Polyhedral Scheduling in the R-Stream Compiler

N. Vasiache, B. Meister, M. Baskaran, R. Lethin

xS !) neé
~Mao S e

CI)I/<\ Tc
) vitlel fea
COJ(V\V e /\S
7‘ / A
"'\t G Y \wt U%\(SS UV\‘CSS

L osd in reversal to

A L A

FT‘_‘ 200 (

F1. oJJ(| R“‘”"b"at

Reservoir Labs

Outline

R-Stream Overview

Balancing Parallelism and Memory

Joint Vectorization and Data Layout Formulations

Results

Conclusions

Reservoir Labs

Benefits of Automatic Parallelization

Optimizations automatically achieved
® Programmer writes at very high level
® [nstead of hand coding
Ability to quickly generate code (with these optimizations)
® Substantial coding effort if done manually
New optimizations targeted at future architectures
® Parallelism - locality - other tradeoffs (energy)
® Explicit communication management
® Deep hierarchy (on-going)

Ability to automatically generate various code variants
with tunable parameters

Reservoir Labs

Enabling technology is polyhedral abstraction

Uniform Recurrence Equations [Karp et al. 1970]

Many: Lamport, Allen/Kennedy,
Banerjee, Irigoin, Wolfe/Lam, Pugh, Pingali, etc

Loop Transformations and Parallelization [1970-]

Vectorization, SMP, locality optimizations

_Dependence summary: direction/distance vectors

\ Unimodular transformations

Mostly linear-algebraic

v

Systolic Array Mapping: Rajopadhye

. Many: Feautrier, Darte, Vivien, Wilde, Rajopadhye, etc,....

Exact dependence analysis: Feautrier

vy

Polyhedral Model [1980-]

v

General affine transformations

Loop synthesis via polyhedral scanning: Quillere, Bastoul

New scheduling techniques based
on polyhedral representations (Bondhugula)

Reservoir Labs

Polyhedral model - challenges in building a compiler

Mathematical abstraction is not trivial
Scalability of optimizations [representation / code generation
Traditionally confined to dependence preserving transformations

Code can be radically transformed - outputs can look wildly
different

Modeling indirections, pointers, non-affine code.

Some of these challenges are solved + other on-going ideas

Reservoir Labs

R-Stream model: polyhedra model

AN

je=10

+ 4+ A+

 EEN NN
N
sessssoss

R e R
LR N BN B

o

j==0

i€=n

o
Ll!n

{l,] c Z2 | Hk = Z,S < l < n;o < j < l;] < l;i — 2k+1} O:polyhedralstatement [|: polyhedral dependence
i_

Affine and non-affine transformations

1 210
4]=/1 0 0 3
00 0 1 Order and place of operations and data

—_ S .

Loop code represented (exactly or conservatively) with polyhedrons
—> High-level, mathematical view of a mapping
—> But targets concrete properties: parallelism, locality, memory footprint

Reservoir Labs

R-Stream blueprint

Machine
Model

EDGC
Front End

V

Polyhedral Mapper

Raising Lowering

4

Vv

Scalar Representation

N

Pretty
Printer

Reservoir Labs

Driving the mapping: the machine model

Target machine characteristics that have an
influence on how the mapping should be done

Local memory /[cache sizes
Communication facilities: DMA, cache(s)
Synchronization capabilities

Symmetrical or not
SIMD width
Bandwidths

Currently: two-level model (Host and Accelerators)
XML schema and graphical rendering

PROC tile
geometry=[32]
SIMD width=32 bits
SIMD alignment=32 bits
int registers=>53
fp registers=53
funit types=[MEM, INT, FP4, FP8]
funit 1ssue rates=[1.0, 1.0, 1.0, 1.0]
instr. size=4 byte(s)
addr. unit=8 bit(s)

AN

MEM L1D MEM L11
size=[8KB] size=[8KB]
banks=[none] banks=[none]
cache level=1 cache level=1
cache_line_size=16B cache_line_size=32B
tlb_miss_cost=0 tlb_miss_cost=0
speed=>5 speed=10
data only instructions on Iy
\ 1 / 1

MEM L2
size=[64KB]
ar none

B speei:‘l= 10
unified

MEM local
size=[64KB]
banks=[none]
speed=10
data only

many- 1

MEM global
size=[2523904KB]
banks=[none]
speed=1
unified

Reservoir Labs

Machine model example: multi-Tesla

PROC cc
geometry=[512]
PROC cpu SIMD width=128 bits
geometry=[8] SIMD alignment=128 bits

SIMD width=128 bits
H t SIMD alignment=128 bits
OS H int registers=32
fp registers=32
funit types=[MEM, INT, FP4, FP8]
funit issue rates=[2.0, 2.0, 2.0, 2.0]
instr. size=4 byte(s)
addr. unit=8 bit(s)
parm. passing=[implicit]

int registers=32
fp registers=32
funit types=[MEM, INT, FP4, FP8]
funit issue rates=[1.0, 1.0, 1.0, 0.5]
instr. size=4 byte(s)
addr. unit=8 bit(s)
parm. passing=[none]
major revision=1
minor revision=1
multi processors=16
cores=128
warp size=32
registers per block=8192
max threads per block=512
max thread sizes=[512, 512, 64]
max grid sizes=[65535, 65535]

thread ll-l

1 thread per GPU el 16Ke]

banks=[nhone]
cache_level=1
cache_line_size=32B
tlb_miss_cost=0
speed=5
data only
options=[]

-1

MEM private_gpu

APROC sm size=[8KB]
. ERHOCLudy. thread many-1 roper mems—lr[‘;iggled pJof:z:[s(t:;Lt cache_gpu] ba:ligl[fgge] any-1
included procs=[gpu_device] 1.2 1-many prop: = _gf el - _9gPp! dP " _I
proper mems=[] geometry=[15] a .a only
geometry=[2] options=[]
MEM L2 1-1 1-1 any-1 any-1
size=[6MB]
APROC PC banks=[none] MEM constant_cache_gpu
included procs=[cuda_thread, cpu] cache_level=2 size=[8KB] MEM | |
iy ! 1-many | cache_line_size=32B banks=[none] - e ocal_gpu
proper mems=[global] tlb miss cost=192 APROC gpu_device size=[16344B]
geometry=[1] - — cache_level=1 . — -
speed=10 cache line size=1B included procs=[sm] banks=[none]
unified tlb miss cost=0 proper mems=[global_gpu, constant_gpu] speed=10
options=[] “speed=12 geometry=[1] :attig :srﬂs[']
data only P -
1-1 many-1 options=[]
MEM global any-1 -1 -1 many-1
size=[4GB]
banks=
arsmpzeér;olne] MEM constant_gpu MEM global_gpu
unified size=[8KB] size=[768MB]
options=[] banks=[none] banks=[none]
speed=8 speed=1
data only unified
options=[cuda_constant] options=[]

OpenMP morph XML file

CUDA morph

Reservoir Labs 9

Mapping process

Dependencies
ALY

1- Scheduling:
Parallelism, locality, tilability

AN
3- Placement:

Assign tasks to blocks/threads

Yo /o /oo A
AT
Yo /cle) /o o/o fioriog
Yo (ells) o) o]0 o 4
Yoo/ c /o) oo/ oo

2- Task formation:
- Coarse-grain atomic tasks
- Master/slave side operations

Y/ (0)/ 0/ 0)/8) 0)/19) 0}/ {0/ 0/ 0}/ e} e

AOV/A0) 40 (C)/(O) £O)/ 10) OV Q) ABy ALY O)

- Local [global data layout optimization
- Multi-buffering (explicitly managed)

- Synchronization (barriers)

- Bulk communications

- Thread generation -> master/slave

- CUDA-specific optimizations

Reservoir Labs

Mapper flow

Significant reuse of
modules across targets

Tilera

GPU

CSX

RC100

) _..Ar.rf]y expansion ‘.
P Scheduhn g e, ‘l
2ok formation and placement ‘.
Memory promotion ‘l
Array contraction ‘.

Communication generation + Optimization ‘l

Multi-buffering ‘l
Bulk communicafgid'h/Dl\/IA generation ‘l
Synchronizatfbn generation ‘l

Register tiIin‘é}." ‘.

Persistence e, ‘.

.

Thread generation

Code generation ‘.

»Mapped code

Reservoir Labs

N

Inside the polyhedral mapper

GDG representation

Tactics Module

Parallelization
Locality Tiling Placement G;oerr;t]i-on
Optimization
Memory Sync Layout Polyhedral
Promotion Generation Optimization Scanning
Jolylib, ...

Reservoir Labs

12

Inside the polyhedral mapper

Optimization modules engineered to expose “knobs” that could be used by auto-tuner

GDG representation

Tactics,Module
f L\ \\ \\
Locality Placeme G;oeTati
Optimizatio
\ \
Memory Layout Polyhedra
Promotion Optimizatio Scanning

Jolylib, ...

Reservoir Labs 13

Loop transformations (URUK-based representation)

for (1=0; 1i<N; i++)
for (3=0; J<N; J++)

S(1,3); unimodular
for (3=0; J<N; J++) O 111
permutation for (i=0; 1i<N; i++) (9(1',]'): .
S(i,3) 7 1 O
for (i=N-1; 1i>=0; i--) o -1 O}
reversal for (3=0; J<N; J++) 0(i, j) = :
S(3,1); 0 1]
for (i=0; i<N; i++) o 1 Of:
Skewing for (j=a*i; J<N+a*i; Jj++) 9(1,]):
S(i,3-a*i); a 1]
for (i=0; i<a*N; i+=o) o a 011
scaling for (3=0; J<N; J++) 0(i, j) =
S(i/o,3); 0 1/
Reservoir Labs 14

Loop fusion and distribution (URUK-based representation)

for(i=Q; i<I\.T; i-H._) fusion for (i=0; i<N; 1i++)
for (§=0; J<N; J++) > for (§=0; J<N; J++)
S1(i,73); S1 (i j) ’
for (§=0; J<N; j++) —— sz(i")’
52 (i,3) distribution &
(0 0 O] 09 O— -
1 0 0fi
1 0 O] :
fusion N ;
0G.)=[0 0 0] S HE
01 0f1 "
000 0 0 0]
00 0 (0 0 O]
1 0 ofi] : L0 0fi
0,i,j))=|10 0 |1]|/ o 0,(,/)=10 0 0] j
01 0|1 distribution 01 01
0 0 ﬂ 0 01

Reservoir Labs 15

Loop transformations as scheduling

iteration space of a statement S(i,))
A t2

t

0:-7° —>17°
j .

Schedule 8 maps iterations to multi-dimensional time

A feasible schedule must preserve dependencies

Loop transformations/synthesis mean generating code to execution iterations
of a loop in the lexicographical order of time

Reservoir Labs 16

Outline

R-Stream Overview

Balancing Parallelism and Memory

Joint Vectorization and Data Layout Formulations

Results

Conclusions

Reservoir Labs

17

R-Stream: base affine scheduling and fusion

Generalization of Bondhugula's breakthrough algorithm in a new unified formulation
Model based on an objective function with several cost coefficients:

® slowdown in execution if a loop pis executed sequentially rather than in parallel

® costin performance if two loops pand g remain unfused rather than fused

minimize Zwlpl—l— Zuf

Zeloops ecloopedges
slowdown in sequential cost of meusing
execution two loops

These two cost coefficients address parallelism and locality in a unified and unbiased
manner (as opposed to traditional compilers)

Fine-grained parallelism, such as SIMD, can also be modeled using similar formulation

Reservoir Labs

Balancing parallelism quality and memory usage

Enabling technologies:
® Exact dependence analysis and conservative approximations
® Violated dependence analysis
® Ability to reason about temporarily incorrect programs
® Automatic correction of loop transformations
® Polyhedral schedulers

Key ideas:
® Memory budget, autotunable
® Schedule aggressively (and wrongly)
® Correct by expansion (and index-set splitting)
® Need to support tiling (most important program transformation ever)

Reservoir Labs 19

Algorithm - High-level ideas

Iterative fixed point algorithm: the problem is non-linear
Precisely pinpoint the sources of error (VDA supports tiling)
Expand to correct
If memory budget is exceeded, save the reason why
While there exist errors:

® Schedule using blackbox scheduler

® Plug-in saved dependences to constrain the scheduler

® Fixed-point is reached

Details in the paper

Reservoir Labs 20

Optimization with BLAS vs. global optimization

/* Optimization with BLAS */

for loop { Outer loop(s)

BLAS(_caII 1 Retrieve data Z from disk

—> Store data Z back to disk
' ol 1111
BLAS(_caII > Retrieve data Z from disk !!!

BLAS call n

VS.

/* Global Optimization*/

doall loop {——{

for loop {

[read from Z] ~

[write to Z]

[read from Z] _

}

Can parallellze !

' _outer loop(s)_.

Loop fusion
improves
locality

[
1
1
1
1
1
1

>

\——————-—

— Global optimization can expose better parallelism and locality

Reservoir Labs

Parallelism/locality/memory tradeoff example

Array z gets expanded, to

introduce another level of Maximum distribution destroys locality

parallelism
/% doall (i=0; i<400; i++))
* Original code:

doall (j=0; j<3997; j++)
* Simplified CSLC-LMS z_e[j][i]=0
*/ doall (i=0; i<400; i++)

for (k=0; k<400; k++) { doall (j=0; j<3997; j++)
for (i=0; i<3997; i++) { for (k=0; k<4000; k++)

Max. parallelism
(no fusion)

2[i]=0; > | zelllil=z_e[][i+BLIkI*x[illk];
for (j=0; j<4000; j++) doall (i=0; i<3997; i++)
2[i]= z[i]+B[il[j1*x[K][j]; for (j=0; j<400; j++)
} wlil=wlil+z_e[i][j];)
for (i=0; i<3997; i++) Dat doall (i=0; i<3997; i++)
} wlil=wlil+z[il; accum""u; o 2l = 2_elil[399);

—> 2 levels of parallelism, but poor data reuse (on array z_e)

Reservoir Labs

Parallelism/locality/memory tradeoff example (cont.)

/*
* Original code:
* Simplified CSLC-LMS
¥/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0;
for (j=0; j<4000; j++)
2[i]= z[i]+B[i][jI*x[kI[jl;
}
for (i=0; i<3997; i++)
w(il=wli]+z[i];

}

Max. fusion

>

Aggressive loop fusion destroys
parallelism (i.e., only 1 degree

of parallelism)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {
z[i]=0;
for (k=0; k<4000; k++)
z[i]=z[i]+B[i][k]*x[j][k];
wlil=wli]+z[i];

}

-~

]

—> Very good data reuse (on array z), but only 1 level of parallelism

Reservoir Labs

Parallelism/locality/memory tradeoff example (cont.)

/*
* Original code:
* Simplified CSLC-LMS
¥/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0;
for (j=0; j<4000; j++)
2[i]= z[i]+B[i][jI*x[kI[jl;
}
for (i=0; i<3997; i++)
w(il=wli]+z[i];

}

Expansion of array z

AN

Parallelism with
partial fusion

>

Partial fusion doesn't

decrease parallelism

doall (i=0; i<3997; i++) {
_doall (j=0; j<400; j++) {

| z_eli][j]=0;
for (k=0; k<4000; k++)

z_el[illjl=z_elil[j1+BLIlkI*x[j]1[k];

}
for (j=0; j<400; j++)
wli]=wli]+z_e[i][j];

}

>

doall (i=0; i<3997; i++)

Data

accumulation

z[i]=z_e[i][399];

—> 2 levels of parallelism with good data reuse (on array z_e)

Reservoir Labs

Interesting facts

Example is a very simplified 2-D from original 4-D problem
Parallelism [locality tradeoff is obtained by changing the cost model
Coefficients that can be learnt, across programs, across architectures
Multi-objective linear functions

Base algorithm is enough for good performance:

Memory budget = infinity

Minimal amount of expansion for the specified parallelism

Much smaller than full static expansion (which does not fit in 8GB
space)

Other programs are not that friendly:
Degrade parallelism found by scheduler (set doall bit to 0)
This produces fewer violations and less expansion

Reservoir Labs 25

Outline

R-Stream Overview

Balancing Parallelism and Memory

Joint Vectorization and Data Layout Formulations

Results

Conclusions

Reservoir Labs

26

R-Stream: Joint affine scheduling and fusion

R-Stream uses a heuristic based on an objective function with several cost
coefficients:

® slowdown in execution if a loop pis executed sequentially rather than in parallel
® costin performance if two loops pand g remain unfused rather than fused

minimize Zwlpl—l— Zuf

Zeloops ecloopedges
slowdown in sequential cost of meusing
execution two loops

These two cost coefficients address parallelism and locality in a unified and
unbiased manner (as opposed to traditional compilers)

Fine-grained parallelism, such as SIMD, can also be modeled using similar
formulation

Reservoir Labs

Parallelism + locality + spatial locality + data layout

Hypothesis that auto-tuning should adjust these
parameters

w,p,+ Zu fe

L |

0

0

0
[eloops eelooped es —

benefits of parallel execution bene s of improved locality

New algorithm balances contiguity to
enhance coalescing for GPU and SIMDization

Reservoir Labs

28

Model for scheduling trades 3 objectives jointly

Loop Fission

Fewer
Global More More Sufficient
Memory Locality Parallelism

Occupancy

Accesses
Loop Fusion

+ successive
thread
contiguity

+ successive
thread
contiguity

Memory
Coalescing

Better
Effective

Bandwidth
x Data-Layout Permutations

Additional degree of freedom

Reservoir Labs 29

Joint affine scheduling and data layout

Enabling technologies:
® Generalization of Bondhugula's algorithm (Leung)
e Contiguity of a reference (Bastoul)
— Generalization to any schedule dimension
— Generalization to any array dimension
® Convex space of all legal multi-dimensional transformations
— Need to bound the "alpha” variables
® Ability to write Imf <= Im A in a linear formulation
— Linear when Im f = Im A (Leung)
— Not exact linear when Imf < Im A

Reservoir Labs

30

Algorithm - High-level ideas

Start from a multi-dimensional formulation

Incrementally add variables and constraints for more and more general
formulations

® Contiguity for innermost schedule and array dimension
® Contiguity for any schedule and array dimension
® Contiquity constraints across all references in a statement

® Contiguity constraints for all statements "that have the same beta
prefix”

® Mix with parallelism = simd and vectorization
— no guarantee on strides in this paper
® Data layout permutations open new doors
Need an invertible solution:
® No magic bullet, depth by depth, heuristic strategies (not permutations)
® (On the whole multi-dimensional problem

Reservoir Labs 31

Joint affine scheduling and data layout

VA={T—= 8}, Vke[l,min(d®,d")], VG ,i")eA:
32 ef0,.13
min(d> .d" :
! " o =1

Op (i) — 65 (i%) >
Now (zjgf— ! ﬁf‘) (i +1) + 82

Figure 1: Convex space of all legal schedules.

________________________ \

.r +Imf<=Ima ' |{ + Simd + data layout

e ! N o e e
vSe G, Vle[l,d"] Ki o <

r_‘f.._-[e {0,1}
p—Fr-A+Noo:(1—cra)>0 VvSe G, Vlel,d’], VAeS pt <

P+ P A4 N -(1—¢fg) >0 ;
! vSe G, vlel,d’], vAe S,

F accesses A St

-

Reservoir Labs

Inner contiguity, innermost array

for (i=1; i<=N; i++) { for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) { for (j=-N+1; j<=N-1; j++) {
for (k=1; k<=N; k++) { for (k=max(-j+1,1);
Ali-k] [k]l=A[i-k] [k]+1; k<=min(-j+N, N); k++) {
133 A[-31[j+k]1=A[-j] [j+k]+1;
133
— (], -1+k, 1)

no contiguous solution in the positive quadrant

Reservoir Labs

Outer vectorization innermost array dimension

doall (i=5; i<=N+M+L+2; i++) {

for (i=2; i<=1+N; i++) { for (j=max(2, i-N-L-1);
for (j=2; j<=1+M; j++) { j<=min(M+1, i-3); j++) {
for (k=1; k<=L; k++) { for (k=max(2, i-j-L);
A[i][§] [k]=A[i] [j-1] [k+1]+ k<=min(i-j-1, N+1); k++) {
A[i-171[j] [k+1]; Alk] [j]1[i-j-k]=
Alk] [j-1]1 [i-j-k+1]+
31} Alk-1][j1[i-j-k+1];
133

| — (i+j+k, j, k) |

Reservoir Labs

Outline

R-Stream Overview

Balancing Parallelism and Memory

Joint Vectorization and Data Layout Formulations

Results

Conclusions

Reservoir Labs

35

Radar benchmarks (array expansion)

Beamforming algorithms:

® MVDR-SER: Minimum Variance Distortionless Response using
Sequential Regression

® CSLC-LMS: Coherent Sidelobe Cancellation using Least Mean Square

® (CSLC-RLS: Coherent Sidelobe Cancellation using Robust Least
Square

Expressed in sequential ANSI C
400 radar iterations

Compute 3 radar sidelobes (for CSLC-LMS and CSLC-RLS)

The problem is algorithm selection: which of these 3 algorithms has
the most parallelism.

Reservoir Labs

MVDR-SER (outer-sequential (array expansion))

6 ~—MKL

\ -=-R-Stream(GCC)
.\-—-—'\ ~ R-Stream(ICC)
—~GCC
—~ICC

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
#Channels

Reservoir Labs

CSLC-LMS (outer-parallel (array expansion))

——MKL
==-R-Stream(GCC)
R-Stream(ICC)

AN
o
/

30 —-GCC
===|CC
72
Q.
o
%20 -
10

p— hdl

0 B ey S S g S g ——
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
#Channels

Reservoir Labs

CSLC-RLS (outer-sequential (array expansion))

6 —MKL
-==R-Stream(GCC)
S R-Stream(ICC)
~—GCC
4] ——|CC
7))}
Q.
o 3
e
o
2]
1 _
0

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
#Channels

Reservoir Labs

Vectorization quality (statistical results)

Strategy Num contiguous | Num simd | Simd depth | Num T/O
NoObj - = = 2
Identity 179 23 27 2
Permutations 673 75 119 2
Default 1637 386 586 2
OuterSimd 2801 348 418 2
Layout 2107 483 772 2

OuterSimd

+ Layout 6099 368 244 3
AS - - = 0

400 kernel benchmarks

Includes some of the PolyBench

Includes multiple larger "apps” from radar world

Scalability limitations many possible formulation improvements
Applied on whole problem when you would typically apply within a tile

Reservoir Labs

Outline

R-Stream Overview

Balancing Parallelism and Memory

Joint Vectorization and Data Layout Formulations

Results

Conclusions

Reservoir Labs

41

Conclusion

New formulations that now need to be tuned and scaled up
UTVPI direction Is interesting

Further opportunities to integrate even more transformations
Into iterative, fixed-point algorithms

Contraction, ISS

But the problem is non-trivial because of placement,
synchronizations and communications

Global problem not yet understood well enough
Algorithm selection exploration

Autotuning at every level in the compiler: built but not yet
exploited

Modelization of energy constraints

Will likely require folding in placement + privatization in
scheduling somehow

Reservoir Labs

42

Conclusion

Still lots of opportunities

® At low-level we compare auto-tuned MKL (human + tools) to
fully auto-generated high-level C

® Soon able to model energy consumption
The next frontier is integration with data structures and ADTs

Research collaborations
® More tools to explore and ideas than people at Reservoir

Reservoir Labs

43

Questions?

Reservoir Labs

44

