache access optimization [8, 4, 14],
memory size computation [24, 25], and data distribution for
NUMA-machines [9].

The rest of this paper is organized as follows. In section 2,
we present an overview of the theory we implemented in
ZPolyTrans. We then show the way this library can be used
in section 3. In section 4, we give some related work and
experiments. Finally, the conclusions are given in section 5.

2. OVERVIEW OF THE THEORY IMPLE-
MENTED IN ZPOLYTRANS

In this section, we present an abstract of the two main algo-
rithms that are implemented in ZPolyTrans. The full details
about these algorithms are given in [18, 17].

2.1 Z-polytope transformations and Presbur-
ger formulas

It has been shown that the integer affine transformation of
a Z-polytope can be written as a Presburger formula [15, 7]:

Let Z = Pp ∩ L be a parametric Z-polytope:

Pp =
˘

x ∈ Qd | Ax ≥ Bp + c
¯

a parametric rational poly-

tope defined by m constraints, L =
˘

A′z + c′ | z ∈ Zd
¯

a
lattice in canonical form and

T : Zd → Zk

x 7→ x′ = A′′x + c′′

be an integer transformation, where A, B, A′ and A′′ are
(m×d), (m×n), (d×d) and (k×d) integer matrices (respec-
tively); x,x′, z, c, c′, c′′ are vectors of variables; p is a vector
of n parameters. Then the transformation of Z by T is:

T (Z) =
n

x
′ ∈ Z

k | ∃x, z ∈ Z
d
,

Ax ≥ Bp + c,x = A
′

z + c
′

,x
′ = A

′′

x + c
′′

¯

,

which is a parametric Presburger formula. Solution x′ to



this formula is obtained by eliminating its existential vari-
ables x and z. We do this in two steps:

• The first step consists in removing all equalities imply-
ing existential variables. In this way, a number (equal
to the number of non-redundant equalities) of existen-
tial variables are automatically eliminated. This must
be done such that there exist integer values of the vari-
ables to be eliminated for each integer value of the
other variables. The result of this step is a paramet-
ric Z-polytope Z, i.e., an intersection of a parametric
polytope and an integer lattice which we call validity
lattice.

• The second step consists in recursively eliminating the
remaining existential variables from the Z-polytope Z
produced at the first step. Since all the constraints
implying existential variables in Z are inequalities, we
can rewrite them as a set of lower and upper bounds
{l(x,p) ≤ βz, αz ≤ u(x,p)}, where z is an existen-
tial variable chosen to be eliminated first, l(x,p) and
u(x,p) are affine functions of variables x and parame-
ters p independent of z, and α and β are strictly pos-
itive integer constants. The result of projecting out
variable z from each pair of bounds is given in the
following form:

dark shadow ∪ {exact shadow ∩ sub-lattices of hyper-
planes}, where

– the exact shadow corresponds to the rational
projection of the points belonging to the pair of
constraints.

– the dark shadow corresponds to the convex part
of the exact shadow in which any integer point has
at least one integer preimage.

– the sub-lattices of hyperplanes correspond to
the sets containing the points of the integer pro-
jection that are outside the dark shadow. The
integer points of the exact shadow having only
rational preimages are called holes.

Figure 1 shows the dark shadow, the exact shadow
and a hole of the projection of a pair of constraints
{x + 2 ≤ 3y, 2y ≤ x + 1}.

The elimination of existential variable z from Z-poly-
tope Z is finally given by the intersection of the projec-
tions of all pairs of lower and upper bounds of the vari-
able z. The result of this second step is than a union
of, possibly non standard, parametric Z-polytopes.

Note that our main contribution consists in computing the
sub-lattices of hyperplanes. The notion of dark and exact
shadows is introduced by W. Pugh [15].

2.2 Counting integer points in a union of para-
metric Z-polytopes

We have seen in the previous section that the transforma-
tion of a parametric polytope by an integer affine function
is usually given in the form of a union of parametric Z-
polytopes. In the following, we summarize the way in which
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Figure 1: Integer projection of a pair of constraints.

we count integer points in a union of Z-polytopes of the form
Z = P ∩ L, with:

P =



x ∈ Qd,p ∈ Zn

˛

˛

˛

˛

`

Ax Ap

´

„

x

p

«

+ a ≥ 0

ff

,

L =



`

Bx Bp

´

„

x

p

«

+ b

˛

˛

˛

˛

x ∈ Zd, p ∈ Zn

ff

,

where P is a parametric polytope, L is a parametric integer
lattice, Ax, Ap, Bx and Bp are integer matrices, a and b are
integer vectors, x is a vector of the variables space and p is
a vector of parameters.

Suppose we need to compute E(Z1 ∪Z2), the number of in-
teger points in the union of two Z-polytopes Z1 and Z2. To
do this, we start by applying the inclusion-exclusion princi-
ple to E(Z1 ∪Z2), which gives E(Z1) + E(Z2)−E(Z1 ∩Z2).
Of course, the generalization of this principle to many Z-
polytopes is straightforward. The number of points in each
resulting Z-polytope Yi = Pi ∩ Li is calculated as follows:

We first transform the lattice Li into an equivalent lattice
L′

i in which the rows defining the lattice in the parameter
space are independent of the variables. Then, we transform
Pi by L′

i to get a polytope P ′ which is rewritten as a function
of the original parameters. Finally, we use our counting al-
gorithm [22] to calculate the Ehrhart quasi-polynomial cor-
responding to the number of integer points in the resulting
polytope. The results coming from the different Z-polytopes
(lists of pairs (validity domain, Ehrhart polynomial)) are
then combined into a single list.

3. HOW TO USE ZPOLYTRANS ?
In this section, we show through examples how to use the
main C programs of ZPolyTrans.

3.1 Using the program enumerate_image
Suppose we are interested in computing the amount of data
being accessed by the following loop nests (the cache size
used by this computation could also be computed):

for i = 0 to n do
for j = i+1 to n do

A[4*i+2*j] = ...

for k = 0 to n do
for l = 0 to n do

A[k+l] = ...



The desired computation reduces to computing the integer
points in the transformation of the first iteration domain
(0 ≤ i ≤ n∧i+1 ≤ j ≤ n) by the first reference function (4i+
2j) union the transformation of the second iteration domain
(0 ≤ k ≤ n ∧ 0 ≤ l ≤ n) by the second reference function
(k + l). This can be written in the form of a Presburger
formula:

{x ∈ Z | ∃i∃j ∈ Z
2
, 0 ≤ i ≤ n ∧ i+1 ≤ j ≤ n ∧ x = 4i+2j}∪

{x ∈ Z | ∃k∃l ∈ Z
2
, 0 ≤ k ≤ n ∧ 0 ≤ l ≤ n ∧ x = k + l}

To solve this formula, we construct the input (in Polylib
format) for the program enumerate_image as follows:

2 # number of input polyhedra
# Polyhedron P1
5 6
# i j x n
0 4 2 -1 0 0 # x = 4*i+2*j
1 1 0 0 0 0 # i >= 0
1 -1 0 0 1 0 # i <= n
1 -1 1 0 0 -1 # j >= i+1
1 0 -1 0 1 0 # j <= n
2 # number of existential variables (i,j) of P1
# Polyhedron P2
5 6
# k l x n
0 1 1 -1 0 0 # x = k+l
1 1 0 0 0 0 # k >= 0
1 -1 0 0 1 0 # k <= n
1 0 1 0 0 0 # l >= 0
1 0 -1 0 1 0 # l <= n
2 # number of existential variables (k,l) of P2
# parameter context matrix
1 3
1 1 0 # n >= 0
# names of parameters
n

In Polylib format, the reference function and its iteration do-
main are combined to construct a single non full-dimensional
polyhedron. The presence of 0 in the first column means
that the constraint is an equality of the form ax + c = 0,
and the presence of 1 indicates that the constraint is an in-
equality of the form ax + c ≥ 0. The parameter context
matrix defines the constraints on the parameters appearing
in the loop nests (see [13] for more details).

The output of enumerate_image for the above input is:

3 3
2 0 0
0 1 0
0 0 1

POLYHEDRON Dimension:2
Constraints:3 Equations:0 Rays:3 Lines:0

Constraints 3 4
Inequality: [ -1 6 -8 ]
Inequality: [ 1 0 -2 ]
Inequality: [ 0 0 1 ]
Rays 3 4
Ray: [ 0 1 ]
Ray: [ 6 1 ]
Vertex: [ 6 5 ]/3
3 3

2 0 0
0 1 0
0 0 1

POLYHEDRON Dimension:2
Constraints:3 Equations:1 Rays:2 Lines:0

Constraints 3 4
Equality: [ 1 -6 4 ]
Inequality: [ 0 1 -1 ]
Inequality: [ 0 0 1 ]
Rays 2 4
Ray: [ 6 1 ]
Vertex: [ 2 1 ]/1
3 3

1 0 0
0 1 0
0 0 1

POLYHEDRON Dimension:2
Constraints:3 Equations:0 Rays:3 Lines:0

Constraints 3 4
Inequality: [ 1 0 0 ]
Inequality: [ -1 2 0 ]
Inequality: [ 0 0 1 ]
Rays 3 4
Ray: [ 0 1 ]
Ray: [ 2 1 ]
Vertex: [ 0 0 ]/1

n = 0
1 >= 0

1
n -1 = 0
1 >= 0

3
n -2 >= 0
1 >= 0

( 4 * n + -2 )

This means that the result of the transformation is given by
a union of three Z-polytopes: {2 ≤ x ≤ 6n − 8 ∧ x even} ∪
{x = 6n− 4 ∧ n ≥ 1 ∧ x even} ∪ {0 ≤ x ≤ 2n ∧ x ∈ Z}. The
number of points in this union equals to 1 when n = 0, 3
when n = 1 and 4n − 2 when n ≥ 2.

By default, the program enumerate_image computes the
image and its cardinality and displays only this later one.
When the user also needs to display the image (result of the
transformation), it has to use the option -v. And when it
needs to get the image only (without computing its cardi-
nality), it has to use the option -no-ep.

3.2 Using the program enumerate_zp_union
In some applications (such as handling loop nests with non-
unit stride [16, 10]), one might be interested in computing
integer points in a union of Z-polytopes. In this case, the
program enumerate_zp_union can be used. For example,
suppose that we need to count the number of array elements
accessed by the following loop nests whose iteration domains
are illustrated in Figure 2 (for N=6).

for (i=0; i<=N; i+=2)
for (j=0; j<=N; j+=3)

A[i][j] = ...

for (i=0; i<=N-1; i+=2)
for (j=0; j<=i+1; j++)

A[i][j] = ...

This computation reduces to counting the number of differ-
ent iteration vectors in the two loop nests. To do this, we
construct the input file for enumerate_zp_union as follows:



i

j

0

Figure 2: Example of a union of non-unit stride it-

eration domains, where squares belong to the first

iteration domain, dots belong to the second itera-

tion domain and diamonds belong to both iteration

domains.

2 # number of Z-polytopes
# Z-polytope ZP1

# Constraints matrix of ZP1
4 5
1 1 0 0 0
1 -1 0 1 0
1 0 1 0 0
1 0 -1 1 0
# lattice matrix of ZP1
4 4
2 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

# Z-polytope ZP2
# Constraints matrix of ZP
4 5
1 1 0 0 0
1 -1 0 1 -1
1 0 1 0 0
1 1 -1 0 1
# lattice matrix of ZP
4 4
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
# parameter context matrix
1 3
1 1 0
# parameter names
N

The corresponding output is given by the following Ehrhart
quasi-polynomial:

N >= 0
1 >= 0

( 1/3 * N^2 + [ 1, 1, 2/3, 7/6, 5/6, 5/6 ]_N * N
+ [ 1, 2/3, 1/3, 1/2, 1/3, 1/2 ]_N )

Which means that the number of integer points in the above
union of Z-polytopes is: 1

3
N2+N when N mod 6 = 0, 1

3
N2+

N + 2

3
when N mod 6 = 1, ... , 1

3
N2 + 5

6
N + 1

2
when N mod

6 = 5.

4. RELATED WORK AND EXPERIMENTS
The problem of computing the integer affine transformation
of parametric Z-polytopes is a difficult geometric operation
that is raised by the polyhedral model. Therefore, many ap-
proaches trying to tackle this problem have been proposed.
Among these approaches, we cite:

• the work of W. Pugh [15] on integer affine projections
based on the Fourier-Motzkin variable elimination [5].

• The theoretical rational generating function based ap-
proach, first proposed by A. Barvinok [1], and than ex-
tended to parametric case by Verdoolaege and Woods
[23] and Köppe et al.[11].

• the weak quantifier elimination approach by Lasaruk
and Sturm [12] consisting in a generalization of Pres-
burger arithmetic, where the coefficients are arbitrary
polynomials in non-quantified variables.

• the Z-polyhedral model proposed by Gautam and Ra-
jopadhye [7] in which the transformation of a Z-polytope
consists in computing a union of translated subsets of
a Z-polyhedron, and then to cut each Z-polyhedron of
the resulting union with hyperplanes.

• the work of Verdoolaege et al. [21] consisting in apply-
ing simple rewriting rules (removing existential vari-
ables that are unique or redundant and to solve (when
these rules fail) a parametric integer linear program-
ming problem (using the PIP library [6]). To the best
of our knowledge, this later work, distributed in the
barvinok library [20], is the most robust and general-
case approach. We therefore choose to compare it
against our method. A quick comparison to the other
related work is given in [18].

The particular advantage of our method over the one of Ver-
doolaege is its ability to handle efficiently unions of projec-
tions. Indeed, in such a case, our algorithm computes each
projection independently of the others, even if the original
sets are not pairwise disjoint projections. The final result
is then easily obtained by doing the union of the resulting
atomic projections. The number of lattice points contained
in this union is computed straightforwardly using the algo-
rithm we presented in section 2.2. Verdoolaege’s method
could not do so since, in contrast to our method, it does not
compute the actual atomic projections but equivalent sets
having the same number of lattice points. Hence, the orig-
inal input sets have to be pairwise disjoint. Furthermore,
the equivalent resulting sets may be of higher dimension
than the actual projections. This, usually, leads to higher
lattice points counting times and results in larger Ehrhart
quasi-polynomials. For example, in the following two loop
nests:

for i = 1 to n do
for j = i+1 to n do

A[2*i+3*j] = ...

for k = 1 to n do
for l = 1 to k-1 do

A[k+2*l] = ...



The computation of the number of accessed array elements
is done by Verdoolaege’s iscc interface to the barvinok li-
brary in 136 ms, and the size of its output (piecewise quasi-
polynomial) is 767 bytes. While our method does this com-
putation in only 16 ms and outputs 148 bytes.

We also did a simulation through 500 pseudo-randomly gen-
erated examples that model array accesses in perfect loop
nests. The examples are constructed as follows:

• the depth of loop nests (number of the existential vari-
ables) varies from 1 to 6,

• the dimension of arrays (number of free-quantifier vari-
ables) varies from 1 to 4,

• the number of parameters varies from 1 to 4,

• the number of equalities equals the array dimension,

• the number of inequalities equals 2 times the depth of
the loop nest,

• the coefficients of the variables and parameters are cho-
sen such that they reflect what could be found in a real
program.

Consequently, the sum of dimensions (regular varibles +
existential variables + parameters) of the generated sets3

varies from 3 to 14, and the number of constraints varies
from 3 to 16.

In these experiments, our implementation and Verdoolaege’s
compute the solution in 0.01s or less for 403 examples. The
remaining examples are as follows:

• For 6 examples the two implementations have the same
computation time (between 0.02s and 0.06s).

• For 40 examples, our implementation does better than
Verdoolaege’s.

• For 28 examples, Verdoolaege’s implementation does
better than ours.

• For 23 examples, both implementations do not com-
pute the solution in less than 30s, which we set as
timeout threshold.

5. CONCLUSION
We have presented a C library (ZPolyTrans) for comput-
ing and enumerating the integer affine transformations of
parametric Z-polytopes. The library basically implements
two recent algorithms: the first one consists in computing
the integer affine image of a Z-polytope in the form of a
worst-case exponential union of Z-polytopes, and the sec-
ond one computes the cardinality of such a union. When the
number of input Z-polytopes is fixed, this later algorithm is
polynomial (for fixed dimension). The comparative study
of our implementation with Verdoolaege’s related work in-
dicates that both approaches work very well for a large class

3We consider only non-empty sets.

of problems. But for some hard examples, it may be suitable
to choose one approach rather than the other. Therefore we
think that both implementations need some further work in
order to handle efficiently such hard problems.
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