
Approximating the Transitive Closure of a Boolean-Affine
Relation

Paul Feautrier
ENS de Lyon, LIP, Compsys, INRIA

ABSTRACT
Boolean affine relations, which combine affine inequalities
by boolean connectives are ubiquitous in all kind of static
program analyzes. One of the crucial operations on such
relations is transitive closure, which is closely related to the
construction of loop inductive invariants. I present here a
new over-approximation algorithm, which has the interest-
ing property of being extendible for increased precision.

Keywords
Boolean-affine relation, non-convex polyhedra, transitive clo-
sure, static program analysis

1. MOTIVATION
In static program analysis, one has to construct, modify
and inspect various kind of sets: sets of operations, data
sets, dependences, parallel fronts ... These sets are usually
enormous, are often dependent on large parameters, or even
infinite. For example, a petaflop supercomputer generates
1015 floating points operations per second, and a digital TV
processor may run for days and months without interrup-
tion. It follows that the relevant sets cannot be represented
in extension – by listing their members – but in intention,
by presenting them as the set of solutions of some system of
constraints. Depending on the selected representation, the
necessary operations, for instance intersection or emptiness
test, may be easy or difficult, or even unfeasible. One such
possibility is to use regular or context-free languages, but,
since Post’s correspondence problem is lurking not far away,
one is soon faced with undecidable questions.

One of the most useful representation is by systems of affine
inequalities, which define convex polyhedra; it has proved
highly efficient, both for static analysis [3] and for automatic
parallelization [4, 5]. However, recent research has generated
a need for more flexible representations. A possible approach
is to lift the convexity constraint, thus allowing the use of
arbitrary boolean connectives, like disjunction and negation.

IMPACT 2012
Second International Workshop on Polyhedral Compilation Techniques
Jan 23, 2012, Paris, France
In conjunction with HiPEAC 2012.

http://impact.gforge.inria.fr/impact2012

The associated sets are non-convex polyhedra.

In many cases, one has to deal with relations, i.e. subsets of
the artesian product E × E of a given universe, E. When
the universe is Zd or Qd, one can use boolean affine formulas
to define boolean affine relations. One simply has to distin-
guish input and output variables. In program analysis, such
a relation may formalize, for instance, the effect of an action
on the program memory, input variables being associated to
the state of memory before the action, and output variables
to the state after the action. In this context, one does not
need explicit parameters, which are simply variables which
have equal input and output values. A common convention
here is to use the same symbol for an input and the corre-
sponding output variable, with a prime on the output.

Boolean affine formulas admit quantifier elimination, hence
boolean affine relations are closed under composition. Clo-
sure under union, commutativity and distributivity are ob-
vious. In fact boolean affine relations are an instance of the
semi-ring structure [2]. The only missing operation is the
transitive closure or Kleene star. Among other uses, this
operation is necessary for constructing loop invariants. As
another example, consider the problem of finding programs
with communication-free parallelism. A possible solution is
to construct the transitive closure of the dependence rela-
tion. Each connected component of the transitive closure is
a communication-free process.

The difficulty is that the definition of the transitive closure
involves quantification over sets, and hence cannot be ex-
pressed in first order logic. In other words, the transitive
closure of a boolean affine relation may not be boolean affine.
A trivial example is the relation

y′ = y + x ∧ x′ = x ∧ i′ = i+ 1

which defines multiplication. As a consequence, if one wants
to stay in the boolean affine realm, one may have to be
content with approximate results, which may be over- or
under-approximations. In most cases, over-approximations
are needed, and this paper concentrates on them. They
can be used, for instance, for program verification, by show-
ing that an error state is unreachable even when the reach-
able set is overestimated, or, in automatic parallelization,
by showing that two statements are independent even when
the dependence relation is overestimated. However, in other
cases, under-approximation may be useful. For instance,
when constructing communication-free processes, it is often

the case that one obtains only one connected component.
One must in that case use an under-approximation, the miss-
ing dependences being implemented as residual communica-
tions. This generalizes a proposal in [6, 7] and will be the
subject of future work.

2. DEFINITIONS AND ELEMENTARY PROP-
ERTIES

A base set E being given, a relation is a subset of the artesian
product E × E. The composition of two relations R and S
is:

R ◦ S = λx, x′.∃z ∈ E : R(x; z) ∧ S(z;x′).

Composition is associative, monotone in both its arguments,
distributive with respect to union, and has the identity re-
lation, noted I ≡ λx, x′.x = x′, as its unit.

In the kind of investigations I have in mind, E usually is Zd

or Qd for some dimension d. An affine atom is an inequality∑d
i=1 aixi + a0 ≥ 0 or

∑d
i=1 aixi + a0 > 0 where the ai

are integers and the xi are integers or rationals. A boolean
affine formula is a combination of affine atoms by the usual
boolean connectives ∧, ∨, ¬.

A relation R is reflexive iff ∀x ∈ E : R(x;x) and is transitive
iff ∀x, y, z ∈ E : R(x; y) ∧ R(y; z)⇒ R(x; z). The transitive
closure ofR, notedR∗, is the smallest reflexive and transitive
relation that includes R. It is easy to prove that:

R∗ = I ∪R1 ∪R2 ∪ . . . ∪Rk ∪ . . . ,

where R1 = R, and Rk+1 = R ◦ Rk. It is clear that this
formula is usually not an effective method for computing
R∗. However, there are cases where, for some n, Rn = ∅ or
Rn = R2n, in which cases the summation above is finite.

Another interesting relation is

R+ = R1 ∪R2 ∪ . . . ∪Rk ∪ . . . , (1)

the strict transitive closure of R. R+ is a useful intermedi-
ate result. For instance, let D(R) and C(R) be the domain
and codomain, respectively, of R. It is easy to prove, by
induction on k, that Rk ⊆ D(R) × C(R), and, as a conse-
quence, that R+ ⊆ D(R) × C(R)). It follows that if R′ is
an over-approximation to R+, then R′ ∩D(R)× C(R)) may
be a more precise one. Such a strengthening will be tacitly
applied to all subsequent results in this paper. On the other
hand, since the domain and codomain of the identity are
equal to the base set E, this construction is useless for a
reflexive relation.

The construction of the transitive closure is much more dif-
ficult when the variables are integral instead of rational: for
instance, quantifier elimination on integers is more complex
than on rationals, and the application of Farkas lemma to
integer sets necessitates the construction of the integer hull
of the antecedent, which may be of exponential complexity.
It is therefore usual to over-approximate the integral closure
by the rational closure. Again, this approximation can be
improved by the following device. Let us assume that the
relation on integers is included in a lattice Λ (a subgroup
of Zd, eventually Zd itself). The relation associated to Λ is
LΛ ≡ λx, x′.x′−x ∈ Λ. LΛ is obviously reflexive and transi-
tive, and hence is its own transitive closure. Now, transitive

closure is monotone:

R ⊆ S ⇒ R∗ ⊆ S∗ (2)

from which follows:

(R ∩ S)∗ ⊆ R∗ ∩ S∗. (3)

If R ⊆ LΛ and if R′ is a rational over-approximation of R∗

then:

R∗ ≡ (R ∩ LΛ)∗ ⊆ R∗ ∩ L∗Λ ⊆ R′ ∩ LΛ.

The construction of Λ from R is a well known problem, hence
the above result allows one to first ignore integrality con-
straints and reinstate them at the end of the algorithm.

The approximation (3) may be used when one wants to split
the subject formula into several parts to which different al-
gorithms may be applied. A case in point is the separation
of equations and inequations.

3. THE BASIC ALGORITHM
A boolean affine relation R being given, the problem is to
find another reflexive and transitive boolean affine relation
R′ which includes R and is as small as possible. One may
start by attempting to characterize reflexive and transitive
relations – quasi-orders – in the abstract. The following
results are classical, and their proofs are left to the reader:

Lemma 1. If R is reflexive and transitive, then

≈R= λx, y.R(x; y) ∧R(y;x)

is an equivalence relation.

Lemma 2. If R is reflexive and transitive, then the quo-
tient relation R/ ≈R is a partial order.

Proof. Let [x] be the equivalence class of x. The quotient
relation is [x] ≺ [y] ≡ R(x; y). ≺ is well defined: if x′ and y′ are
other members of [x] and [y], we have:

x′ ≈R x,R(x; y), y ≈R y′ ⇒ R(x′; y′)

hence [x′] ≺ [y′] by transitivity. Reflexivity and transitivity are
obvious. It remain to prove antisymmetry. If [x] ≺ [y] and [y] ≺
[x], then R(x; y) and R(y;x), hence x ≈R y and [x] = [y].

Theorem 3. Any reflexive and transitive relation can be
expressed in the form R = λx, y.fR(x) ≺ fR(y), where fR is
the function that maps E on the equivalence classes of ≈R,
and ≺ is the partial order R/ ≈R.

These results are well known when R is the path relation of
a finite graph. The equivalence classes are the strongly con-
nected components of the graph, and ≺ is the path relation
of the quotient graph.

These facts can be exploited in the following way:

• Select a set U to label the equivalence classes of ≈R,
and an order on U . One may take for instance U = Q
with ≺ as the ordinary order ≤.

• Select the shape of f . One may take for instance f a
linear function from Qd → Q: f(x) =

∑d
i=1 αixi.

• Solve the constraint:

∀x, y : R(x; y)⇒ f(x) ≤ f(y). (4)

Since f is linear and R is boolean affine, this can be solved
by a trivial extension of Farkas lemma [13].

Aside: a short introduction to Farkas lemma. Farkas
lemma gives a necessary and sufficient condition for an affine
function to be non negative inside a polyhedron. It can be
seen as a special case of quantifier elimination, and also as
a linearization tool.

Theorem 4. If the system of constraints Ax + b ≥ 0 is
feasible, then:

(∀x : Ax+b ≥ 0⇒ c.x+d ≥ 0) ≡ ∃Λ ≥ 0 : ΛA = c∧d ≥ Λ.b

Proof. The proof of sufficiency is trivial and is left to
the reader. To prove necessity, observe that the hypothesis
is equivalent to the assertion that the system Ax+ b ≥ 0 ∧
−cx − d > 0 is unfeasible. This can be checked by the
Fourier-Motzkin algorithm, which constructs a contradiction
in the form of a positive vector Λ and a positive scalar λ such
that ΛA− λc = 0 and Λb− λd ≤ 0. Furthermore, λ cannot
be null as that would imply that Ax + b ≥ 0 be unfeasible.
Hence, one can set λ = 1 and the result follows. The positive
components of vector Λ are called Farkas multipliers, Ax+
b ≥ 0 is the antecedent and c.x+d ≥ 0 is the consequent.

To solve (4), express R in disjunctive normal form (DNF),
and apply Farkas to each disjunct. Let Ax+A′x′+a ≥ 0 be
one of the disjuncts of R, and write f.x for f(x). Application
of Farkas lemma gives the system:

ΛA = −f, ΛA′ = f, Λa ≤ 0, (5)

where Λ is the vector of the Farkas multipliers. One collects
one such system per disjunct, eliminates the Farkas mul-
tipliers, and obtains a system of linear constraints for the
coefficients of f , αi, i = 1, d. It is easy to see that f = 0 is a
solution, and that if f1 and f2 are solutions and λ is positive,
then both λf1 and f1 + f2 are solutions. Hence, considered
as the components of a vector in Qd, the αs belong to a cone,
the F-cone. In fact, it is enough to consider the set of rays
of the F-cone, and the corresponding functions fk, k = 1, n.
All other vectors in the F-cone generate redundant inequal-
ities. For instance, if f1 and f2 satisfy (4), it is clear that
f1 + f2 also does. Since the Cartesian product of several
orders is an order, one can take as a better approximation
to R∗ the relation R′ = λx, x′.

∧n
k=1 fk(x) ≤ fk(x′). If the

F-cone contains a line (i.e., two opposite rays) then in the
preceding formula, the comparator ≤ can be replaced by =.
Here, U is Qn, and ≺ is ≤n, the component-wise partial
order on Qn.

The method has been implemented using my own Farkas
library [8] and the PolyLib implementation of Chernikova’s
algorithm1 for finding the rays of the F-cone.
1http://icps.u-strasbg.fr/polylib

Consider for example the relationR(x, y, z;x′, y′, z′) ≡
(y′ = z ∧ z′ = x ∧ x′ = y), and take f(x, y, z) =
α.x+ β.y + γ.z. The instance of (4) is:

(y′ = z ∧ z′ = x ∧ x′ = y) ⇒ α.x+ β.y + γ.z

≤ α.x′ + β.y′ + γ.z′.

By Farkas lemma, there exists multipliers λ, µ, ν
such that:

λ = β , µ = γ

ν = α , −λ = −γ
−µ = −α , −ν = −β.

After elimination of the multipliers – which, in
that case, are not constrained to be positive –
the F-cone is defined by the system α = β, β =
γ, γ = α. The F-cone has one line, whose direc-
tion vector is (1, 1, 1)T . The f function is there-
fore x + y + z, and the approximate transitive
closure is x+ y + z = x′ + y′ + z′.

This result is not the most precise one, since R
is such that R3 = I, hence R∗ = I ∪ R ∪ R2. It
is nevertheless a useful invariant.

4. A PIECEWISE AFFINE EXTENSION
Application of the above algorithm usually gives good results
when R is convex (i.e., when its DNF has only one disjunct).
An extension is necessary to obtain more precise results in
the non convex case2. One possibility is to use a piecewise
affine function for f :

f(x) = if σ(x) ≥ 0 then g(x) else h(x),

where σ, g, and h are affine functions of x:

σ(x) = σ.x+ σ0,

g(s) = g.x+ g0,

h(x) = h.x+ h0.

The hyperplane σ(x) = 0 splits the domain of R in two
subsets, where the f function may have different shapes.
This choice enlarges the solution space, and hence increases
the probability of success.

Consider first one of the disjuncts of R, written Ax+A′x′+
a ≥ 0 as above. The corresponding version of constraint (4)
is:

Ax+A′x′ + a ≥ 0 ⇒ (if σ(x) ≥ 0 then g(x) else h(x))(6)

≤ (if σ(x′) ≥ 0 then g(x′) else h(x′)).

This can be expanded into four simpler constraints accord-
ing to the sign of σ(x) and σ(x′). For instance, the first
constraint is:

Ax+A′x′ + a ≥ 0 ∧ σ(x) ≥ 0 ∧ σ(x′) ≥ 0⇒ g(x) ≤ g(x′).

The Farkas algorithm can be applied to all four constraints,
giving four linear systems in positive unknowns:

2For another approach, see an unpublished paper by Sven
de Smet at http://vixra.org/abs/1108.0028.

Λ1A+ λ1σ = −g | Λ1A′ + µ1σ = g (7)

Λ1a+ (λ1 + µ1)σ0 ≤ 0 (8)

Λ2A+ λ2σ = −g | Λ2A′ − µ2σ = h (9)

Λ2a+ (λ2 − µ2)σ0 ≤ h0 − g0 (10)

Λ3A− λ3σ = −h | Λ3A′ + µ3σ = g (11)

Λ3a+ (µ3 − λ3)σ0 ≤ g0 − h0 (12)

Λ4A− λ4σ = −h | Λ4A′ − µ4σ = h (13)

Λ4a− (λ4 + µ4)σ0 ≤ 0 (14)

and the solution proceeds as above. The only problem is in
the choice of σ.

Observe that one can add the two equations of (7), giving
Λ1(A+A′) + (λ1 + µ1)σ = 0. Hence, either λ1 = µ1 = 0, or
σ belongs to the opposite of the cone generated by the rows
of A + A′ – the characteristic cone of A + A′. In the same
way, from the two equations of (13), one deduces that either
λ4 = µ4 = 0 or σ belongs to the characteristic cone of A+A′.
If the characteristic cone has lines, then σ may belong to
both the cone and its opposite; otherwise, we have to choose
one of the solutions, but since σ and −σ generate the same
system of constraints, the choice is unimportant. The same
reasoning can be applied to each disjunct of R, hence σ must
belong to the intersection of the several characteristic cones.
If this intersection reduces to the origin, one may ignore
some of the disjuncts until a non trivial σ is found.

It remains to explain how to choose σ0. Once σ is chosen,
one can decide whether λ1 +µ1 and λ4 +µ4 are null or not.
If both are null, the method reduces to the basic algorithm.
They can be both non-zero only of the characteristic cone
has lines, and if not, one of them is null and the other is
not. Whatever the situation, the system of constraints is
homogeneous in the Farkas multipliers, hence the non-null
terms can be set to one, and the system becomes linear.
The remaining Farkas multipliers can be eliminated, giving
a system of constraint for σ0.

As an example, consider a relation from [11]

R(x;x′) ≡ (x < 100∧x′ = x+1)∨ (x ≥ 100∧x′ = 0). (15)

Application of the basic algorithm gives only
R′(x;x′) ≡ x′ ≤ 100. Here, since x is a scalar, the choice
of σ is simple: σ(x) = x + σ0. Notice nevertheless that for

the first disjunct, A + A′ =

 −1
0
0

 while for the second

disjunct, A + A′ =

 1
−1
1

, hence σ is in both character-

istic cones. Since the second cone has a line, one can set
both λ1 + µ1 = 1 and λ4 + µ4 = 1 in the second system
of equations. The resulting instances of (8) and (14) are
−100Λ1

1 + σ0 ≤ 0 and −100Λ4
1 − σ0 ≤ 0, which clearly im-

plies σ0 = 0.

Taking σ(x) = x, one obtain the exact result,

R∗(x, x′) ≡ (x = x′) ∨ ((x′ < 101) ∧ (x ≤ x′ ∨ 0 ≤ x′)).

In this case, the only non-trivial pair of functions is g(x) = x
and h(x) = 0, giving as the “central part” of the transitive
closure:

(if x ≤ 0 then x else 0) ≤ (if x′ ≤ 0 then x′ else 0),

which, when restricted to the codomain x′ < 101, simplifies
to the above formula.

Here again, the method has been implemented using the
same tools as above, the choice of σ being still the responsi-
bility of the user. One must remark that the raw results of
the algorithm are much more complicated than shown above,
and that the simplifier of [9] has been used to automatically
reduce them to manageable form.

An interesting fact is that the function f(x) = if x ≤
0 then x else 0 is equal to min(x, 0). Whether this observa-
tion may conduct to another closure algorithm is a question
for future work.

5. RELATED WORKS
The transitive closure problem for relations defined by affine
constraints has a long history, which began with the semi-
nal paper of Kelly et. al. [10]. In this work, the concept of
d-form constraints, i.e. constraints involving only the differ-
ence x′ − x was introduced for the first time. This idea was
extended by Ancourt et. al., who introduced the distance
polyhedron, and implemented it in the PIPS parallelizer long
before publication in [1]. A similar approach is proposed in
[14] and implemented in the isl library.

The method of Ancourt et. al. can be compared to the
basic algorithm of Sect. 3 as follows. Consider the system
(5). Instead of eliminating Λ to obtain constraints on f , one
can eliminate f , giving:

Λ(A+A′) = 0, Λa ≤ 0. (16)

This implies that the valid Λs belong to a cone, C. For each
ray of C, r, one obtain a function f(x) = r.A′x and one
constraint in the transitive closure, r.A′(x′ − x) ≥ 0.

On the other hand, the distance polyhedron of R, ∆R is
defined as: ∆R ≡ {d | ∃x : Ax+ A′(x+ d) + a ≥ 0}. Elim-
inating x, for instance by the Fourier-Motzkin algorithm,
generates a positive matrix L such that L(A + A′) = 0,
and ∆R = {d | LA′d + La ≥ 0}. The difference x′ − x
when R+(x;x′) is true is a sum of vectors d ∈ ∆R, hence,
if La is negative, LA′(x′ − x) ≥ −La. A vector r such that
r(A + A′) = 0 and r.a ≤ 0 is clearly a solution of (16), but
the converse is not true. In cases where the base vectors are
the same, Ancourt et. al. result is slightly more precise than
that of the basic algorithm.

Sriram Sankaranarayanan work [12] is similar to the present
one in its use of Farkas lemma for quantifier elimination,
even if its concern is invariant construction rather than tran-
sitive closure. Its starting point is the fix-point equation
R∪R◦R+ = R+. Application of Farkas lemma gives a non-
linear system of equations, since the unknown, R+, occurs
both in the antecedent and the consequent. The authors
then propose either algebraic quantifier elimination, or a set
of rewrite rules to bring the system in linear form. In con-

trast, the present method stays in the linear domain while
giving comparable results.

The relation (x′ = x + 2y ∧ y′ = 1 − y) ∨ (x′ =
x+1∧y′ = y+2) from Example 1 in [12] is found
to have transitive closure x′ + y′ ≥ x+ y, which
directly gives the invariant x+ y ≥ 0.

6. CONCLUSION
It is clear that the present proposal is still very prelimi-
nary, and that much work is needed for its transformation
into a reliable algorithm. I think that its main interest is
that it is open: one may want to explore other choices for
the function f , as has been done in the preceding section,
or for the ≺ order, an obvious candidate being the lexico-
graphic order. One may want to have several σs, although
the complexity of the algorithm will increase exponentially
with their number. In this connection, in the present im-
plementation, the expansion of (6) into four parts is “wired”
into the code. This must be improved when refactoring fu-
ture versions. Another point is that the transitive closure
problem admits many special cases, in which special pur-
pose algorithms may give better results. Examples are cases
where the infinite sum (1) terminates, cases where disjuncts
commutes, and many others. How to recognize these cases
and integrate them in the basic algorithm is left for future
work.

7. REFERENCES
[1] Corinne Ancourt, Fabien Coelho, and François Irigoin.

A Modular Static Analysis Approach to Affine Loop
Invariants Detection. In NSAD: Numerical and
Symbolic Abstract Domains, ENCTS, Perpignan,
France, September 2010. Elsevier.

[2] Jean Berstel and Christophe Retenauer. Rational
Series and their Languages. Springer-Verlag, 1988.

[3] Patrick Cousot and Nicolas Halbwachs. Automatic
discovery of linear restraints among variables of a
program. In Proceedings of the ACM POPL78, 1978.

[4] Paul Feautrier. Some efficient solutions to the affine
scheduling problem, I, one dimensional time. Int. J. of
Parallel Programming, 21(5):313–348, October 1992.

[5] Paul Feautrier. Some efficient solutions to the affine
scheduling problem, II, multidimensional time. Int. J.
of Parallel Programming, 21(6):389–420, December
1992.

[6] Paul Feautrier. Toward automatic distribution.
Parallel Processing Letters, 4(3):233–244, 1994.

[7] Paul Feautrier. Automatic distribution of data and
computations. Technical Report 2000/3, PRiSM, 2000.

[8] Paul Feautrier. Scalable and structured scheduling.
Int. J. of Parallel Programming, 34(5):459–487, May
2006.

[9] Paul Feautrier. Simplification of Boolean Affine
Formulas. Technical Report RR-7689, INRIA, July
2011.

[10] Wayne Kelly, William Pugh, Evan Rosser, and
Tatiana Shpeisman. Transitive closure of infinite
graphs and its applications. In C.-H. Huang,
P. Saddayapan, U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, 8th Language and Compilers

for Parallel Computing Workshop, LNCS 1033, pages
126–140. Springer, 1995.

[11] David Monniaux and Laure Gonnord. Using bounded
model checking to focus fixpoint iterations. In Eran
Yahav, editor, Static analysis (SAS’11), volume 6887
of Lecture Notes in Computer Science, pages 369–385.
Springer Verlag, 2011.

[12] Sriram Sankaranarayanan, Henny Sipma, and Zohar
Manna. Constraint-based linear relation analysis. In
Static Analysis Symposium, SAS’2004, LNCS 3148,
pages 53–68. Springer-Verlag, 2004.

[13] A. Schrijver. Theory of linear and integer
programming. Wiley, NewYork, 1986.

[14] Sven Verdoolaege, Albert Cohen, and Anna Beletska.
Transitive closures of affine integer tuple relations and
their overapproximations. In SAS, pages 216–232,
2011.

