
A library to manipulate Z-polyhedra in image
representation

Guillaume Iooss
Colorado State University and

Laboratoire de l’Informatique du Parallelisme
guillaume.iooss@gmail.com

Sanjay Rajopadhye
Colorado State University

Sanjay.Rajopadhye@ColoState.Edu

ABSTRACT
The polyhedral model is a powerful mathematical frame-
work used for program analysis (such as program transfor-
mation, automatic parallelization of nested loops, etc). It
is well known that this model becomes somewhat cumber-
some when we encounter modulos, “holes” in the computa-
tion domain, or non-unit-stride loops. An extension, called
the Z-polyhedral model, has been proposed to manage these
situations. A Z-polyhedron is the intersection of an affine
lattice and an integer polyhedron, but it can also be repre-
sented as the affine image of an integer polyhedron.

In this paper, we present a Java implementation of a Z-
polyhedral library, based on the image representation of Z-
polyhedron. The basic operations were implemented (inter-
section, difference, image, etc), most of them based on the
algorithms of Gautam and Rajopadhye (PPoPP 2007) and
a recent article by Seghir et al. (to appear in ACM TACO).
We also present some performance data about our imple-
mentation.

1. INTRODUCTION
The polyhedral model is a mathematical framework widely
used for program analysis and transformation, especially in
the context of loop parallelization. For example, it is com-
monly used to represent iteration domains in regular nested
loops with affine dependences, and allows us to do depen-
dence analysis, automatic parallelization [4], loop transfor-
mations, etc

However, although this model works well with regular, dense,
and unit-stride nested loops, it becomes somewhat cumber-
some when we have modulos, “holes” in the iteration space,
e.g. by non-unit stride loops, although some adaptations
can be made (for example, by adding extra dimensions to
deal with modulo). To deal with such situations, an ex-
tension of integer polyhedron has been proposed, called the
Z-polyhedral model [6].

This material is based upon work supported in part, by the National

Science Foundation under Grant No. 0917319.

IMPACT 2012
Second International Workshop on Polyhedral Compilation Techniques
Jan 23, 2012, Paris, France
In conjunction with HiPEAC 2012.

http://impact.gforge.inria.fr/impact2012

A Z-polyhedron is the intersection of an integer polyhedron
with an integer lattice, which allows us to manage more
easily regular holes inside its domain and to extend the al-
gorithms based in the polyhedral model [16, 5, 8]. It is also
possible to represent a Z-polyhedron as the affine image of
an integer polyhedron and to operate on this image repre-
sentation [6].

Some libraries to manipulate Z-polyhedra based on the in-
tersection representation already exist, such as Polylib [9]
and ISL [23] which implicitly handles Z-polyhedra as special
cases of other, more general objects like relations. However,
depending the representation considered, the complexities of
the associated algorithms are different. For example, the im-
age representation is more suitable for the image operation
(especially by an injective affine function), and the intersec-
tion representation is more suitable for the intersection or
the difference operation, although all of these operations can
be made in both representations. In this paper, we present
the implementation of a library in Java1, to manipulate Z-
polyhedra, based on the image representation and on the
adaptation of the algorithms described in [6].

The rest of this paper is organized as follows. We first in-
troduce some mathematical background needed in the rest
of this paper. Then, we describe the algorithms used in this
library in section 3 3. In section 4, we describe the imple-
mentation of the library and we evaluate its performance.
After presenting the related work in section 5, we finally
conclude in section 6.

2. MATHEMATICAL BACKGROUND
2.1 Some notions of linear algebra
We assume that every matrix and vector encountered is in-
tegral. A matrix is said to be full-column rank if its number
of columns is equal to its rank. An unimodular matrix is a
square matrix A whose determinant is ±1.

The Hermite Normal Form (HNF) H of an integer matrix A
is an integer matrix such that there exists an integer unimod-
ular matrix U with H = A.U and H satisfies the following
properties:

• If they exist, the zero-columns of H are the last ones.

1Available at http://www.cs.colostate.edu/AlphaZsvn/
Development/trunk/mde/

• For each non-zero column, its first non-zero value is
greater than the first non-zero value of the previous
column.

• The first non-zero value of a column is strictly maximal
on its row, and all the coefficients on this row are non-
negative.

For example, the matrix

2666664
1 0 0 0
3 4 0 0
−4 0 0 0
0 −6 0 0
5 2 7 0
5 1 2 9

3777775 is in HNF.

For every integer matrix A, there exists a unique Hermite
Normal Form H. However, the associated unimodular ma-
trix U might not be unique. The HNF of a matrix can be
computed in polynomial time [19].

A Diophantine equation is an equation in which we are
only interested in the integer solutions. A system of lin-
ear Diophantine equations A.x = b can be solved in poly-
nomial time, and the set of its solutions is in the form
{x0 + λ1.x1 + ... + λt.xt | λi ∈ Z}, with x1, . . . , xt linearly
independent integer vectors.

2.2 Integer Polyhedra
An integer polyhedron is a subset of Zn, which satisfies a
finite number of linear constraints. In its matrix representa-
tion, an integer polyhedron can be written as:

P = {z | A.z + b = 0 ∧Q.z + q ≥ 0} ⊂ Zn,

with A and Q integral matrices and b and q integral vectors.
This representation is called the implicit representation of
an integer polyhedron.

It is also possible to define an integer polyhedron by P =
C +R+ L, with:

• L = V ect(z1, . . . , zt) a vectorial space called linearity
space,

• R = {µ1.y1 + · · ·+ µr.yr | µi ≥ 0} and

• C = conv(x1, ..., xs).

The vectors zi are called bidirectional rays, yi are called uni-
directional rays and C is the convex closure of the points xi.
This representation is called the Minkowski representation
of an integer polyhedron and is equivalent to the implicit
representation.

To get the parameter representation from the implicit rep-
resentation, we can use Chernikova’s algorithm [10]. This
algorithm is exponential in dimension in the worst case, so
it is not convenient for polyhedra with more than 10 to 12
dimensions.

The set of integer polyhedra satisfies several closure proper-
ties:

• The intersection of two integer polyhedra is an integer
polyhedron.

• The difference of two integer polyhedra is a finite union
of integer polyhedra.

• The preimage of an integer polyhedron by an integer
affine function is an integer polyhedron.

• The image of an integer polyhedron by an integer affine
function (f : x 7→ F.x+ f0) is generally not an integer
polyhedron. However, if the matrix of affine function F
is unimodular, then the image is an integer polyhedron.
In this case, f is called a change of basis.

All these operations can be done in polynomial time, except
for the image by a non-unimodular function. The context of
an integer polyhedron2 is the linear part of the smallest affine
subspace containing an integer polyhedron. However, for
the implicit representation of an integer polyhedron, some
equalities can be hidden among inequalities (example: i ≥
0∧j ≥ 0∧i+j ≤ 0), and finding this set is NP-hard (because
this problem can be reduced to the emptiness check of an
integer polyhedron).

The integer hull PI of an integer polyhedron P is the convex
hull of all the integer points of P. Computing the integer
hull of a polyhedron in an implicit representation is also
a NP-complete problem. Indeed, if we can compute the
integer hull of a polyhedron, then we have the vertices of this
integer hull. However, determining if an integer point of P is
a vertex of PI is an NP-complete problem (see Schrijver [19,
p 254]).

2.3 Affine Lattice
An affine lattice (also called Z-module) is a set of the form
L = {L.z + l | z ∈ Zn} ⊂ Zm with L an integer matrix
called generator of L, l an integer vector called offset of L,
n a positive integer called the internal dimension of L and
m a positive integer called the external dimension of L.

An affine lattice is said to be in canonical form if

»
1 0
l L

–
is in Hermite Normal Form and L is full-column rank. The
canonical form of a lattice L is unique.

The set of affine lattices satisfies several closure properties:

• (L1 ∩ L2) is either empty, or an affine lattice.

• (L1 − L2) is a union of affine lattices. More precisely,
the resulting union is finite, iff the internal dimension
of (L1 ∩ L2) is equal to the internal dimension of L1.

• f(L), with f an integer affine function, is an affine
lattice.

• f−1(L), for an integer affine function, f is either empty,
or an affine lattice.

2Not to be confused with the context-domain that Dupont
de Dinechin [2] defines as the set of points where an Alpha
expresion must be (or needs to be) evaluated.

2.4 Z-polyhedra
A Linearly Bounded Lattice (LBL) is the image of an integer
polyhedron by an affine function3, a set defined as

{L.z + l | z ∈ P} (1)

with L an integer matrix, l an integer vector and Pc an
integer. Note that 〈L, l〉 define an affine lattice. We call Pc
the coordinate polyhedron.

A Z-polyhedron Z is the intersection of an integer polyhe-
dron P and an affine lattice L, Z = P ∩ L. Intuitively,
we a Z-polyhedron has “regular holes” in the domain. LeV-
erge [11] showed the inclusion: Polyhedra ⊂ Zpolyhedra ⊂
LBL. Therefore, a Z-polyhedron can also be written in the
form of Eq. 1. Since the inclusion is strict, every LBL is not
a Z-polyhedron. For example, {i + 3j | 0 ≤ j ≤ i ≤ 3},
which corresponds to the set [|0; 12|] − {8, 10, 11}, is not a
Z-polyhedron. However, it is a union of Z-polyhedra [20, 6].

To determine whether an LBL is a Z-polyhedron, we have a
sufficient condition [11]:

Theorem 2.1 (LeVerge’s condition). The set
{L.z + l | Q.z + q ≥ 0 ∧ A.z + b = 0} is a Z-polyhedron

whenever Ker

„
L
Q0

«
⊂ Ker(Q) with Ker(Q0) the context

of the coordinate polyhedron Pc = {z | Q.z+q ≥ 0∧A.z+b =
0}.

However, because computing the context is hard, Gautam
and Rajopadhye weaken this condition to obtain an other
sufficient condition: Ker(L) ⊂ Ker(Q).

A Z-polyhedron is in canonical form if: (i) its affine lat-
tice is in canonical form, and (ii) its coordinate polyhedron
is full-dimensional, i.e., the dimension of its context is the
dimension of its space.

An affine lattice function is an application of the form (K.z+
k 7→ R.z + r) with K full-column rank. This is a gener-
alization of the notion of affine function, which gives an
image only for the points belonging to the affine lattice
{K.z + k | z}.

Finally, the set of Z-polyhedra satisfies the following closure
properties:

• (Z1 ∩ Z2) is a Z-polyhedron (which can be empty).

• (Z1−Z2) is a union of Z-polyhedra (which can be finite
if the affine lattice difference is infinite).

• f−1(Z), with f an integer affine lattice function, is a
Z-polyhedron.

• f(Z), with f an integer affine lattice function, is an
LBL in general. However, an LBL can always be ex-
pressed as a union of Z-polyhedra.

3Technically speaking, the term LBL is a misnomer since the
words precisely describe Z-polyhedra. The name, introduced
by Teich and Thiele [22] has remained in (mis) use.

Compared with the stability properties of integer polyhedra,
we do not need to impose the affine function to be unimod-
ular in the image closure property. However, the algorithms
for manipulating Z-polyhedra are more sophisticated, and
their complexity is increased.

For example, let us consider the following nested loop pro-
gram:

for (int i=0; i<n; i=i++)

for (int j=0; j<i; j=j+2)

A[3i+2j,2i-j] = ...

Let us assume that we want to know which element of the
array A is accessed (to do a dependence analysis, for exam-
ple). We represent the iteration space by the Z-polyhedron
{(i, j) | 0 ≤ i < n∧0 ≤ j < i}∩{(i′, 2.j′)}. The correspond-
ing image representation is {(i, 2.j′) | 0 ≤ i < n∧ 0 ≤ 2.j′ <
i}.

Then, we apply the affine function ((i, j) 7→ (3i+ 2j, 2i− j))
to get the LBL {(3i+4j′, 2i−2j′) | 0 ≤ i < n∧0 ≤ 2.j′ < i}.
Because we have Ker(L) = ∅, this LBL satisfies LeVerge’s
condition, and is a Z-polyhedron.

3. ALGORITHMS FOR Z-POLYHEDRA
3.1 Operations on Z-polyhedra
Gautam and Rajopadhye previously presented some algo-
rithms to manipulate Z-polyhedra in their image represen-
tation [6]. The algorithms presented are similar to the ones
for the intersection representation [9], except that we have
some extra work (or less work) to update each time the co-
ordinate polyhedra. Moreover, as soon as we perform an
operation, we put the obtained Z-polyhedron into canonical
form.

About the difference algorithm, we restrict it to the situation
where the difference between the associated affine lattices
(L1 − L2) is finite. However, if we have polytopes as coor-
dinate polyhedron, we only need a finite set of affine lattice
(Li)i that covers (L1 − L2) over the polytopes’s bounds, so
we can manage some cases where the affine lattice difference
is infinite.

However, these algorithms are not polynomial in general,
because of the following reasons:

• These algorithm use Z-polyhedra in their canonical
form. However, the second condition of the canonical
form requires for a full-dimensional coordinate polyhe-
dron and computing the context of an integer polyhe-
dron is NP-hard.

• The image algorithm uses this condition, and does not
work with an under-approximation of the context of an
integer polyhedron (which could be obtained by con-
sidering the equalities of the integer polyhedron).

Therefore, we drop the second condition of the canonical
form, to make the intersection, difference and preimage al-
gorithms polynomial. However, we cannot compare two Z-
polyhedra by looking separately at their affine lattices, then

at their coordinate polyhedrons. Let us consider the two
following Z-polyhedra:

Z1 =

8<:
0@1 0

0 1
0 0

1A .

„
x
y

«
| y ≥ 0 ∧ x ≥ 4y ∧ 4− x ≥ 4y

9=;
Z2 =

8<:
0@1 0

0 0
0 1

1A .

„
x′

y′

« ˛̨̨
y′ ≥ 0 ∧ x′ ≥ 4y′ ∧ 4− x′ ≥ 4y′

9=;
These two polyhedra have different affine lattices, but are
both equal to [|0; 4|] × {0} × {0}. Indeed, their coordinate
polyhedron has an integer equality hidden, and is equal to
[|0; 4|] × {0}. Therefore, we still need to get the canonical
form before comparing two Z-polyhedra.

Moreover, because the proposed image algorithm used the
second condition of the canonical form, we need to find an-
other algorithm to compute the image of a Z-polyhedron.

Image algorithm The image of a Z-polyhedron by an affine
lattice function is an LBL in general. Therefore, the main
part of the image algorithm consists in decomposing this
LBL into an finite union of Z-polyhedra. More precisely, let
us consider a Z-polyhedron {L.z+ l | Q.z+q ≥ 0∧A.z+b =
0} and an affine function (x 7→ R.x+ r). The image of this
Z-polyhedron by this affine lattice function is:

{y | (∃z)y−R.(L.z+ l)− r = 0∧A.z+ b = 0∧Q.z+ q ≥ 0}

Then, we just have to eliminate all the existential variables
in z. For this, we use the algorithm of Seghir et al. [21].

In short, this algorithm first eliminates existential variables
by using equalities. For this, it does a rational elimination
of this variable to obtain an integer polyhedron Y, then it
computes the validity lattice L, which corresponds to the
integer solutions of this elimination. Therefore, we obtain a
Z-polyhedron (Y∩L). Then, we get the image representation
of this Z-polyhedron and we continue the elimination on its
coordinate polyhedron.

When we do not have enough equalities to suppress all the
existential variables, we have to use inequalities to eliminate
them. For this, we arbitrarily choose an existential variable
z to eliminate, we list all inequalities involving this existen-
tial variable, and we separate them into two sets: the upper
bound (of the form α.z ≤ u(x, p)) and the lower bound (of
the form l(x, p) ≤ β.z). For every pair of lower and upper
bound, we have to compute its projection along the dimen-
sion of z, then we will intersect all these projections to get
the integer projection of the polyhedron.

Let us consider an upper bound and a lower bound: α.z ≤
u(x, p) and l(x, p) ≤ β.z. We can consider two sets in rela-
tion to this integer projection (first introduced by [14]):

• The Exact shadow, which is the rational projection of
these constraints. Its equation is α.l(x, p) ≤ β.u(x, p).

• The Dark shadow, which is the convex part in which
we are sure that every integer point has at least a pre-
image. The idea is that the gap between the two con-
straints has to be at least one (along the dimension of

x

y

0 1 3 6 8

1

4

ES

DS

{x+ 2 ≤ 3.y ∧ 2.y ≤ x+ 1}
Exact Shadow: 1 ≤ x
Dark Shadow: 3 ≤ x

Figure 1: Exact and Dark shadow

z), to be sure that we have at least one integer point
(cf Figure 1).

The exact shadow contains the integer projection we are
looking for, but it might also contain extra points which are
not on the integer projection. On the other hand, the dark
shadow contains only points in the integer projection, but
it might miss some extra points outside. Therefore, the in-
teger projection is the union of the dark shadow, and these
“extra points” that are in the exact shadow and not in the
dark shadow. A way to get these points though equations
is described in [21]. Because of the presence of a modulo at
some point, we might introduce a new existential variable,
which can be immediately suppressed, using the correspond-
ing introduced equality.

Therefore, the number of existential variables strictly de-
creases in the generated Z-polyhedron and the method to
get these new LBL by eliminating an existential variable in
a single LBL is polynomial. However, the number of sets
generated might be exponential [6, 20], so the whole algo-
rithm is exponential.

To adapt this algorithm to the image representation, when
we eliminate several existential variables by using equali-
ties, we transform the Z-polyhedron (Y ∩ L) into its image
representation {L.x + l | x ∈ Pc} and we continue the al-
gorithm with its coordinate polyhedron Pc. Therefore, if
several affine lattices are generated, we just have to com-
pose them, rather than taking their intersection.

3.2 Parametric Z-polyhedron
We have two different ways to define the notion of para-
metric Z-polyhedra. Intuitively, we want to define a para-
metric Z-polyhedron as a conventional Z-polyhedron, where
parameters replace some indexes. Therefore, if we consider
the image representation, a parametric Z-polyhedron should
be a set of the form:

L.

„
p
z

«
+ l

˛̨̨
Q.

„
p
z

«
+ q >= 0 ∧A.

„
p
z

«
+ b = 0

ff
,

with p the vector of parameters and z the vector of indices.

Consider the intersection between the two parametrized Z-
polyhedra {N + 2k | k ∈ Z} and {2k + 1 | k ∈ Z}. Among
the parity of N , the intersection is empty (if N is even), or
equal to 2Z + 1 (if N is odd). Indeed, the parameter part
shifts the offset of the affine lattice where the Z-polyhedron
live, and, depending on the intersection between the differ-
ent affine lattices, we can have either an empty result, or

a Z-polyhedron. Therefore, the algorithms used for non-
parametric Z-polyhedron are not directly applicable to the
parametric case.

If we go back to the intersection representation, the cur-
rent definition is equivalent to Z(p) = L(p) ∩ P(p), where
L is a parametrized affine lattice and P a parametrized
integer polyhedron. Therefore, we can weaken the defini-
tion of parametric Z-polyhedron by imposing that L is not
parametrized anymore. Therefore, the affine lattice is fixed,
and we do not have conditions on the parametric part to
decide which Z-polyhedron we have.

In terms of image representation, if a Z-polyhedron has pa-
rameters on the affine lattice part of its image representa-
tion, we have to ensure that its affine lattice is fixed. In this
case, we always can translate the coordinate polyhedron to
suppress the parameter contribution from the affine lattice.

Proof.

Let Z =

`
Lp Lx

´
.

„
p
x

«
+ l

˛̨̨
x ∈ Pc(p)

ff
. Let N be the

first parameter of p. We want to nullify the column CN of
Lp corresponding to N .

• If we cannot express CN as an integer linear combination
of the columns of Lx, then L(N, p′) 6= L(N + 1, p′). Indeed,
for all x, L(N + 1, p′)(x) = CN + L(N, p′)(x) /∈ L(N, p′).
Therefore, the affine lattice is not fixed.

• Otherwise, if CN = Lx.λ then, we have:`
CN L′p Lx

´
.

0@Np′
x

1A+ l

= (Lx.λ).N +
`
L′p Lx

´
.

„
p′

x

«
+ l

=
`
L′p Lx

´
.

„
p′

x′

«
+ l, with x′ = x+N.λ.

So, Z =

`
L′p Lx

´
.

„
p′

x′

«
+ l

˛̨̨
x′ ∈ τ(N.λ)(Pc(p))

ff
, with

τN.λ(Pc(p)) the translation of Pc(p) along the vector N.λ,
which is also a parametrized polyhedron.

So, we can rewrite Z in such a way that the parameter N is
no longer present on the affine lattice part.

From this constructive proof, we can deduce an algorithm
which verifies when a parametric affine lattice on its im-
age representation corresponds to this definition, and which
eliminates the parametric part of the affine lattice. There-
fore, in the library, the internal dimension of the affine lat-
tice of a Z-polyhedron is equal the number of indices of the
coordinate polyhedron.

Although the non-parametric algorithms no longer work for
the more general definition of parametric Z-polyhedra, it is
still possible to adapt them. Such algorithms would manip-
ulate QUAST (QUasi-Affine Selection Tree) [3] whose nodes

are modulo linear conditions on the parameters (of the form
C.p+ c ∈ λZ), and whose leaves are Z-polyhedra.

4. IMPLEMENTATION
4.1 Implementation
This library is implemented in Java to be compatible with
the AlphaZ system being developed at CSU and to use Z-
polyhedron in the Alpha language[15, 12]. To manage poly-
hedra, we use an interface called Polymodel, which calls a
polyhedron library, such as ISL [23].

We first have implemented an affine lattice library to do the
basic operations on affine lattices (intersection, difference,
image, preimage). For the difference algorithm, we restrict
the algorithm to the case where (L1 − L2) is a finite union
(i.e., when the internal dimension of L1 and (L1 ∩ L2) are
equal). Moreover, in the finite case, no optimizations have
been done to limit the number of generated affine lattices.

The HNF algorithm that we are using is the “standard”
polynomial algorithm (described in Schrijver [19, p 56-57]),
based on pivoting Gauss and Euclidean algorithm to sup-
press all the values of a row. This algorithm has a complex-
ity of O(n4.log||A||), with ||A|| = max|Ai,j |. Moreover, be-
cause we are doing only column operations, we can compute
at the same time the associated unimodular matrix U , such
that H = A.U . To reduce the numerical explosion for the
computation of U , we use Blankinship’s version of Euclid-
ian algorithm [7]. We could use more complex and efficient
HNF algorithm to reduce the time or the space complexity
(such as the one by Micciancio and Warinschi [13]).

The operations currently implemented for the Z-polyhedral
library are intersection, difference (only in the finite case for
the affine lattices), preimage and image. Moreover, we can
deal with parametric Z-polyhedra, as long as the associated
affine lattice does not depend on the values of the parame-
ters.

Compared to the image algorithm described by Seghir and
Loechner [21], no heuristic to select existential variable has
been implemented. Indeed, a possible heuristic as “selecting
the existential variable with the least constraint on it”, might
help us to reduce or to delay the combinatorial explosion
of the number of Z-polyhedra to describe an LBL. In the
library, we just try to detect and remove empty Z-polyhedra
by quickly looking at their set of equalities and inequalities,
and by trying to find incoherences.

4.2 Non-polynomial operations
About the emptiness check of a Z-polyhedron, we just have
to check if the associated coordinate polyhedron is empty.
Because this polyhedron is integer, this problem is NP-hard
and the associated algorithm has an exponential complexity.

For testing the equality, we need the canonical form first
(with the full-dimensionality condition on the coordinate
polyhedron) to be able to compare separately the two affine
lattices, then the two coordinate polyhedra. Otherwise, an-
other possible way is to do two emptiness check on both
differences (assuming than none of them becomes infinite).

To get the canonical form, we need to compute the context
of an integer polyhedron, i.e. the smallest affine space which
contains the coordinate polyhedron. This problem is equiv-
alent to finding all the equalities of an integer polyhedron.
However, some of them might be hidden among the inequal-
ities (such as a.x + b ≥ 0 and a.x + b ≤ 0). There are two
types of hidden equalities in an integer polyhedron P:

• The rational equalities, which are the equalities that
exist for the rational polyhedron corresponding to P,

• The integer equalities, which are the equalities that do
not occur in the rational instance, but in the integer
case (such as y ≥ 0 ∧ x ≥ 4y ∧ 4− x ≥ 4y).

To deal with the rational equalities, we can use Chernikova’s
algorithm [10] to get the dual representation of P: P =
C+R+L, with L = V ect(z1, . . . , zt), R = Cone(y1, . . . , yr)
and C = Conv(x1, . . . , xs). The yj and zk can be integer
vectors, but the xi are rational points. Then, the context of
the rational version of P is:

V ect(z1, . . . , zt, y1, . . . , yr, x2 − x1, . . . , xs − x1),

and we can get the rational equalities by taking an implicit
equation of this vectorial space.

To deal with the integer equalities, we can use an integer
hull algorithm to get C = Conv(x′1, . . . , x

′
s′) with x′i integer

points. The context of the integer polyhedron P is:

V ect(z1, . . . , zt, y1, . . . , yr, x
′
2 − x′1, . . . , x′s′ − x′1).

However, we do not need the total integer hull to get the
context, so we do not need to do all the algorithm, as soon as
we have points along all the dimensions. For the algorithm
presented in [1], we can stop with a sub-approximation of
the integer hull as soon as we are sure that we cannot get
more dimensions.

4.3 Comparison of complexity
Between the intersection and the image representations, the
algorithms remain the same, modulo some changes of bases
to obtain the right coordinate polyhedron for the image rep-
resentation. Therefore, the asymptotic complexities of the
intersection, difference, pre-image and image algorithms (by
an affine function) are the same.

However, the intersection, difference and preimage algorithm
will be slightly slower for the image representation, because
of the extra matrix multiplication. On the other hand, the
image algorithm will be faster for the image representation,
because we compose lattices (in O(n3)) instead of intersect-
ing them (complexity of the HNF algorithm).

It is easy to get the image representation from the inter-
section representation (possible in O(n3)). To do the re-
verse operation, we start form a Z-polyhedron in its image
representation {L.z + l | z ∈ P} and we want to find the
corresponding polyhedron P ′ in the intersection representa-
tion. We have (z 7→ L.z + l)(P) = P ′, so this translation
has the same complexity than the computation of the affine
image of an integer polyhedron. Because LeVerge condition

Operations Polyhedra Z-polyhedra

Intersection O(Nconstraints) O(n4.log(||L||)) (HNF)

Difference O(N2
constraints) O(n4.log(||L||)) (HNF)

Preimage O(n3) O(n4.log(||L||)) (∩)

Image O(n3) O(n3) (matrix mult)
(unimodular)

Image - Exponential
(non unimodular)

Figure 2: Comparison of the computational com-
plexity of operations on integer polyhedra and Z-
polyhedra

is verified, P ′ is a Z-polyhedron and can be obtained in in-
tersection representation. Then, we have to intersect it with
the lattice {L.z+ l | z} to get the intersection representation
of P. The translation from the image representation to the
intersection representation has not been implemented.

Figure 2 shows the comparison between the asymptotic com-
plexities of the algorithms for integer polyhedron and Z-
polyhedron. ||L|| corresponds to the maximum of the ab-
solute value of the coefficients on the matrix part of both
affine lattices. As expected, the Z-polyhedron algorithms
cost more than the integer polyhedron ones. Therefore, Z-
polyhedron should be used only when the expressiveness pro-
vides by integer polyhedron is not sufficient.

4.4 Performance
In the rest of this section, we will interest ourself in analyzing
the dependences of the following program:

for i1 = 0 to N

for j1 = 0 to i1
S1: A[N + 2i1 + 3j1, 2i1 + 2j1 + 1] = f1(i1,j1)

for i2 = N to 2N

for j2 = i2 to 2N

m if (i2%3==0 ∧ j2%2==0)

S2: A[i2,j2] = f2(A[i2 - 2j2, -2i2 + 5j2+2])

The following measures were made on a laptop equipped
equipped with two 1.73 GHz processors (Pentium Dual-core)
and 2.9 GB of Ram.

Construction Z-polyhedron: We want to compute the
set of indexes that are accessed by S1. This set is defined

as:

8<:
»
1 2 3
0 2 2

–24Ni1
j1

35+

»
0
1

– ˛̨̨
0 ≤ j1 ≤ i1 ≤ N

9=;, where N

is the parameter. The first column (corresponding to N)
is a linear combination of the other columns, so the affine
lattice does not depend on the parameter. Moreover, we
can check that this LBL satisfies LeVerge’s condition: it is
a Z-polyhedron.

The algorithm runs in about 23 ms and returns:»
2 3
2 2

– „
i1
j1

«
+

»
0
1

– ˛̨̨
− i1 ≥ 0 ∧ 2N + i1 − j1 ≥ 0 ∧ −N + j1 ≥ 0

ff

Construction Z-polyhedron (intersection): We want
to compute the set of indexes written by S2. This set is:

»
i2
j2

– ˛̨̨
N ≤ i2 ≤ 2N ∧ i2 ≤ j2 ≤ 2N

ff
∩
»

3 0
0 2

– »
x
y

–ff
.

The algorithm runs in about 8 ms and returns:»
3 0
0 2

–„
k
l

« ˛̨̨
−N + 3k ≥ 0 ∧ 2 ∗N − 3k ≥ 0 ∧

− 3k + 2l ≥ 0 ∧ 2 ∗N − 2l ≥ 0

)

Image (unimodular): We want to study the dependence
between S1 and S2. For this, we first need to compute the
set of indexes that are read by S2. This set is the image
of the previous Z-polyhedron by the integer affine function:„„

x
y

«
7→
„

1 −2
−2 5

«„
x
y

«
+

„
0
1

««
. This function is uni-

modular, which simplifies the algorithm we have to use.

The algorithm runs in about 7 ms and returns:»
3 −4
−6 10

–„
k
l

«
+

»
0
1

– ˛̨̨
−N + 3k ≥ 0 ∧ 2 ∗N − 3k ≥ 0

∧ − 3k + 2l ≥ 0 ∧ 2 ∗N − 2l ≥ 0

ff
Intersection: Finally, to get the set of indexes of A that are
read by S2 and written by S1, we have to do the intersection
of the two corresponding sets, previously computed.

The algorithm runs in about 20 ms and returns:»
−1 3
4 −6

–„
x
y

«
+

»
0
1

– ˛̨̨
− 7x+ 12y ≥ 0 ∧

2N+12x−21y ≥ 0 ∧ −N−5x+9y ≥ 0 ∧−N+3x+3y ≥ 0

∧ 2N − 3x− 3y ≥ 0 ∧ − x− 3y ≥ 0 ∧ 2N − 2x ≥ 0

ff
Difference: We want to compute the elements of A that
were written by S1 and not modified by S2. For this, we
have to do the difference of the set of indexes written by S1

by the set of indexes written by S2. These two sets were
previously computed.

The algorithm runs in about 172 ms and returns an union of

3 Z-polyhedra:

»
−1 3
4 −6

–„
x
y

«
+

»
0
1

– ˛̨̨
Pi
ff
, i ∈ {1, 2, 3}

P1 = {x, y | −7x+ 12y ≥ 0 ∧ 2N + 12x− 21y ≥ 0 ∧
−N − 5x+ 9y ≥ 0 ∧ x+ 3y − 1 ≥ 0}

P2 = {x, y | −x ≥ 0∧2N−3y−1 ≥ 0∧−N+x+3y+1 ≥ 0}
P3 = {x, y | −i1 ≥ 0∧2N−3y−2 ≥ 0∧−N+x+3y+2 ≥ 0}

Image (non unimodular): In this library, the more costly
operation implemented is the image algorithm, specifially,
the transformation of an LBL into a union of Z-polyhedron
(using Seghir and Loechner’s algorithm [21]). To measure
its speed, we run this part on the following Pressburger set:
{x | (∃i, j, k, l) 1 ≤ i ≤ n ∧ i+ 1 ≤ j ≤ n

∧ 1 ≤ k ≤ n ∧ 1 ≤ l ≤ k − 1
∧ x = 2i+ 3j ∧ x = k + 2l}.

The algorithm generates 20 Z-polyhedra, with a peak of
about 300 LBLs generated at the middle of the algorithm
(most of them are empty). In total, it takes 550 ms. How-
ever, as we saw in the previous section, the algorithm can

still be improved with heuristics and we did not fully opti-
mize our Java implementation.

All the previous operations can be done by using conven-
tional integer polyhedron with additional tricks, such as
adding extra dimensions. However, this solution is much
more complex for the user. An interesting future work would
be to compare the time taken by using such methods with
the time taken by the associated Z-polyhedron algorithms.

5. RELATED WORK
PolyLib [24] is a polyhedral library currently maintained by
Loechner, which allows the user to manipulate unions of
parametric polyhedra. This library maintains both repre-
sentations of integer polyhedron, chooses the most suitable
when we perform an operation and gets the other representa-
tion by using Chernikova’s algorithm. This library supports
some Z-polyhedral algorithms, but is based on the intersec-
tion representation.

ISL (Integer Set Library) [23] is another polyhedral library
developed by Verdoolaege. This library also supports some
complex algorithms, such as integer hull computation, and
since it supports relations, it implicitly supports Z-polyhedra.
However, it does not provide specialized algorithms for Z-
polyhedra. Polymodel is a generic interface to polyhedral li-
braries, developed at IRISA, which allows the user to change
easily the underlying polyhedral library used (such as ISL,
PolyLib, etc).

Seghir and Loechner presented an algorithm to count the
number of points in unions of parametric Z-polytopes [21].
To count the number of points inside the union of 2 Z-
polytopes, they add the number of points inside each Z-
polytopes and they subtract the number of points in the
intersection. These algorithms were implemented in the li-
brary PolyTrans4. The notion of Linearly Bounded Lattice
(LBL) was introduced by Teich and Thiele [22]. This paper
also proved some stability properties of this object.

Ramanujam [17, 18] studied non-unimodular loop transfor-
mations and focused on the related code generation issues.
His generated code is based on For loops with steps, and
various algorithms are provided to infer the loop bounds,
the array access function or the steps of the loops.

6. CONCLUSION AND FUTURE WORK
After introducing some mathematical background, we saw
the two different representations of a Z-polyhedron. Then,
we discussed algorithms manipulating Z-polyhedra and the
notion of parametric Z-polyhedra. Finally, we presented the
implementation of a Z-polyhedral library, based on the im-
age representation and we discussed about some non imple-
mented algorithms. We also compared the complexity of
the implemented operations with the ones for the intersec-
tion representation of the Z-polyhedron, and with the ones
for the integer polyhedron.

A Z-polyhedron is an extension of integer polyhedron that
is more convenient to use in some cases. However, they

4http://zpolytrans.gforge.inria.fr

are mathematically more complex and their operation al-
gorithms have a bigger complexity than integer polyhedron
ones. The asymptotic complexities between the two possible
representations of Z-polyhedra do not change, but the inter-
section representation is more efficient for the intersection
and difference algorithms, whereas the image representation
is better for the image algorithms.

There is still missing operations in the presented Z-polyhedra
library, such as the algorithm to get back to the intersec-
tion representation, the algorithms to get the canonical form
of a Z-polyhedron, the equality algorithm, etc. Moreover,
some optimization are possible, such as using heuristics to
select which existential variable we should eliminate first for
the image algorithm, or such as limiting the number of Z-
polyhedron we generate when we do a difference.

The next step is to take the algorithms using integer poly-
hedron and to translate them to Z-polyhedron. Because of
the extra expressiveness provided and the enhanced stabil-
ities properties, we might be able to improve some algo-
rithms by using those properties. For example, because we
are no more restricted to unimodular transformations with
Z-polyhedron, we can do more loop transformations.

7. REFERENCES
[1] P. J. Charles, J. M. Howe, and A. King. Integer

Polyhedra for Program Analysis. In Proceedings of the
5th International Conference on Algorithmic Aspects
in Information and Management, AAIM ’09, pages
85–99, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] F. Dupont de Dincehcin. Systèmes structurés
d’équations récurrentes : mide en œuvre dans le
langage Alpha et applications. PhD thesis, Université
de Rennes, IRISA, Rennes, janvier 1997.

[3] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[4] P. Feautrier. Automatic Parallelization in the
Polytope Model. In The Data Parallel Programming
Model: Foundations, HPF Realization, and Scientific
Applications, pages 79–103, London, UK, 1996.
Springer-Verlag.

[5] Gautam, D. Kim, and S. Rajopadhye. Scheduling in
the Z-Polyhedral Model. In IEEE International
Parallel and Distributed Processing Symposium,
page 39. IEEE Computer Society, 2007.

[6] Gautam and S. Rajopadhye. The Z-Polyhedral Model.
In Proceedings of the 12th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
pages 237–248, 2007.

[7] G. Havas and B. S. Majewski. Hermite normal form
computation for integer matrices. In Congressus
Numerantium 105, pages 87–96, 1994.

[8] D. Kim, Gautam, and S. Rajopadhye. Value-based
Dependence Analysis for the Z-Polyhedral Model.
Technical report, Colorado State University, 2008.

[9] S. P. Kumar and T. Risset. A library for Z-polyhedral
Operations. Technical report, IRISA, 2000.

[10] H. Le Verge. A note on Chernikova’s Algorithm.
Technical report, IRISA, 1994.

[11] H. Le Verge. Recurrences on lattice polyhedra and
their applications to the synthesis of systolic arrays.
Based on an unpublished manuscript written by H. Le
Verge before his untimely death in 1994, Jan 1995.

[12] P. M. Lenders and S. V. Rajopadhye. Multirate VLSI
Arrays and Their Synthesis. IEEE Trans. Computers,
46(5):515–529, 1997.

[13] D. Micciancio and B. Warinschi. A Linear Space
Algorithm for Computing the Hermite Normal Form.
In Proceedings ISSAC 2001, Lecture Notes in
Computer Sci., 2146, pages 126–145. Springer, 2001.

[14] W. Pugh. The Omega test: a fast and practical
integer programming algorithm for dependence
analysis. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, Supercomputing ’91,
pages 4–13, New York, NY, USA, 1991. ACM.

[15] P. Quinton, S. V. Rajopadhye, and T. Risset.
Extension of the alpha language to recurrences on
sparse periodic domains. In IEEE Conference on
Application-specific Systems, Architectures and
Processors, Chicago, IL, Aug 1996.

[16] P. Quinton, S. V. Rajopadhye, and T. Risset. On
Manipulating Z-polyhedra using a Canonical
Representation, June 1997.

[17] J. Ramanujam. Non-unimodular Transformations of
Nested Loops. In IN PROC. SUPERCOMPUTING
92, pages 214–223. IEEE Computer Society Press,
1992.

[18] J. Ramanujam. Beyond unimodular transformations.
The Journal of Supercomputing, 9:365–389, 1995.
10.1007/BF01206273.

[19] A. Schrijver. Theory of Linear and Integer
Programming. Wiley-interscience series in discrete
mathematics and optimisation, 1986.

[20] R. Seghir and V. Loechner. Memory optimization by
counting points in integer transformations of
parametric polytopes. In Proceedings of the 2006
international conference on Compilers, architecture
and synthesis for embedded systems, CASES ’06, pages
74–82, New York, NY, USA, 2006. ACM.

[21] R. Seghir, V. Loechner, and B. Meister. Integer Affine
Transformations of Parametric Z-polytopes and
Applications to Loop Nest Optimization. Rapport de
recherche (to appear in TACO), May 2010.

[22] J. Teich and L. Thiele. Partitioning of processor
arrays: a piecewise regular approach. Integr. VLSI J.,
14:297–332, February 1993.

[23] S. Verdoolaege. ISL: An integer set library for the
polyhedral model. In K. Fukuda, J. van der Hoeven,
M. Joswig, and N. Takayama, editors, Lecture Notes
in Computer Science,, pages 299–302. Springer, Sept.
2010.

[24] D. Wilde, K. A Library for doing polyhedral
operations. Rapport de recherche RR-2157, INRIA,
1993.

