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ABSTRACT
Some data- and compute-intensive applications can be ac-
celerated by offloading portions of codes to platforms such
as GPGPUs or FPGAs. However, to get high performance
for these kernels, it is mandatory to restructure the applica-
tion, to generate adequate communication mechanisms for
the transfer of remote data, and to make good usage of the
memory bandwidth. In the context of the high-level synthe-
sis (HLS), from a C program, of hardware accelerators on
FPGA, we show how to automatically generate optimized re-
mote accesses for an accelerator communicating to an exter-
nal DDR memory. Loop tiling is used to enable block com-
munications, suitable for DDR memories. Pipelined commu-
nication processes are generated to overlap communications
and computations, thereby hiding some latencies, in a way
similar to double buffering. Finally, data reuse among tiles
is exploited to avoid remote accesses when data are already
available in the local memory.

Our first contribution is to show how to generate the sets
of data to be read from (resp. written to) the external mem-
ory just before (resp. after) each tile so as to reduce com-
munications and reuse data as much as possible in the accel-
erator. The main difficulty arises when some data may be
(re)defined in the accelerator. Our second contribution is an
optimized code generation scheme, entirely at source-level,
i.e., in C, that allows us to compile all the necessary glue (the
communication processes) with the same HLS tool as for the
computation kernel. Both contributions use advanced poly-
hedral techniques for program analysis and transformation.
Experiments with Altera HLS tools demonstrate how to use
our techniques to efficiently map C kernels to FPGA.

1. INTRODUCTION
HLS tools [9], e.g., Catapult-C, C2H, Gaut, Impulse-C,

Pico-Express, Spark, Ugh, provide a convenient level of ab-
straction (in C-like languages) to implement complex de-
signs. Most of these tools integrate state-of-the-art back-end
compilation techniques and are thus able to derive an opti-
mized internal structure, thanks to efficient techniques for
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scheduling, resource sharing, and finite-state machines gen-
eration. However, integrating the automatically-generated
hardware accelerators within the complete design, with opti-
mized communications, synchronizations, and local buffers,
remains a hard task, reserved to expert designers. In ad-
dition to the VHDL glue that must sometimes be added,
the input program must often be rewritten, in a proper
way that is not obvious to guess. For HLS tools to be
viable, these issues need to be addressed: a) the interface
should be part of the specification and/or generated by the
HLS tool; b) HLS-specific optimizing program restructur-
ing should be available, either in the tool or accessible to
the designer, so that high performances (mainly through-
put) can be achieved. Such high-level transformations and
optimizations are standard in high-performance compilers,
not yet in high-level synthesis, even if their interest has been
demonstrated through hand-made designs or restructuring
methodologies [19, 11, 6, 2].

The goal of this paper is to show how the handmade re-
structuring demonstrated in [2] in the context of C2H, the
Altera HLS tool, can be fully automated, thanks to advanced
polyhedral code analysis and code generation techniques, en-
tirely at source level (i.e., in C). We focus on the optimiza-
tion of hardware accelerators that work on a large data set
that cannot be completely stored in local memory, but need
to be transferred from a DDR memory at the highest pos-
sible rate, and possibly temporarily stored locally. For such
a memory, the throughput of memory transfers is asymmet-
ric: successive accesses to the same DDR row are pipelined
an order of magnitude faster than when the states of the
finite-state machine controlling the DDR must be changed
to access different rows. In other words, accessing data by
blocks is a direct way of improving the performances: if
not, the hardware accelerator, even highly-optimized, keeps
stalling and runs at the frequency of the DDR accesses. A
similar situation occurs when accessing a bus for which burst
communications are more efficient, when optimizing remote
accesses for GPGPUs or, more generally, when transfers, be-
tween an external large memory and an accelerator with a
limited memory, should be reduced (thanks to data reuse
in the accelerator), pipelined, and preferably performed by
blocks. This is why our optimization techniques, although
developed for HLS and specialized to Altera C2H, may be
interesting in other contexts.

Our technique relies on loop tiling to increase the granu-
larity of computations and communications. Each strip of
tiles is optimized as follows. Transfers from and to the DDR
are pipelined, in a blocking and double-buffering fashion,



thanks to the introduction of software-pipelined communi-
cating processes. Data reuse within a strip is exploited by
accessing data from the accelerator and not from the DDR
when already present. Local memories are automatically
generated to store the communicated data and exploit data
reuse. Our main contributions are the following:
Program analysis We show how to compute Load(T ) and
Store(T ) of data to be loaded/stored before/after the execu-
tion of a tile T , thanks to parametric linear programming, so
that the lifetime of each individual data in the local memory
is minimized, which tends to reduce its size. Unlike previous
approaches, ours can pipeline communications and exploit
reuse among tiles even for data redefined in the tile strip. It
can also be extended to the case where data accesses are ap-
proximated, i.e., when reads/writes are not known for sure.
Code generation Parameterized by a “scheduling func-
tion” that expresses the tiling of loops and the pipelining
of tiles, our technique generates automatically the size of
local buffers, the scanning of data sets to access the DDR
row-wise, and the generation of communicating processes,
thanks to the integration of several polyhedral techniques.
HLS integration A unique feature of our scheme is that the
original computation kernel and all generated communicat-
ing processes are expressed in C and compiled into hardware
with the same HLS tool (C2H), used as a back-end compiler.

In Section 2, we recall loop tiling and introduce some
new features related to parametric polyhedral optimizations.
Section 3 explains how to optimize remote accesses for an
offloaded kernel, when the sets of data read and written
in a tile are known exactly. 1 In Section 4, we apply our
technique to the special case of HLS with Altera C2H. We
present the different steps of the code generation and some
experimental results comparing the performances of the hard-
ware accelerators of [2], optimized by hand, and those opti-
mized automatically thanks to our method.

2. PREREQUISITES
Our method can be applied to offload a kernel on which

loop tiling [22] and polyhedral transformations can be ap-
plied, i.e., a set of for nested loops, manipulating arrays
and scalar variables, whose iterations can be represented
by an iteration domain using polyhedra. This is the case
when loop bounds and if conditions are affine expressions of
surrounding loops counters and structure parameters. This
model can be extended through approximations when ac-
cess functions are not fully analyzable or when the iteration
domain is restricted by some complex if conditions.

2.1 Loop tiling and transformation function
Loop tiling is a standard loop transformation, known to

be effective for automatic parallelization and data locality
improvement. With loop tiling, the iteration domain is par-
titioned into rectangular blocks (tiles) of iterations to be
executed atomically. Loop tiling can be viewed as a com-
position of strip-mining and loop interchange. Strip-mining
introduces two kinds of loops: the tile loops, which iterate
over the tiles, and the intra-tile loops, which iterate in a tile.
This step is always legal. Then, loop interchange pushes the
intra-tile loops to innermost positions. In some cases, a first
loop transformation, e.g., loop skewing, is needed to make

1This restriction is enough for the kernels of Section 4 and,
more generally, when reads are approximated. However, it
needs to be extended when writes are approximated, as ex-
plained in [3]. We sketch this extension in Section 3.3.

the loops tilable (i.e., fully permutable). “Rectangular” has
to be understood w.r.t. this preliminary change of basis.

We call tile strip the set of tiles described by the inner-
most tile loop, for a given iteration of the outer tile loops.
This notion is widely used in our approach, as our optimiza-
tions are performed within such a one-dimensional tile strip,
parameterized by the counters of the outer tile loops.

A loop tiling for a statement S, within n nested loops
with iteration domain DS , can be defined thanks to a n-
dimensional affine function ~i 7→ θ(S,~i) (the permutable di-

mensions), where~i is the iteration vector scanning DS , and a
(single, to make things simpler) tile size b. A tile, defined by

n loop counters I1, . . . , In, contains~i ∈ DS if bIk ≤ θ(S,~i) <
b(Ik +1), for k ∈ [1..n]. Adding these constraints, for a fixed
value b, to those expressing DS gives an iteration domain D′S
of dimension 2n. If the transformation θ corresponds to n
permutable loops, then a valid sequential schedule of the
tiled code is: θtiled(S, I1 . . . In,~i) = (I1, . . . , In, θ(S,~i)).

Main example. The next code computes, in c, the product
of two polynomials of degree N , stored in arrays p and q.

for (i=0; i<=2*N; i++)
S1: c[i] = 0;

for (i=0; i<=N; i++)
for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + p[i]*q[j];

From now on, we suppose that the offloaded kernel is the
set of nested loops containing S2. If commutativity and as-
sociativity are not exploited, some preliminary loop trans-
formation is needed to make the loops permutable.

A possible tiling is given by the schedule (i, j) 7→ (N−j, i),
which corresponds to a loop interchange and a loop reversal
of the j loop, as depicted in the left of Figure 1. For such
a tiling, there is maximal inter-tile reuse of q within a tile
strip (along the j axis), maximal intra-tile reuse of p within
a tile (along the i axis), and some intra- and inter-tile reuse
for c between two successive tiles. In grey are shown the
elements of c that must be loaded by each tile and in blue
those that must be stored back by each tile.

With the tiling in the right of Figure 1, defined by the
schedule (i, j) 7→ (i + j, i), the data dependences on c are
always kept in the tile strip. This way, the loads and stores
for array c only arise on the first and last tiles of the tile
strip. Notice that the loads and stores for the array p are
the same in both cases. However, the number of transfers
for array q now increases compared to the first tiling. For
this second tiling, the full sequential schedule of iterations,
θtiled, is (i, j) 7→ (I, J, i+j, i) where bI ≤ i+j ≤ bI+(b−1)
and bJ ≤ i ≤ bJ + (b− 1), i.e., I = b i+j

b
c and J = b i

b
c. �

Given S, D′S , and θtiled, polyhedral code generation can
be used to generate the tiled code. However, we do not
apply such a rewriting as a preliminary step as this would
complicate our subsequent optimizations. Instead, all anal-
ysis and code generation steps described hereafter are done
with respect to the function θ. This function is also used
to express the relative schedules of the pipelined load, store,
and computation processes, and to help us synthesize the
adequate local buffers in a double-buffering fashion. Actu-
ally, “double-buffering” is a language simplification: we do
not use two buffers, but one larger buffer. But two succes-
sive blocks of computation in a tile strip are indeed pipelined
with two blocks of communications, so as to overlap commu-
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nications and computations. The choice of the tiling is left
to the user and is specified by means of a function θ, such
as (N − j, i), with a C pragma. Before explaining how the
sets Load(T ) and Store(T ) are generated for a given tile in-
dexed by T and how the local buffers are organized, we first
summarize the assumptions that characterize our scheme:
• Elements in Load(T ) are loaded from external memory

before the tile T starts, but in any order for a given T .
• Elements in Store(T ) are stored to external memory

after the tile T ends, but in any order for a given T .
• Tiles are executed in sequence, following a sequential

order specified from θ (the sequential order θtiled ex-
plained previously), i.e., with increasing T .
• Similarly, Load(T ) (resp. Store(T )) is fully transferred

before Load(T ′) (resp. Store(T ′)) if T < T ′.
These constraints induce a dependence graph, which can
be software-pipelined to overlap loads, stores, and compu-
tations. Memory reuse however requires additional syn-
chronizations to avoid the worst case where all loads are
performed before all tiles are executed. This is explained
in more detail in Section 4, following the scheme proposed
in [2], which is specific to the HLS tool C2H.

2.2 Parametric integer programming
We make an extensive use of parametric integer program-

ming as defined by Feautrier [12], thanks to the software
tool PIP (http://www.piplib.org). Following [15], a para-
metric polyhedron is a set P (~z) = {~x | A~x + B~z + ~c ≥ 0}
where ~x is a vector with n entries, the vector of all unknowns.
The vector ~z is the vector built from parameters and has p
entries. For a fixed ~z, P (~z) is a polyhedron defined by l
inequalities if A is a matrix of size l× n, B a matrix of size
l × p, and ~c a constant vector of size l. The parameters
can themselves be constrained by a set of affine inequalities

M~z + ~h ≥ 0, called the context. Without loss of generality,

A, B, M , ~c, and ~h are assumed to be integer-valued.

2.2.1 Defining a lexicographic minimum as a QUAST
Depending on the chosen option, PIP finds the lexico-

graphic minimum in P (~z) or the lexicographic minimum of
the set of integer points in P (~z). In the original definition, ~x
and ~z are supposed to be nonnegative in all entries, but this
restriction can be removed. Also, finding the maximum, in-
stead of the minimum, is possible. In all cases, the solution is
described by a QUAST (Quasi Affine Selection Tree), which
is a tree structure where each internal node describes an in-
equality on parameters and each leaf describes a solution,
expressed as an affine function of the parameters, valid if all
inequalities found along the path from the root to the leaf
are satisfied. In case of the search in a set of integer points,

additional parameters (called new parameter) may appear
along the path to express integer divisions, and the solution
remains affine with respect to all parameters. An additional
feature, illustrated in Section 2.2.2, is that the minimum (or
maximum) of several QUASTs can also be represented as a
QUAST, by merging and simplification rules.

Back to the main example. Consider Figure 1 with the left
tiling. Let us find FirstOpRead(m), the operation indexed
by (i, j) that is scheduled first with respect to the tiled sched-
ule θtiled, within a given tile strip, and that accesses a given
array cell of c. This search has three parameters: the initial
loop bound N , the outer tile index I, and the memory in-
dex m of array c. This amounts to finding the lexicographic
minimum of (J, ii, jj, i, j) with the constraints:{

ii = N − j, jj = i, i+ j = m, 0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1, bJ ≤ jj ≤ b(J + 1)− 1

This system can be solved with PIP if b is fixed. Here, for
b = 10, with the context 10I ≤ N and 0 ≤ m ≤ 2N that
can be pre-computed, PIP returns the QUAST:

if (−10I +N −m ≥ 0)
if (10I −N +m+ 9 ≥ 0) /* vertical band, first tile */

(J, ii, jj, i, j) = (0, N −m, 0, 0,m)
else ⊥ /* means undefined */

else
if (−10I + 2N −m ≥ 0)

if (−10I +N −m+ 9 ≥ 0) /* horizontal band, first tile */
(J, ii, jj, i, j) = (0, 10I, 10I −N +m,

10I −N +m,N − 10I)
else with k = bN+9m+9

10
c /* generic horizontal case */

(J, ii, jj, i, j) = (I +m− k, 10I, 10I −N +m,
10I −N +m,N − 10I)

else ⊥ /* undefined */

Now, another simplification is possible. Indeed, we are only
interested in the variables i and j, while the variables J ,
ii, and jj were introduced just to specify the schedule (the
lexicographic order). If needed, they can be rebuilt from
the variables i and j, but there is no need to express them
in the solution. In particular, in this example, the new pa-
rameter k is introduced only to specify J and to express the
floor function, which is not affine. If we remove these useless
variables, the QUAST can be simplified into:

if (−10I +N −m ≥ 0)
if (10I −N +m+ 9 ≥ 0)

(i, j) = (0,m) /* vertical portion of c */
else ⊥

else
if (−10I + 2N −m ≥ 0)

(i, j) = (10I −N +m,N − 10I) /* horizontal portion */
else ⊥ /* means undefined */

For that, we also used the simplification rule proposed in [13]:

if p then x else x ≡ x (1)
Here, thanks to the elimination of useless variables, the sim-
plified expression of FirstOpRead(m) has no additional pa-
rameter (such as k). This may not be true in general. �

2.2.2 Simplification and inversion of QUASTs
The minimum of two QUASTs is a QUAST. It can be ob-

tained by applying the following simple combination rule [13]:

min(Q, if p then Q1 else Q2)
≡ if p then min(Q,Q1) else min(Q,Q2)

where Q, Q1, Q2 are QUASTs, and its symmetric variant.



Particular cases can be exploited to combine QUASTs as:

min(if p then Q1 else Q2, if p then Q3 else Q4)
≡ if p then min(Q1, Q3) else min(Q2, Q4)

The previous rules combined internal nodes of the QUASTs.
To compare leaves, in addition to the simplification rule
min(⊥, Q) = min(Q,⊥) = Q, the following rule is used:

min(~i,~j) ≡ if (~i� ~j) then ~i else ~j

where ~i and ~j are two vector solutions and � is the lexico-
graphic order. This lexicographic order is itself expressed as
a tree of affine conditions since~i and ~j are expressed as affine
functions of parameters. When these conditions can be stat-
ically evaluated within the given context, the right solution
leaf is directly plugged. Similarly, dead solutions, i.e., those
reached by a path defining unsatisfiable constraints, can be
replaced by the symbol ⊥, then possibly simplified with the
rule of Equation 1. More advanced mechanisms can reduce
the redundancy in the parameter conditions [16].

Once built, a QUAST can be interpreted and used in dif-
ferent ways, by changing the role of unknowns and parame-
ters. By construction, the inequalities involved in a QUAST
describe the set of parameters as a union of disjoint sub-
sets. Each path to a leaf describes such a subset. If the
path does not contain any new parameter, the correspond-
ing subset is the integer points in a polyhedron, otherwise
it is a linearly-bounded lattice (LBL), i.e., the projection of
the integer points in a polyhedron. In the previous example,
the final QUAST decomposes the set of all parameter values
into three disjoint subsets: {(I,N,m) | 0 ≤ m ≤ 2N, 0 ≤
10I ≤ N − m ≤ 10I + 9}, {(I,N,m) | 0 ≤ m ≤ 2N, 1 ≤
m + 10I −N ≤ N, 0 ≤ 10I ≤ N}, and the complement for
which there is no read to array c. Now, considering m as an
unknown, in the context 0 ≤ 10I ≤ N , this decomposition
also specifies the array cells m that are read, as a union of
polyhedra parameterized by I and N :

{m | max(0, N − 10I − 9) ≤ m ≤ N − 10I}
∪ {m | N − 10I + 1 ≤ m ≤ 2N − 10I}

For each subset, the iteration FirstOpRead(m) performing
the first read is given by an affine function, as seen before.

This trick of changing the status of parameters into un-
knowns, or the converse, is one of the key of the algorithms
we present later. For example, we can define, for each
tile indexed by T , the set of memory cells m whose first
read occurs in T . This can be expressed by putting the
tiling inequalities back. Here, if tiles are defined along the
axis that define operations, FirstReadInTile(T ) is equal to

{m | FirstTileRead(m) = T} = {m |
⌊

FirstOpRead(m)

b

⌋
=

T}, thus {m | bT ≤ FirstOpRead(m) ≤ bT + b− 1}.

Back to the main example. Consider FirstOpRead(m) as
given in Section 2.2.1, which specifies pairs of indices (i, j).
Given the schedule θ(i, j) = (N − j, j), we now incorporate
J = T = b i

b
c as a parameter, we consider m as an unknown,

and, after simplifications, we get FirstReadInTile(T ) as:

{m | max(0, N − 10I − 9) ≤ m ≤ N − 10I, T = 0}∪
{m | max(1, 10T ) ≤ m+ 10I −N ≤ min(N, 10T + 9)}

which gives, for each tile T , the set of data m accessed as a
read for the first time in the tile strip indexed by I. �

In Section 3.2, we will use such an inversion mechanism
to go from an expression such as FirstTileRead(m), which

maps memory cells m to tiles T , to an expression such as
FirstReadInTile(T ), which maps tiles T to memory cells m.
The same mechanism can be used to compute the inverse of
any QUAST, see details in [3]. To our knowledge, this inver-
sion principle, which derives directly from the definition of a
parametric polyhedron (where unknown and parameters are
semantically, but not structurally, distinguished) and from
the structure of QUASTs, has never been exploited so far.

3. COMMUNICATION COALESCING
We now show how to select the array regions to be loaded

from and stored to the external DDR memory. This step
impacts the amount of communications, the lifetime of array
elements in the local memory, and the size of this memory.

To perform data transfers, the most naive solution is to
access the DDR for each remote data access in the code.
This solution does not require any local memory but is very
inefficient: the latency to the DDR has to be paid for each
access, which takes roughly 400 ns on our platform. Accesses
must thus be pipelined (a feature available in Altera C2H)
so that the accelerator throughput depends not on the DDR
latency, but on its throughput. The accelerator is then able
to receive 32 bits every 80 ns, if successively accessed data
are not in the same DDR row. However, if data accesses
are reorganized by blocks on the same row, thanks to loop
tiling, the accelerator can work at full rate, i.e., it can receive
32 bits every 10 ns. But to sustain this rate and not pay
any DDR latency, communications must be fully pipelined.
This can be done thanks to communication coalescing, which
amounts to hoisting transfers out of a tile and to regrouping
the same accesses to eliminate redundancy.

Communication coalescing is a common optimization in
compilers of parallel languages and for exploiting scratch-
pad memories [7, 8, 21, 20, 4]. The form of communication
coalescing we develop here is different as it exploits not only
intra-tile reuse but also inter-tile reuse, even if data depen-
dences exist between tiles, at the granularity of individual
array elements. Usually, the approach is to load, just be-
fore executing a tile, all the data read in the tile, then to
store to the DDR all data written in the tile. This solution
does not exploit inter-tile data reuse and, unless no data-
flow dependence exists between successive tiles, forbids to
overlap computations and communications. This seems to
be the approach implemented in the RStream compiler, as
described in [21]. The other extreme solution is to first load
all data needed in a tile strip, then to execute all tiles in the
strip, and finally to store to the DDR all data produced by
the tile strip, in other words, to hoist some communications
outside the innermost tile loop. This exploits data reuse but
requires a large local memory to store all needed data. Also,
computations cannot start before all data have arrived.

The strategy we formalize here consists in sending load
and store requests to the DDR only at the time they are
needed. Furthermore, we load from (resp. store to) the
DDR any data read (resp. written) in the current tile strip
only once. Between the first and the last accesses, the data
is kept and used (read and written) in the local memory,
exploiting data reuse. As a bonus, this method handles nat-
urally the case where dependences exist between tiles of a tile
strip. Indeed, as data concerned by inter-tile dependences
are kept in local memory, the sequential execution of tiles
guarantees the program correctness. Another consequence
of our scheme is that, unlike previous approaches for which



the lifetimes of array elements are all the same (either from
the first tile to the last tile, or just within a tile), memory
allocation based on bounding box as in [21, 20, 4] is not
enough: to exploit the different lifetimes of individual array
elements, we need to use a more general allocation scheme,
based on modular mappings, as explained in Section 4.2.

3.1 Exact formulation with reduced lifetimes
For a tile T , let In(T ) be the data read in T , but not

defined earlier in the tile, i.e., used in T and live-in for T ,
and let Out(T ) be the data written in T . We first assume
In(T ) and Out(T ) to be exact. The case where In(T ) is
over-approximated does not bring any difficulty. However,
the case where Out(T ) is not known exactly is more complex
and will be discussed in Section 3.3.

To simplify set equations, we use a compact notation such
as Load(t ≤ T ) to express a generic union of sets, here
∪t≤T Load(t). The first letter is always the free variable
and the second a fixed value. For example, the notation
Out(t > T ) stands for ∪t>T Out(t) but does not stand for
∪t>T Out(T ). We now specify Load(T ) (resp. Store(T )),
the data to be loaded from (resp. stored to) the DDR just
before (resp. after) executing the tile T . The next theorems
specify exact solutions, those that avoid useless loads/stores.

Theorem 1. The function t 7→ Load(t) is exact iff the
following conditions hold (Tmax is the last tile of the strip):

(i) In(T ) \Out(t < T ) ⊆ Load(t ≤ T ).
(ii) ∪t≤Tmax {In(t) \Out(t′ < t)} = Load(t ≤ Tmax).

(iii) Load(T ) ∩ Load(T ′) = ∅ for any tile T 6= T ′.

Condition (iii) forbids redundant loads, i.e., data loaded
several times. With Condition (ii), no useless data is loaded.
The three conditions imply Out(t < T )∩Load(T ) = ∅, which
is needed to not overwrite a valid data, see details in [3].

Theorem 2. The function t 7→ Store(t) is exact iff:
(i) Out(t ≤ Tmax) = Store(t ≤ Tmax).

(ii) Store(T ) ∩Out(t > T ) = ∅ for any tile T .
(iii) Store(T ) ∩ Store(T ′) = ∅ for any tiles T 6= T ′.

Unlike for loads where the equality in Condition (ii) of
Theorem 1 is an optimization choice, the equality in Condi-
tion (i) of Theorem 2 is always required, not just for the ex-
act case: it cannot be an over-approximation otherwise the
execution of the tile strip would store an undefined value to
the DDR and possibly overwrite a meaningful value. Condi-
tion (ii) and (iii) mean that a value defined by the tile strip
is stored only once and only after its last definition.

Theorems 1 and 2 do not specify when exactly the loads
and stores occur. Several schemes remain possible. Also,
the Load and Store operators are not given explicitly. The
following theorem gives a constructive solution where loads
are performed as late as possible and stores as soon as pos-
sible. This has the effect of minimizing the lifetime of data
in the local memory, which tends to reduce its size.

Theorem 3. The functions Load and Store defined by
• Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )}
• Store(T ) = Out(T ) \Out(t > T )

are exact and reduce the lifetimes in the local memory.

Intuitively, Load(T ) contains all the data read in the tile T ,
excluding the data already read In(t < T ) and the data al-
ready defined Out(t < T ). Store(T ) contains the data writ-
ten for the last time in T , i.e., Out(T ), the data written T ,
excluding Out(t > T ), those written later.

Back to the main example. Consider the array c again, for
the left tiling of Fig. 1, i.e., with θ = (N − j, i). Remember
that In(T ) is the set of array elements read in tile T but not
previously written in the same tile. Here, any array element
accessed is read before being written. Also, In(T ) = Out(T ).
Thus, with parameters N , I, and T = J , we get:

In(T ) = {m | m = i+ j, ii = N − j, jj = i, 0 ≤ i ≤ N,
0 ≤ j ≤ N, bI ≤ ii ≤ b(I + 1)− 1, bT ≤ jj ≤ b(T + 1)− 1}

The set In(t < T ) is obtained by adding the inequalities
0 ≤ t < T . Applying Thm. 3 and simplifications, we retrieve
the first reads of c, as depicted in grey, left of Fig. 1. �

In general, for a program in the polytope model [14], all
these computations require to be able to compute the dif-
ference of parametric LBLs. Tools such as ISL (http://
freecode.com/projects/isl) or Omega (http://chunchen.
info/omega/) could be used, again when the block size is a
constant. However, as Omega uses a more general frame-
work (Presburger arithmetic), it is not clear whether it will
always express the final sets as easy-to-scan unions of poly-
hedra (or LBLs). Instead, we designed an alternative ap-
proach based on parametric integer programming, following
the principles of Section 2.2.2. This technique always builds
exact Load and Store operators, with no need to compute
differences of sets (they are actually replaced by minimiza-
tions). The outputs are simplified thanks to QUAST sim-
plifications. Comparison with ISL is left to future work.

3.2 Using PIP to compute exact loads & stores
Theorem 3 specifies optimized transfers based on set op-

erations. We now show how to compute the Load and Store
sets with parametric integer linear programming, in partic-
ular when the kernel fits in the polytope model, i.e., with
affine loop bounds and access functions. We define:
• FirstTileAccess(~m), first tile that accesses an array cell

indexed by ~m, as a read or a write.
• FirstTileReadBeforeWrite(~m), first tile that accesses

an array cell indexed by ~m, if it is a read.
• LastTileWrite(~m), last tile that accesses ~m as a write.

Theorem 3 can then be reformulated as follows:

Theorem 4. The operators of Thm. 3 can be defined as:

Load(T ) = {~m | FirstTileReadBeforeWrite(~m) = T}
Store(T ) = {~m | LastTileWrite(~m) = T}

Load(T ) gives the data accessed for the first time in T if this
is a read, Store(T ) the data written for the last time in T .
If In(T ) and Out(T ) are available as (unions of) polyhedra
or LBLs, the set FirstTileAccess(m) can be defined by a
QUAST obtained as the minimum of two QUASTs:

min(min{T | ~m ∈ In(T )},min{T | ~m ∈ Out(T )})

When combining the two QUASTs (see Section 2.2.2), we
can, in addition, tag each solution with the set it is coming
from (in case of equality, we tag with the first set, i.e., the
set of reads). Then, if we replace each solution coming from
the second set by ⊥, we get a QUAST that specifies, for
each ~m, the first tile that accesses it, keeping only those
corresponding to a read, i.e., FirstTileReadBeforeWrite(~m).
Using the inversion mechanism of Section 2.2.2, we invert
this mapping to get Load(T ). We get Store(T ) by inverting
the mapping LastTileWrite(~m), obtained by maximization.

Actually, in practice, In(T ) is computed from read and
write accesses. Also, In(T ) is not just the set of data read



in T , but also not yet defined in T . However, pre-computing
such a set In(T ) is not necessary and FirstTileAccess(~m) can
be directly computed from the first read and write opera-
tions, instead of tiles. For that, we define:
• FirstOpRead(~m), first op. in the strip that reads ~m.
• FirstOpWrite(~m), first op. in the strip that writes ~m.

FirstOpRead(m) is obtained by first extracting the set of
operations reading ~m. Then, we compute the read that is
scheduled first (with respect to θtiled, the tiled schedule) in
the tile strip, which boils down to compute the lexicographic
minimum in a union of polytopes, as for exact array data-
flow analysis [13]. Additional leaf modifications remove use-
less variables in the solution, as illustrated in Section 2.2.1,
which enables more QUAST simplifications. More precisely,
in the polytope model, reads to c are as follows:

S :~i ∈ D : . . . = . . . c[u(~i)] . . .

where D is the iteration domain of statement S, ~i an itera-
tion vector, and u is affine. The reads of c(~m) in S are the

operations (S,~i) such that u(~i) = ~m and ~i ∈ D:

Read(~m, S) = {~i ∈ D | u(~i) = ~m}

(If c occurs more than once in S, each access is distin-
guished.) Now, remember that S is given an affine sched-
ule θS , as discussed in Section 2.1. We extend the defini-
tion of Read by incorporating the execution date of ~i, i.e.,
(~I, ~ii) = (bθS(~i)c, θS(~i)) to get Read(~m, S) as:

{(~I, ~ii,~i) | ~ii = θS(~i)∧ b~I ≤ ~ii < b(~I+~1)∧u(~i) = ~m∧~i ∈ D}

Then, we use PIP to get the lexicographic minimum of
Read(~m, S). As in Section 2.2.1, we keep in the vector ex-

pressing the solution only the components corresponding to~i
and we simplify the QUAST. We proceed the same way for
every assignment reading c, then we compute the global min-
imum by combining the QUASTs. Thus, if the assignments
reading c are S1, . . . , Sn, FirstOpRead(~m) is computed as:

min(min Read(~m, S1), . . . ,min Read(~m, Sn))

We compute FirstOpWrite(~m) similarly. Finally, as we pre-
viously explained at the granularity of tiles, we compute:

FirstOpAccess(~m) = min(FirstOpRead(~m),FirstOpWrite(~m))

If we replace all leaves that correspond to a write by ⊥, we
get an expression of FirstOpReadBeforeWrite(~m), the first
operation that accesses ~m, if it is a read. Finally, as we
did in Section 2.2.2, we can go easily from the expression of
FirstOpReadBeforeWrite(~m) to FirstTileReadBeforeWrite(~m)

as the tile indices ~I of a given operation (S,~i) is given by the

relation ~I = bθS(~i)c, or equivalently b~I ≤ bθS(~i)c < b(~I +~1)
(remember that T is the innermost tile index). It remains
to invert the resulting QUAST to get Load(T ). Similarly,
Store(T ) is obtained by maximization, through the compu-
tation of LastOpWrite(~m), then of LastTileWrite(~m), and
finally the inversion of LastTileWrite(~m).

3.3 Extensions for approximated reads/writes
When exact analysis is not possible, we have two options.
(i) Restrict to a subset of programs for which an exact

computation of In(T ) and Out(T ) is possible. This is
the option we chose in our current implementation and
presented here, restricting to the polytope model.

Load1
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Comp

Time
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Figure 2: Software-pipelined synchronizations.

(ii) Deal with approximation. In this case, we need to
express the validity conditions relating the Load and
Store operators to the approximated In and Out, and
then to exhibit such operators.

Note that approximations can also be used to restrict to sets
that are simpler to manipulate and to simplify the final code
generation, even if exact analysis is possible, e.g., one may
prefer to always manipulate simple polyhedra, if possible.

We now discuss briefly the second option. Some compli-
cations arise, but only due to an approximation of Out(T ).
Indeed, if Out(T ) is exact, over-approximating In(T ) into
In(T ) only causes additional useless loads but does not af-
fect the execution of the kernel. Thus, the procedure of
Sect. 3.2 can be applied at no risk, with In(T ) instead of
In(T ). Also, over-approximating Load(T ) itself is safe as
long as no value already written in the tile strip is loaded.

We point out that it is possible to extend all previous
results to handle the case where the set Out(T ) is also under-
and over-approximated, i.e., Out(T ) ⊆ Out(T ) ⊆ Out(T ).
The trick, developed in [3], is a) to pre-load any data that
may be written, but not for sure, so as to avoid storing
a dummy data in the DDR, b) to pre-load any data that
is needed before it may be written. This leads to new set
equations and an extension of the procedure of Section 3.2.

4. APPLICATION TO HLS FOR FPGA
We now use the theory developed in Section 3 to generate

automatically a C specification of communicating processes
that can be compiled into hardware by a HLS tool, namely
Altera C2H, following the procedure proposed in [2]. It re-
mains to show how the different communication and compu-
tation processes are scheduled and synchronized, in C using
C2H, how the local memories (size and access function) are
then defined with respect to this schedule, and how the load
and store sets are finally scanned.

We point out that all these steps – computation of loads/s-
tores, computation of a mapping for designing local buffers,
scanning of sets for kernel generation – are done with re-
spect to the schedule θ. This makes the whole technique
transparent, without even generating an initial loop tiling.

4.1 Synchronization of comp/comm processes
Following the methodology of [2], we generate 5 functions

(called drivers) to be translated by C2H into separate hard-
ware accelerators. For each tile strip, the function Com-
pute executes all tiles in sequence, whereas the tiles are pro-
cessed by pairs by two load and two store drivers, e.g., if
Tmin = 0, Load0 and Store0 deal with even tiles, Load1 and
Store1 with odd tiles. Each driver contains a loop nest it-
erating over the tiles. For each tile, a piece of code (called
micro-kernel) performs the required loads, computations, or
stores (see Section 4.2). The drivers are run in parallel and
software-pipelined as shown in Fig. 2, with synchronizations
implemented as blocking reads and writes in FIFOs of size 1.

In C2H, nested loops are scheduled with a hierarchical
finite-state machine (FSM) structure. Data fetches in loops



are pipelined to hide latency. Furthermore, a special state
is added, after a precomputed constant number of cycles,
that stalls the FSM until the data is received. We exploit
this mechanism to guarantee the data-flow dependences in-
duced by the remote data transfers (blue arrows in Figure 2)
by placing the corresponding synchronizations outside the
micro-kernels. On the contrary, the synchronizations used
to sequentialize the accesses to the DDR (dotted arrows in
Figure 2) are placed inside the micro-kernels, at the last it-
eration, i.e., as soon as the last DDR request within a tile
is initiated. This avoids the important penalty due to the
loop pipeline that must be drained. This way, computations
and communications are pipelined and latencies are hidden.
The subtleties of this implementation and the interaction
with the specificities of C2H are detailed in [2].

For the design of local memories, we need to specify the
software-pipelined schedule of the processes to know when
buffer locations can be reused. As this double-buffering
scheme operates on tiles, two by two, this schedule cannot be
specified directly as an affine function. Instead, we emulate
a loop unrolling by 2. If T is the innermost tile counter (i.e.,
iterating on the tile strip), we add the constraint T = 2p
(resp. T = 2p + 1) to the tile domains, where p is a fresh
integer variable. Then, as far as memory reuse is concerned,
it is enough to specify the pipelined schedule with the fol-
lowing 2D schedule θdb (this is when Tmin is even):

θdb(Load0, 2p) = (p, 0) −−
θdb(Comp, 2p) = (p, 1) θdb(Load1, 2p+ 1) = (p, 1)
θdb(Store0, 2p) = (p, 2) θdb(Comp, 2p+ 1) = (p, 2)

−− θdb(Store1, 2p+ 1) = (p, 3)

4.2 Local memory management
With our method, all computations are done with vari-

ables from the local memory. The lifetime of such a variable
starts at its first access (possibly resulting from a load oper-
ation) and ends at its last access (possibly resulting from a
store operation). We now explain how variables are mapped
in the local memory. It must be done so that (i) two data live
at the same time are not mapped to the same local address,
(ii) the local memory size is as small as possible.

Unlike the methods developed in [18], which try to pack
data optimally (in size), possibly with complex and expen-
sive mapping functions and reorganization, we prefer to rely
on array contraction based on modular mappings [17, 10].

In this framework, an array cell a(~i) is mapped to a local

array cell a tmp(σ(~i)) where σ(~i) = A~i mod ~b, A is an in-

teger matrix, and ~b is an integral vector defining a modulo
operation component-wise. In many cases, the array index
functions are translations with respect to the loop indices as
in a[i][j-1] and the program reads and writes consecutive
array cells. The set of live array cells is then a window sliding
during a tiled program execution, allowing efficient memory
optimizations. The framework presented in [10] generalizes
this situation, given an analysis of live array cells.

The principles of lattice-based memory allocation are the
following. First, a conflict relation ./ is defined: a(~i) ./ a(~j)

if the lifetimes of the array cells a(~i) and a(~j) overlap. From

the relation ./, the conflict polyhedron DS = {~i−~j | a(~i) ./

a(~j)} is derived, which represents the sliding window men-
tioned above. Then, an admissible lattice for DS is built,
i.e., an integer lattice L such that DS ∩ L = {0}. A map-
ping σ is finally derived from L so that kerσ = L. In our

implementation, we use the tool Clak described in [1]. It
takes as input a polyhedron (the set DS) and produces an
admissible lattice for DS and a corresponding mapping σ.

Back to the main example. As shown earlier, for the left
tiling of Fig. 1, for every (complete) tile T of size b × b,
parameterized by the outer index I, the region c[N − b(I +
1) + 1 : N − b(I − 1) − 1] is loaded in c tmp if T = 0 and
c[N − bI + bT : N − bI + b(T + 1) − 1] if T ≥ 1. The data
are consumed in a tile while the loads for the next tile are
processed. Therefore, the set DS is equal to [−3b+2 : 3b−2]
resulting in the mapping σc(i) = i mod (3b− 1). If the first
tile was handled differently, i.e., with no overlap with the
next tile, the resulting memory for c would be of size 2b.
As for array p, each tile loads a new block of size b while
the previous block is consumed, resulting in a memory of
size 2b. Finally, for array q, a single block of size b is loaded
at T = 0 and kept in memory for the whole tile strip. �

For code generation, a direct approach is to feed ClooG
(http://www.cloog.org) with the different data sets, to-
gether with a sequential schedule. In our context however,
this gives a correct but inefficient code. It is better to gen-
erate each kernel as a single “linearized” loop executing one
instruction per iteration, using the Boulet-Feautrier algo-
rithm [5]. This avoids the penalty due to the pipeline of inner
loops that must be drained (see Sect. 4.1). Also, as recalled
in Sect. 3, accessing successively in different DDR rows de-
grades the throughput. With a single loop, we achieve spa-
tial locality in the DDR accesses by scanning the different
arrays one after the other, with no interleaving, and fol-
lowing rows, i.e., lexicographically with respect to the array
indices. Furthermore, such a loop is nicely pipelined with
C2H, with one DDR access per iteration.

4.3 Experimental results
We implemented our methods using the polyhedral tools

PIP and Polylib. Our prototype takes as input the C source
code of a small kernel to be optimized. The input pa-
rameters, such as the loop tiling, are specified with prag-
mas. Then, a C source code, which implements a double-
bufferized version of the kernel, is automatically generated.
It can be simulated using linux processes, FIFOs, and shared
memories (with IPC linux library). The 5 driver codes are
then synthesized using C2H, which integrates them auto-
matically in the system instantiated using Altera SOPC
builder. Before, we currently still need to do a few mod-
ifications by hand, such as inserting the adequate pragmas
for C2H, transforming array accesses to linearized addresses
with the right base addresses, instantiating memories in the
SOPC builder, changing some arrays into non-aliasing point-
ers so that C2H, whose dependence analyzer and software
pipeliner are weak, can compile the code with the right ini-
tiation intervals, etc. All these changes are systematic, but
not integrated yet in our code generator and take some time.

The study provided in [2], for the HLS tool C2H, showed
that, even for elementary kernels, generating adequate C
codes that can be automatically synthesized with no ad-
ditional handmade VHDL glue, while exploiting the max-
imal DDR bandwidth, is very tricky. But it is feasible if
codes and synchronizations are written in a specific, though
generic, way. Our techniques show that this process can
be automated. We considered the 3 kernels studied in [2],
DMA transfer, sum of vectors (VS), matrix multiply (MM),
to check if we could achieve the same performance auto-



Kernel ALUT Reg. T. reg. IP M. freq. S-U
System alone 4406 3474 3606 8 205.85
DMA original 4598 3612 3744 8 200.52 1
DMA manual 9853 10517 10649 8 162.55 6.01
DMA autom. 11052 12133 12265 48 167.87 5.99
VS original 5333 4607 4739 8 189.04 1
VS manual 10881 11361 11493 8 164 6.54
VS autom. 11632 13127 13259 48 159.8 6.51
MM original 6452 4557 4709 40 191.09 1
MM manual 15255 15630 15762 188 162.02 7.37
MM autom. 24669 32232 32364 336 146.25 7.32

Table 1: Synthesis: original, manual, automatic

matically. Matrix multiply, also the example demonstrated
in [21], is the most involved kernel: the original code has a
few lines but the hand-optimized version (a double-buffered
matrix multiply by block) has more than 500 lines!

We used ModelSim to evaluate our designs, which were
synthesized on the Altera Stratix II EP2S180F1508C3 FPGA,
running at 100 MHz, and connected to an outside DDR
memory, of specification JEDEC DDR-400 128 Mb x8, CAS
of 3.0, running at 200 MHz. The optimized versions can run
6x or more faster than the direct implementations (remem-
ber that the maximal speed-up is at most 8, if we start from
a code where successive DDR accesses are in different rows).
Note that these speed-ups are obtained not because compu-
tations are parallelized (tiles are run in sequential), not only
because the communications are pipelined (this is also the
case in the original versions), but because DDR requests
are reorganized to get successive accesses on the same row
as much as possible, because some communications overlap
computations, and because some data reuse is exploited.

However, to achieve this, there is a (moderate) price to
pay in terms of hardware resources, in addition to the lo-
cal memories involved to store the data locally. This is il-
lustrated in Table 1, which gives different parameters mea-
suring the hardware usage: the number of look-up tables
(column “ALUT”), of registers (“Reg.”), of all registers in-
cluding those used by the synthesis tool (“T. reg.”), and of
hard 9-bit multiplication IP cores (“IP”). Compared to the
manually-optimized versions, the automatic ones use slightly
more ALUT and registers, mostly because they use two sep-
arate FIFOs for synchronization between the drivers Load0
and Load1, and the driver Compute (we changed the design
of [2] to make it more generic). They also use more mul-
tipliers to perform tile address calculations, which could be
removed by strength reduction.

Speed-ups are given in the column “S-U”. Note that the
optimized versions have a slightly smaller maximal running
frequency than the original designs (column “M. freq.” in
MHz). But, if the designs already saturate the memory
bandwidth at 100 MHz, running the systems at a higher
frequency will not speed them up anyway. This maximal
frequency reduction could come from more complex codes,
the Avalon interconnect routing, and the use of double-port
memories available in the FPGA. The use of such memories
induces additional synthesis constraints.

5. CONCLUSION
In the context of HLS for FPGA, we proposed an auto-

matic translation method to optimize, at source level, a ker-
nel linked to an external DDR memory. Our method relies
on a code restructuring that combines loop tiling (specified
by the user), advanced communication coalescing and data
reuse, pipelining of communicating processes in a double-
buffer fashion, buffer size optimization, and optimized loop

linearization. It has been implemented as a prototype, and
the first experimental results show that the method is effec-
tive and gives promising results compared to handmade de-
sign. To our knowledge, this is the first time, in the context
of HLS, that such accelerators are automatically generated.
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